CN108133879A - 用于微纳尺度形貌及化学信息同时原位获得的近场离子源 - Google Patents

用于微纳尺度形貌及化学信息同时原位获得的近场离子源 Download PDF

Info

Publication number
CN108133879A
CN108133879A CN201711389856.2A CN201711389856A CN108133879A CN 108133879 A CN108133879 A CN 108133879A CN 201711389856 A CN201711389856 A CN 201711389856A CN 108133879 A CN108133879 A CN 108133879A
Authority
CN
China
Prior art keywords
optical fiber
sample
nano
micro
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711389856.2A
Other languages
English (en)
Other versions
CN108133879B (zh
Inventor
杭纬
殷志斌
程肖玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201711389856.2A priority Critical patent/CN108133879B/zh
Publication of CN108133879A publication Critical patent/CN108133879A/zh
Application granted granted Critical
Publication of CN108133879B publication Critical patent/CN108133879B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

用于微纳尺度形貌及化学信息同时原位获得的近场离子源,涉及近场离子源。设有光源、后电离源、光纤、Z轴光纤‑样品距离控制系统、样品、质量分析器和XY二维移动平台;控制系统对光纤末端与样品之间的距离调控,当光纤趋近到样品表面时通过反馈系统获得Z轴高度信息;光源发出的光束经光纤进行传输,并照射在样品表面;后电离源所产生的离子经传输进入质量分析器,通过质量分析器获得质谱谱图;通过逐点扫描的方式记录样品表面微纳尺度的形貌信息,获得其三维形貌轮廓的成像图;原位记录样品表面微区的化学信息,获得其表面化学信息的二维质谱成像图,获得空间分辨率可达微米甚至是纳米尺度,可实现分子及元素薄层的深度分析。

