CN108126209A - 一种时序释放姜黄素和化疗药物的纳米递药系统及其应用 - Google Patents

一种时序释放姜黄素和化疗药物的纳米递药系统及其应用 Download PDF

Info

Publication number
CN108126209A
CN108126209A CN201711166450.8A CN201711166450A CN108126209A CN 108126209 A CN108126209 A CN 108126209A CN 201711166450 A CN201711166450 A CN 201711166450A CN 108126209 A CN108126209 A CN 108126209A
Authority
CN
China
Prior art keywords
delivery system
chemotherapeutics
medicine delivery
curcumin
nanoscale medicine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711166450.8A
Other languages
English (en)
Other versions
CN108126209B (zh
Inventor
吕立
李国成
伍俊妍
邱凯锋
石永辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201711166450.8A priority Critical patent/CN108126209B/zh
Publication of CN108126209A publication Critical patent/CN108126209A/zh
Application granted granted Critical
Publication of CN108126209B publication Critical patent/CN108126209B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种具有时序释放姜黄素和化疗药物的纳米递药系统及其在抗肿瘤方面的应用。本发明通过采用PEG修饰化疗药物形成两亲性轭合物,然后包裹姜黄素,形成纳米递药系统,该纳米递药系统具有时序释放药物的功能,能够按照时间先后顺序释放姜黄素和化疗药物,该时序释放纳米递药系统可进一步采用具有肿瘤细胞特异性的靶头分子修饰,获得肿瘤被动靶向、主动靶向性,以及时序释放药物的功能,具有抗耐药肿瘤等优良特性,有较好的临床应用前景。

Description

一种时序释放姜黄素和化疗药物的纳米递药系统及其应用
技术领域
本发明属于生物医药技术领域。更具体地,涉及一种时序释放姜黄素和化疗药物的纳米递药系统及其应用。
背景技术
肿瘤耐药性又称肿瘤抗药性,系指肿瘤细胞对于化疗药物作用的耐受性,耐药性一旦产生,药物的化疗作用就明显下降,甚至没有效果。肿瘤耐药是临床上肿瘤化学治疗的最大障碍,也是化疗失败的主要原因之一,肿瘤耐药的产生使临床上可供选择的化疗药物大为减少,因此如何克服及逆转肿瘤细胞对耐药相关化疗药物的耐药己成为临床迫切需要解决的问题。
从中药姜黄中提取的姜黄素在逆转肿瘤耐药方面较其他化学逆转剂有较大的优势,主要体现在:(1)具有多重的耐药逆转机制,不仅对P-gp的功能和表达有抑制作用,更令人欣喜的是其对引起肿瘤耐药的主要途径,如①化疗药物吸收减少,②细胞内化疗药物外排增加,③细胞活化作用的减弱或解毒作用的增强,④DNA损伤修饰能力的增强,⑤细胞凋亡的抑制等,都有一定的抑制作用;(2)对正常细胞毒性小、自身不良反应少,临床试验结果证明,每天服用12 g的姜黄素对人体仍然非常安全;(3)在逆转耐药的同时还有杀伤肿瘤细胞、调节和提高机体免疫功能的多重功效。