Description

用于微纳尺度形貌及化学信息同时原位获得的近场离子源
技术领域
本发明涉及近场离子源,尤其是涉及用于微纳尺度形貌及化学信息同时原位获得的近场离子源。
背景技术
随着现代纳米科技的迅猛发展,如何在微纳尺度下实现对新型纳米材料、微电子学、生命科学以及单细胞中超微结构等研究领域原位且全面地表征及成像,成为了科学家们迫切关注的科学问题。原位表征及其成像即要求该分析方法能对复杂实际样品的表面形貌、化学成分(包括元素与分子信息)、物理特性以及分子结构等参数进行微米甚至纳米尺度空间分辨的表征及成像。
目前对材料或生物样品的物理及化学成分的分析主要是采用扫描探针显微镜(SPM)和质谱(MS)方法。前者虽然拥有纳米级别的超高空间分辨率的成像能力,但只能提供样品表面的形貌信息,难以提供样品中的化学组成与分子结构信息;与之相比,质谱可以提供除了样品形貌信息以外的化学组成(分子及元素成分)以及分子结构等信息。近年来,质谱以其超高灵敏度、优异检出限、普适性广等优点而被广泛关注。但目前能提供纳米级空间分辨率的质谱成像主要是二次离子质谱(SIMS),其他报道的可用于纳米尺度分析及成像的质谱方法寥寥无几。而SIMS由于操作繁琐,造价与维护费用昂贵,基体效应严重难以定量而应用受限。激光采样技术以其分析速度快、样品消耗少、无需样品前处理等优点而被广泛使用;但由于衍射极限的限制,常见的激光采样的空间分辨率一般为5~200μm,无法提供样品的微纳尺度分析及成像,这也决定其无法满足微纳尺度分析及成像的前沿需求。
为了解决衍射极限对分辨率的限制问题,早在1928年英国科学家Synge,E.H.便首次提出使用一个低于衍射极限孔径的光纤进行激光的传输,在纳米距离范围内对物体表面进行扫描获得比衍射极限分辨率更高的高分辨近场光学图像(Synge,E.H.(1928).“Asuggested method for extending microscopic resolution into ultra-microscopecresolution.”The London,Edinburgh,and Dublin Philosophical Magazine andJournal of Science 6(35):356-362)。然而光学信号的背景干扰较大,且只能提供极少数分子的结构信息。直至近年来,近场技术不断发展,不仅可以获得近场光学信息,还可以对固体样品表面进行剥蚀得到纳米级别的弹坑,从而弥补了传统激光采样技术无法突破光学衍射极限的限制。例如,Zenobi课题组使用扫描近场光学显微镜(SNOM)技术对固体有机物溅射出直径约200nm的弹坑(Raoul,Setz,Patrick,Deckert,Volker,Lippert,Thomas,Wokaun,Alexander,Zenobi,Renato(2001).“Nanoscale Atmospheric PressureLaser Ablation-Mass Spectrometry.”Analytical Chemistry 73(7):1399-1402)。随后该课题组又将此技术用于DHB(2,5-DihydrobenzoicAcid)样品的点阵成像实验,通过特制接口将分子引入质谱进行电离并检测,但由于大气压的传输损失以及仪器灵敏度受限,目前只能获得低μm的成像分辨率,尚无法获得纳米尺度的化学成像信息(Nudnova,MaryiaM.Sigg, Wallimann,Pascal,Zenobi,Renato(2015).“Plasma Ionization Sourcefor Atmospheric Pressure Mass Spectrometry Imaging Using Near-Field OpticalLaser Ablation.”Analytical Chemistry 87(2):1323-1329)。
近年来,基于SPM与MS技术联用进行离线或者准原位的材料物理化学性质的表征分析陆续见有报道,例如Hutter,Herbert课题组报道了先在大气压下使用商品化的原子力显微镜(AFM)记录样品表面的形貌信息,再将样品转移到SIMS的高真空腔体中进行化学信息的质谱成像(Koch,Sabrina,Ziegler,Georg,Hutter,Herbert(2013).“ToF-SIMSmeasurements with topographic information in combined images.”Analytical andBioanalytical Chemistry 405(22):7161-7167)。这种方式虽然可以提供三维重构信息,但是样品在转移过程中表面容易受到污染和破坏,使二者信息无法吻合,且定位困难,整个分析过程十分费时且繁琐。为此,Tom Wirtz课题组将商品化的AFM放置到另一台商品化的SIMS中,在真空条件下先对样品表面进行形貌表征,再使用纳米旋转台使样品旋转180°后再进行质谱成像分析(Tom Wirtz,Yves Fleming,Mathieu Gerard,Urs Gysin,ThiloGlatzel,Ernst Meyer,Urs Wegmann,Urs Maier,Aitziber Herrero Odriozola,DanielUehli(2012).“Design and performance of a combined secondary ion massspectrometry-scanning probe microscopy instrument for high sensitivity andhigh-resolution elemental three-dimensional analysis”Review of ScientificInstruments 83(6):063702(1-9))。但这种“准原位”的理化性质表征仍然存在定位困难、无法同时且原位检测的问题。
上述这些基于SPM-MS的联用方法虽然可以提供材料微纳尺度的物理化学成分信息并将其重构为三维质谱成像图,但这些研究工作依然存在着以下不足:1)大气压下进行分子传输,存在着大量的传输损失,导致仪器方法的检出限较差,难以获得纳米尺度的质谱成像。2)SPM只是作为一种“外嵌式”或辅助性工具,而不是将其自身作为一种离子源,使得SPM与MS的结合价格昂贵,同时定位精度差或定位困难使该组合丧失了原位分析的意义。上述的缺点都限制了这些方法无法原位获得纳米尺度的形貌及化学成像信息,而直接将SPM作为质谱仪的电离源,形貌与成像信息一步到位,更有利于该原位分析方法的普及推广和广泛应用,这也是本专利的核心。
发明内容
针对现有技术存在的上述问题,本发明的目的在于提供用于微纳尺度形貌及化学信息同时原位获得的近场离子源。
本发明设有光源、后电离源、光纤、Z轴光纤-样品距离控制系统、样品、质量分析器和XY二维移动平台;所述Z轴光纤-样品距离控制系统对光纤末端与样品之间的距离进行调控,当光纤趋近到样品表面时通过反馈系统获得Z轴高度信息,并由电脑软件记录;所述光源发出的光束经光纤进行传输,并照射在样品表面,以解吸或溅射形式产生离子;后电离源所产生的离子经传输进入质量分析器,通过质量分析器获得质谱谱图;通过逐点扫描的方式记录样品表面微纳尺度的形貌信息,获得其三维形貌轮廓的成像图;同时原位记录样品表面微区的化学信息(分子或元素信息),获得其表面化学信息的二维质谱成像图,获得的空间分辨率可达微米甚至是纳米尺度,同时可以实现分子及元素薄层的深度分析。
所述光源可采用脉冲光源或连续光源,所述脉冲光源的光束波长为46.9~2940nm,光束直径为0.001~10mm,脉宽为1fs~1ms,瞬间脉冲能量为1nJ~100mJ,脉冲频率为0.05Hz~100MHz;所述连续光源的光束波长为46.9~2940nm,光束直径为0.001~10mm,平均功率为>0.1mW。
所述后电离源可采用任意可使气相原子或分子发生电离的能量源,例如声、光、电、热源、射线、粒子束等。本发明所述激光后电离源可采用连续光源或者脉冲光源,光束波长为46.9~1100nm,光束直径为0.001~10mm;若为连续光源,平均功率为>0.1mW;若为脉冲光源,脉宽为1fs~1ms,瞬间脉冲能量为1nJ~500mJ,脉冲频率为0.05Hz~100MHz。本发明使用激光后电离源作为本例的展示,为本发明的实施方式之一,其他任何未背离本发明的前提和原理下所作的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本发明的保护范围之内。
所述光纤可为任意材料(石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤等)的光传导光纤;所述光纤可为单模(含偏振保持光纤、非偏振保持光纤)或者多模光纤;所述光纤的工作波长为深紫外到远红外波段;所述光纤尖端直径为1nm~200μm;所述光纤与样品表面的距离为0.1nm~20μm。所述光纤既可以是外围有镀层包裹也可以是外围无镀层包裹的光纤形式,镀层材料可以是导体(金属材料等)、半导体、非导体等,镀层厚度可为0.1nm~100μm。