在逆转肿瘤耐药方面,逆转剂(增敏剂)应该比化疗药物提前释放,预先抑制外排泵的活性,进而抑制外排泵泵出化疗药物,使化疗药物在肿瘤细胞内的蓄积增加,起到增效减毒的作用。
为了实现肿瘤细胞的靶向给药,一个策略就是利用能与肿瘤细胞特异性结合的小分子(例如叶酸、生物素)、多肽(酸激活穿模肽等)、核酸适配体等修饰纳米递药系统。
目前,还未见有时序释放姜黄素和化疗药物的纳米递药系统的相关报道。
发明内容
本发明所要解决的技术问题是克服上述现有技术的缺陷和不足,提供一种时序释放姜黄素和化疗药物的纳米递药系统。
本发明的第二个目的是提供所述时序释放姜黄素和化疗药物的纳米递药系统的制备方法。
本发明的第三个目的是提供所述时序释放姜黄素和化疗药物的纳米递药系统的应用。
本发明的上述目的是通过以下技术方案给予实现的:
一种时序释放姜黄素和化疗药物的纳米递药系统,由活化的PEG修饰化疗药物形成两亲性轭合物再包裹姜黄素构建而得。
本发明采用聚乙二醇(PEG)修饰疏水的化疗药物形成两亲性轭合物,然后包裹姜黄素,通过自组装构建可按时间先后释放姜黄素和化疗药物的纳米给药系统;该系统在体内能够先释放姜黄素,然后释放化疗药物,使化疗药物在肿瘤细胞内的蓄积增加,起到增效减毒的作用。
优选地,所述的化疗药物为作用于DNA化学结构的药物、作用于核酸转录的药物、拓扑异构酶抑制剂、干扰微管蛋白合成的药物、影响核酸生物合成的药物或作用于酪氨酸激酶的药物。
更优选地,所述的化疗药物包括紫衫烷类、喜树碱类、雷帕霉素类等,如紫杉醇或多西他赛。
优选地,所述PEG的数均分子量为0.2K~1000K。
优选地,所述PEG为带有官能团的聚乙二醇,即PEG修饰剂。
更优选地,所述PEG一端为生物素另一端为羧基或一端为马来酰亚胺基另一端为羧基。
优选地,所述纳米递药系统连接有特异性靶向肿瘤细胞的靶头分子;通过进一步采用具有肿瘤细胞特异性的活性分子修饰该纳米递药系统,获得具有特异靶向肿瘤和时序释放药物功能的纳米递药系统。
优选地,所述的靶头分子包括生物素、叶酸、多肽类、抗体或核酸适配体。
更优选地,所述多肽类为酸激活穿模肽、神经肽类似物或RGD肽。
优选地,所述纳米递药系统为纳米颗粒、胶束、脂质体或囊泡。
本发明的纳米递药系统可用于制备抗肿瘤药物,而不仅限于化疗药物,因此本发明还保护所述时序释放姜黄素和化疗药物的纳米递药系统在制备抗肿瘤药物中的应用。
一种时序释放姜黄素和化疗药物的纳米递药系统的制备方法,包括如下步骤:
S1.将活化的PEG与化疗药物反应,获得PEG化的化疗药物;
S2.将PEG化的化疗药物和姜黄素溶于二氯甲烷中,旋蒸除去二氯甲烷,加入超纯水,涡旋,超声,离心,即得时序释放姜黄素和化疗药物的纳米递药系统溶液;
S3.将S2得到的纳米递药系统溶液,冷冻干燥,即得纳米递药系统冻干粉。
优选地,步骤S1所述PEG一端连接有羟基,另一端连接有马来酰亚胺基。
优选地,可以用特异性靶向肿瘤细胞的分子修饰S2得到纳米递药系统溶液,得到具有特异靶向肿瘤和时序释放姜黄素和化疗药物功能的纳米递药系统溶液。
具体地,是将巯基修饰的靶分子与加入到纳米递药系统溶液中,巯基修饰的靶分子与纳米递药系统表面的马来酰亚胺基团反应,获得具有特异靶向肿瘤和时序释放姜黄素和化疗药物功能的纳米递药系统溶液。
与现有技术相比,本发明具有以下有益效果:
(1)本发明通过将化疗药物PEG化形成两亲性的轭合物,再采用该两亲性的轭合物在水性介质中自组装同时包裹姜黄素形成纳米递药系统,该系统在体内能够先释放姜黄素,然后释放化疗药物,使化疗药物在肿瘤细胞内的蓄积增加,起到增效减毒的作用。