所述Z轴光纤-样品距离控制系统可为任意SPM驱动的方式,例如AFM(轻敲式、接触式、音叉式等反馈形式)、STM(隧道电流反馈形式)等一切可以进行距离控制的反馈形式。上述例只是本发明的实施方式之一,其他任何未背离本构思的前提和原理下所作的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本发明的保护范围之内。
所述样品可为导体、半导体、非导体,或固体表面的液体残渣、沉积物、胶体、离子液体等固体或液体。
所述质量分析器可采用磁场分析器、四级杆分析器、离子阱分析器(包括线性离子阱、轨道离子阱、矩形离子阱等)、飞行时间分析器、傅里叶变换分析器等一切可用于分离并检测不同质荷比离子的分析器。
所述XY二维移动平台可为采用任意驱动方式的平台(手动式、电机驱动式、压电陶瓷式、压电马达式等),控制系统可采用无反馈或任意反馈形式(直读法、光栅尺、容栅尺等)进行位置控制。
所述光纤与样品表面的夹角范围可为0°~180°。
本发明所处的环境可以是低真空或高真空,可以有其他气体(如空气、氮气、氩气、氦气、氢气或者以上气体的混合气等)作为辅助气体,气压范围为1×10-7–1×103Pa。
本发明的作用原理在于:
首先确定样品表面所感兴趣的微区,通过Z轴光纤-样品距离控制系统可以对光纤尖端出光口与样品表面之间的距离进行控制,当光纤趋近到样品表面时通过Z轴光纤-样品距离控制系统等可以获得此处的Z轴高度信息,并由电脑记录下来。随后光源发出的光束(包括激光或者其他光源所产生的光束)经过光纤进行传输,并照射在样品表面一个微区。由于光纤尖端出光口与样品表面之间距离可以被Z轴光纤-样品距离控制系统调节控制,采样区域的大小受光纤与样品之间放置角度、光纤尖端曲率直径以及光纤与样品之间距离等因素影响。当此距离足够小时,采样区域近似等于光纤尖端曲率直径,即可实现微区采样分析。当光束的功率密度大于或等于样品的解吸(或原子化)阈值时,光束通过光纤出光照射范围内的样品分子(或原子)则会由于受到输出光源所提供的能量而产生解吸(或原子化)或少部分离子化。解吸产生的中性原子或者溅射出来的中性原子经过后电离源区域时,会被能够提供能量的后电离源所电离而产生离子。离子经传输进入质量分析器被分离并检测,获得样品采样点处的含有分子及原子信息的质谱图。随后通过逐点扫描的方式就能记录下样品表面微区的形貌信息,获得其XYZ三维形貌轮廓的成像图;还能同时原位地记录下样品表面微区的化学信息(分子或元素信息),获得其表面化学信息的XY二维质谱成像图。通过后续数据处理便可获得三维重构后的质谱成像图。通过这种方式可获得的空间分辨率可达微米甚至是纳米尺度,同时可以实现分子及元素薄层的深度分析。使用该新型离子源便可同时且原位地进行形貌成像与化学成分分布成像,不存在重复定位精度差或重复定位困难的问题。到目前为止,使用近场离子源同时且原位地获取XYZ三维的形貌信息以及XY二维样品表面所含有的所有化学信息,在质谱领域中仍是空白。
本发明所提出的分析方法是在真空中进行,可以大大提高离子的利用率,无需考虑离子的传输损失,同时结合后电离源可以进一步提高离子产率,获得纳米尺度的空间分辨率及质谱成像信息。更为重要的是,直接将SPM作为质谱的离子源可以同时、原位地获得样品表面的形貌信息、相对应的分子或元素的信息及其分布成像信息。
本发明相对于现有技术具有如下优势和效果:1)可同时且原位地实现高空间分辨率的微区样品表面三维形貌图以及样品表面二维质谱成像图;2)能实现原子薄层(或分子薄层)的深度分析;3)可进行真实的XYZ三维重构后的化学成像图。
附图说明
图1为本发明实施例的结构示意图。在图1中,各标记为:1-光源、2-后电离源、3-光纤、4-Z轴光纤-样品距离控制系统、5-样品、6-质量分析器、7-XY二维移动平台。
图2为样品表面在近场激光剥蚀之后产生的三组2×4弹坑点阵(重复三次平行实验)。在图2中,上面一组点距为2μm,下面两组点距为1μm。
图3为刻蚀后的光纤电镜图。
图4为酞菁铜镀层的光学显微镜图。
图5为使用近场电离源(光纤)扫描得到的三维形貌图。
图6为使用同一近场电离源获得的质谱成像图。
具体实施方式
以下实施例将结合附图1对本发明作进一步的说明。
参见附图1,本发明实施例设有光源1、后电离源2、光纤3、Z轴光纤-样品距离控制系统4、样品5、质量分析器6、XY二维闭环位移平台7:首先确定样品5表面所感兴趣的微区,通过Z轴光纤-样品距离控制系统4可以对光纤3尖端出光口与样品5表面之间的距离进行控制;当光纤趋近到样品表面时通过Z轴光纤-样品距离控制系统4获得此处的Z轴高度信息,并由电脑记录下来。随后光源发出的光束1(包括激光或者其他光源所产生的光束)经过光纤3进行传输,并照射在样品5表面一个微区,由于光纤尖端出光口与样品表面之间距离可被Z轴光纤-样品距离控制系统4可以调节控制,当此距离足够小时,采样区域直径近似等于光纤尖端曲率直径,即可实现微区采样分析。当光束1的功率密度大于或等于样品5的解吸(或原子化)阈值时,光束1通过光纤3出光照射范围内的样品分子(或原子)则会由于受到输出光源所提供的能量而产生解吸(或原子化)或少部分离子化。解吸产生的中性原子或者溅射出来的中性原子经过后电离源2区域时,会被后电离源进一步电离而产生离子。离子经传输进入质量分析器6被分离并检测,获得所测样品5采样点处所含有的分子及原子信息的质谱图。随后通过逐点扫描的方式就能记录下样品5表面微区的形貌信息,获得其XYZ三维形貌轮廓的成像图;还能同时原位地记录下样品5表面微区的所有化学信息(分子或元素信息),获得其表面所有化学信息的XY二维质谱成像图。通过后续数据处理便可获得三维重构后的质谱成像图。选取感兴趣的不同分子离子峰便可获得对应的三维重构质谱成像图。通过这种方式可获得的空间分辨率可达微米甚至是纳米尺度,同时可以实现分子及元素薄层的深度分析。
所述光源可采用脉冲光源或者连续光源,所述脉冲光源的光束波长为46.9~2940nm,光束直径为0.001~10mm,脉宽为1fs~1ms,瞬间脉冲能量为1nJ~100mJ,脉冲频率为0.05Hz~100MHz;所述连续光源的光束波长为46.9~2940nm,光束直径为0.001~10mm,平均功率为>0.1mW。
所述后电离源可采用任意可使气相原子或分子发生激发或电离的能量源,例如激光、放电源、电子轰击源、射线、电子束、离子束等。所述激光可采用连续光源或者脉冲光源,二者的光束波长为46.9~1100nm,光束直径为0.001~10mm,若为连续光源,平均功率为>0.1mW;若为脉冲光源,脉宽为10fs~1ms,瞬间脉冲能量为10nJ~500mJ,脉冲频率为0.05Hz~100MHz。
所述光纤可为任意材料(石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤等)的光传导光纤;所述光纤可为单模(含偏振保持光纤、非偏振保持光纤)或者多模光纤;所述光纤的工作波长为深紫外到远红外波段等;所述光纤尖端直径为1nm~150μm;所述光纤与样品表面的距离为0.1nm~20μm。所述光纤既可以是外围有镀层包裹也可以是外围无镀层包裹的光纤形式,镀层材料可以是导体、半导体、非导体等,镀层厚度可为0.1nm~100μm。
所述Z轴光纤-样品距离控制系统可为任意SPM驱动的方式,例如AFM(轻敲式、接触式、音叉式等反馈形式)、STM(隧道电流反馈形式)等一切可以进行距离控制的反馈形式。
所述样品可为导体、半导体、非导体,或表面的液体残渣、沉积物、胶体、离子液体等固体或液体。
所述质量分析器可采用磁场分析器、四级杆分析器、离子阱分析器(包括线性离子阱、轨道离子阱、矩形离子阱等)、飞行时间分析器、傅里叶变换分析器等一切可用于分离并检测不同质荷比离子的分析器。
所述XY二维移动平台可为采用任意驱动方式的平台(手动式、电机驱动式、压电陶瓷式、压电马达式等),控制系统可采用无反馈或任意反馈形式(直读法、光栅尺、容栅尺等)进行位置控制。
所述光纤与样品表面的夹角范围为0°~180°。
本发明所处的环境可以是低真空或高真空,可以有其他气体(如空气、氮气、氩气、氦气、氢气或者以上气体的混合气等)作为辅助气体,气压范围为1×10-7~1×103Pa。
上述实施例是将此新型电离源与质谱相结合得到的系列结果,为本发明的实施方式之一,其他任何未背离本构思的前提和原理下所作的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.用于微纳尺度形貌及化学信息同时原位获得的近场离子源,其特征在于设有光源、后电离源、光纤、Z轴光纤-样品距离控制系统、样品、质量分析器和XY二维移动平台;所述Z轴光纤-样品距离控制系统对光纤末端与样品之间的距离进行调控,当光纤趋近到样品表面时通过反馈系统获得Z轴高度信息,并由电脑软件记录;所述光源发出的光束经光纤进行传输,并照射在样品表面,以解吸或溅射形式产生离子;后电离源所产生的离子经传输进入质量分析器,通过质量分析器获得质谱谱图;通过逐点扫描的方式记录样品表面微纳尺度的形貌信息,获得其三维形貌轮廓的成像图;同时原位记录样品表面微区的化学信息,获得其表面化学信息的二维质谱成像图,获得的空间分辨率达微米甚至是纳米尺度,同时实现分子及元素薄层的深度分析。