(2)本发通过用特异性靶向肿瘤细胞的分子修饰PEG,使纳米递药系统具有特异的靶向性,在提高纳米递药系统的对肿瘤细胞治疗效果的同时减小对正常细胞的毒害作用。
附图说明
图1为本发明Cur/Biotin-PEG-PTX纳米递药系统的构建图。
图2为本发明Cur/PNBL-NPY-PEG-DTX纳米递药系统的构建图。
图3为本发明Cur/pHLIP -PEG-PTX纳米递药系统的构建图。
图4为本发明Cur/Biotin-PEG-PTX纳米递药系统时序释放药物效果。
图5为本发明Cur/PNBL-NPY-PEG-DTX纳米递药系统时序释放药物效果。
图6为本发明Cur/pHLIP -PEG-PTX纳米递药系统时序释放药物效果。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1生物素修饰的时序释放姜黄素、紫杉醇纳米递药系统
以生物素(Biotin)修饰的时序释放姜黄素、紫杉醇纳米递药系统为例说明其构建过程、时序释放效果评价及抗MCF-7/ADR耐药肿瘤的效果:
1、纳米递药系统的构建
取一端为Biotin一端为羧基的PEG(分子量约为2000)10 mM,溶于50 mL无水二氯甲烷中,然后加入10 mM的紫杉醇(PTX),11 mMN,N'-二环己基碳二亚胺(DCC)和1.1 mM的4-二甲氨基吡啶(DMAP),室温下搅拌反应三天,过滤,加入无水乙醚沉淀,真空干燥,即得Biotin修饰PEG化的紫杉醇(Biotin-PEG-PTX)。取5mMBiotin-PEG-PTX,1 mM的姜黄素(Cur)溶于20mL二氯甲烷中,旋转蒸发仪挥干二氯甲烷,然后加入20 mL超纯水,接着涡旋5 min,超声5min,4000 r/min、离心10 min,取上清液用0.45 μm的微孔滤膜过滤,得纳米递药系统溶液(Cur/Biotin-PEG-PTX),其构建过程如图1所示。
2、纳米递药系统溶液的水合直径和直径分布采用动态光散射仪(Dynamic LightScattering,DLS)进行测定。实验光源为4.0 mW He-Ne激光,激光波长633 nm,测定角度173°,实验温度为25℃。测定结果见表1所示,纳米递药系统的粒径为95.34nm,且粒径均一,PDI为0.150。
表1 Cur/Biotin-PEG-PTX纳米递药系统的粒径及PDI
纳米递药系统 粒径(nm) PDI
Cur/Biotin-PEG-PTX 95.34±5.98 0.150±0.023
3、Cur/Biotin-PEG-PTX纳米递药系统时序释放姜黄素、紫杉醇效果评价
取10 mg的Cur/PEG-PTX纳米递药系统溶解在3 mL的含1% v/v吐温80的PBS溶液(0.01M,pH7.4)中,然后加入到透析袋中。将透析袋放入12 mL释放介质中,置于37℃的水浴摇床,摇床的转速为120 rpm。在设定的时间点,将释放介质完全取出,更换新鲜的释放介质,采用HPLC法测定姜黄素和紫杉醇的浓度,并计算累计释放率,实验结果见图4所示。
4、Cur/Biotin-PEG-PTX纳米递药系统抗MCF-7/ADR耐药肿瘤效果评价
建立MCF-7/ADR的裸鼠皮下抑制瘤模型,通过尾静脉给药,设立的组别如下:①游离紫杉醇(PTX);②游离姜黄素(Cur)+游离紫杉醇(PTX);③(Cur+PTX)/PEG-PLLA(不能时序释放Cur和PTX组);④Cur/PEG-PTX(时序释放Cur和PTX组);⑤Cur/Biotin-PEG-PTX(生物素修饰能够时序释放Cur和PTX组);⑥生理盐水组每周给药一次,连续给药2个月后,计算给药组的抑瘤率。抑瘤率:IRT(%)=(1-D/S)×100(D,治疗组肿瘤重量;S,生理盐水组肿瘤重量)。实验结果见表2所示,时序释放姜黄素、紫杉醇的纳米递药系统(Cur/PEG-PTX)抑瘤率为82±2%,抗瘤效果强于不能时序释放姜黄素、紫杉醇的纳米递药系统(Cur+PTX)/PEG-PLLA,采用生物素修饰,能够进一步提高时序释放序释放姜黄素、紫杉醇的纳米递药系统的抗瘤效果。