2.如权利要求1所述用于微纳尺度形貌及化学信息同时原位获得的近场离子源,其特征在于所述光源采用脉冲光源或连续光源,所述脉冲光源的光束波长可为46.9~2940nm,光束直径可为0.001~10mm,脉宽可为1fs~1ms,瞬间脉冲能量可为1nJ~100mJ,脉冲频率可为0.05Hz~100MHz;所述连续光源的光束波长可为46.9~2940nm,光束直径为0.001~10mm,平均功率为>0.1mW。
3.如权利要求1所述用于微纳尺度形貌及化学信息同时原位获得的近场离子源,其特征在于所述后电离源采用任意使气相原子或分子发生电离的能量源,所述能量源包括声、光、电、热源、射线、粒子束。
4.如权利要求1所述用于微纳尺度形貌及化学信息同时原位获得的近场离子源,其特征在于所述激光后电离源采用连续光源或者脉冲光源,光束波长为46.9~1100nm,光束直径为0.001~10mm;若为连续光源,平均功率为>0.1mW;若为脉冲光源,脉宽为1fs~1ms,瞬间脉冲能量为1nJ~500mJ,脉冲频率为0.05Hz~100MHz。
5.如权利要求1所述用于微纳尺度形貌及化学信息同时原位获得的近场离子源,其特征在于所述光纤为光传导光纤,所述光传导光纤选自石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤中的一种;所述光纤可为单模光纤或多模光纤;所述单模光纤采用含偏振保持光纤、非偏振保持光纤;所述光纤的工作波长为深紫外到远红外波段;所述光纤尖端直径为1nm~200μm;所述光纤与样品表面的距离为0.1nm~20μm;所述光纤为外围有镀层包裹或外围无镀层包裹的光纤形式,镀层材料为导体、半导体、非导体中的一种,镀层厚度可为0.1nm~100μm;所述导体为金属材料。
6.如权利要求1所述用于微纳尺度形貌及化学信息同时原位获得的近场离子源,其特征在于所述Z轴光纤-样品距离控制系统为任意SPM驱动的方式,所述任意SPM驱动的方式采用AFM、STM进行距离控制的反馈形式;所述AFM采用轻敲式反馈形式、接触式反馈形式或音叉式反馈形式;所述STM采用隧道电流反馈形式。
7.如权利要求1所述用于微纳尺度形貌及化学信息同时原位获得的近场离子源,其特征在于所述样品为导体、半导体、非导体,或固体表面的液体残渣、沉积物、胶体、离子液体固体或液体。
8.如权利要求1所述用于微纳尺度形貌及化学信息同时原位获得的近场离子源,其特征在于所述质量分析器采用磁场分析器、四级杆分析器、离子阱分析器、飞行时间分析器、傅里叶变换分析器;所述离子阱分析器包括线性离子阱、轨道离子阱、矩形离子阱中的一种。
9.如权利要求1所述用于微纳尺度形貌及化学信息同时原位获得的近场离子源,其特征在于所述XY二维移动平台为采用任意驱动方式的平台,控制系统采用无反馈或任意反馈形式进行位置控制;所述任意驱动方式的平台可采用手动式、电机驱动式、压电陶瓷式、压电马达式中的一种;所述任意反馈形式采用直读法、光栅尺、容栅尺中的一种。
10.如权利要求1所述用于微纳尺度形貌及化学信息同时原位获得的近场离子源,其特征在于所述光纤与样品表面的夹角范围为0°~180°;所处的环境是低真空或高真空,有其他气体作为辅助气体,气压范围为1×10-7–1×103Pa;所述其他气体选自空气、氮气、氩气、氦气、氢气中的一至少一种。
CN201711389856.2A 2017-12-21 2017-12-21 用于微纳尺度形貌及化学信息同时原位获得的近场离子源 Expired - Fee Related CN108133879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711389856.2A CN108133879B (zh) 2017-12-21 2017-12-21 用于微纳尺度形貌及化学信息同时原位获得的近场离子源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711389856.2A CN108133879B (zh) 2017-12-21 2017-12-21 用于微纳尺度形貌及化学信息同时原位获得的近场离子源

Publications (2)

Publication Number Publication Date
CN108133879A true CN108133879A (zh) 2018-06-08
CN108133879B CN108133879B (zh) 2020-04-03

Family

ID=62392035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711389856.2A Expired - Fee Related CN108133879B (zh) 2017-12-21 2017-12-21 用于微纳尺度形貌及化学信息同时原位获得的近场离子源

Country Status (1)

Country Link
CN (1) CN108133879B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830425A (zh) * 2019-01-29 2019-05-31 厦门大学 一种基于微透镜光纤的微纳尺度解吸的离子源
CN111239238A (zh) * 2020-02-03 2020-06-05 华南农业大学 一种组织样品快速质谱成像方法
CN113678227A (zh) * 2018-06-18 2021-11-19 富鲁达加拿大公司 高分辨率成像设备和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339721A (zh) * 2011-09-28 2012-02-01 厦门大学 近场针尖增强光致电离离子源
CN104392887A (zh) * 2014-10-17 2015-03-04 大连民族学院 一种飞秒激光后电离质谱装置
CN106338546A (zh) * 2016-08-18 2017-01-18 东南大学 一种高空间分辨质谱成像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339721A (zh) * 2011-09-28 2012-02-01 厦门大学 近场针尖增强光致电离离子源
CN104392887A (zh) * 2014-10-17 2015-03-04 大连民族学院 一种飞秒激光后电离质谱装置
CN106338546A (zh) * 2016-08-18 2017-01-18 东南大学 一种高空间分辨质谱成像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
殷志斌等: "近场激光电离质谱仪研制及形貌-质谱共成像应用", 《第三届全国质谱分析学术报告会摘要集》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113678227A (zh) * 2018-06-18 2021-11-19 富鲁达加拿大公司 高分辨率成像设备和方法
CN109830425A (zh) * 2019-01-29 2019-05-31 厦门大学 一种基于微透镜光纤的微纳尺度解吸的离子源
CN111239238A (zh) * 2020-02-03 2020-06-05 华南农业大学 一种组织样品快速质谱成像方法

Also Published As

Publication number Publication date
CN108133879B (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
Stierle et al. Desy nanolab
US6369385B1 (en) Integrated microcolumn and scanning probe microscope arrays
CN108133879A (zh) 用于微纳尺度形貌及化学信息同时原位获得的近场离子源
TW200926245A (en) Composite focused ion beam apparatus, and machining monitoring method and machining method using composite focused ion beam apparatus
Liang et al. Nanoscale surface analysis that combines scanning probe microscopy and mass spectrometry: A critical review
CA2493212A1 (en) Method for locally highly resolved, mass-spectroscopic characterization of surfaces using scanning probe technology
JP2005098909A (ja) イオン化装置およびこれを用いた質量分析装置
CN102339721B (zh) 近场针尖增强光致电离离子源
CN101301994A (zh) 电子束-离子束微纳米加工组合系统
Kamino et al. A method for multidirectional TEM observation of a specific site at atomic resolution
Boyes High‐Resolution and Low‐Voltage SEM Imaging and Chemical Microanalysis
Meyer et al. Development of a scanning surface probe for nanoscale tip-enhanced desorption/ablation
JP5489295B2 (ja) 荷電粒子線装置及び荷電粒子線照射方法
Gierak et al. Exploration of the ultimate patterning potential achievable with focused ion beams
Yuan et al. AFM-based observation and robotic nano-manipulation
US7008862B2 (en) Regular array of microscopic structures on a substrate and devices incorporating same
Nakabayashi et al. Inexpensive two-tip nanomanipulator for a SEM
Murty et al. Tools to characterize nanomaterials
Mote et al. Focused Ion Beam (FIB) nanofinishing for ultra-thin TEM sample preparation
GB2514265A (en) Apparatus and method relating to an improved Mass Spectrometer
Lalande et al. Nanoscale multiply charged focused ion beam platform for surface modification, implantation, and analysis
Garten et al. Trends in applications and strategies in the analysis of thin films, interfaces and surfaces
Liu et al. Remote Atomic Force Microscope Detection Technology Based on LabVIEW
Midgley et al. The frontiers of microscopy
Liu Development of a multipurpose near-field imaging platform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200403

Termination date: 20211221