表2 Cur/Biotin-PEG-PTX体内抗肿瘤效果。
组别 抑瘤率(%)
PTX 33±4%
Cur+PTX 37±5%
(Cur+PTX)/PEG-PLLA 63±2%
Cur/PEG-PTX 82±2%
Cur/Biotin-PEG-PTX 87±3%
实施例2神经肽类似物(PNBL-NPY)修饰的具有肿瘤靶向和时序释放姜黄素、多西他赛的纳米递药系统
以神经肽类似物(PNBL-NPY)修饰的具有肿瘤靶向和时序释放姜黄素、多西他赛的纳米递药系统为例说明其构建过程、时序释放效果评价及抗MCF-7/ADR耐药肿瘤的效果:
1、纳米递药系统的构建
取一端为马来酰亚胺基一端为羧基的PEG(分子量约为2000)10 mM,溶于60 mL无水二氯甲烷中,然后加入10 mM的多西他赛(DTX),11 mMDCC和1.1 mMDMAP,室温下搅拌反应三天,过滤,加入无水乙醚沉淀,真空干燥,即得一端为马来酰亚胺基PEG化的多西他赛(Mal-PEG-DTX)。取5mMMal-PEG-DTX,1 mM的姜黄素(Cur)溶于30 mL二氯甲烷中,旋转蒸发仪挥干二氯甲烷,然后加入20 mL超纯水,接着涡旋5 min,超声5 min,4000 r/min离心10 min,取上清液用0.45 μm的微孔滤膜过滤,得纳米递药系统溶液(Cur/Mal-PEG-DTX),在该溶液中加入5mM的巯基化的神经肽类似物(PNBL-NPY),室温下孵育24小时后,超速离心得神经肽类似物(PNBL-NPY)修饰的具有肿瘤靶向和时序释放姜黄素、多西他赛的纳米递药系统(Cur/PNBL-NPY-PEG-DTX)。其构建过程如图2所示。本例中所采用神经肽类似物(PNBL-NPY)为一种由9个氨基酸组成的神经肽Y(Neuropeptide Y,NPY)类似物[Pro30, Nle31, Bpa32,Leu34]NPY(28-36)。
2、纳米递药系统溶液的水合直径和直径分布采用动态光散射仪(Dynamic LightScattering,DLS)进行测定。实验光源为4.0 mW He-Ne激光,激光波长633 nm,测定角度173°,实验温度为25℃。测定结果见表3所示,纳米递药系统的粒径为122.5nm,且粒径均一,PDI为0.210。
表3 Cur/PNBL-NPY-PEG-DTX纳米递药系统的粒径及PDI
纳米递药系统 粒径(nm) PDI
Cur/PNBL-NPY-PEG-DTX 122.5±7.12 0.210±0.034
3、Cur/PNBL-NPY-PEG-DTX纳米递药系统时序释放姜黄素、多西他赛效果评价
取10 mg的Cur/PNBL-NPY-PEG-DTX纳米递药系统溶解在3 mL的含1% v/v吐温80的PBS溶液(0.01M,pH7.4)中,然后加入到透析袋中。将透析袋放入12 mL释放介质中,置于37℃的水浴摇床,摇床的转速为120 rpm。在设定的时间点,将释放介质完全取出,更换新鲜的释放介质,采用HPLC法测定姜黄素和多西他赛的浓度,并计算累计释放率,实验结果见图5所示。
4、Cur/PNBL-NPY-PEG-DTX纳米递药系统抗MCF-7/ADR耐药肿瘤效果评价
建立MCF-7/ADR的裸鼠皮下抑制瘤模型,通过尾静脉给药,设立的组别如下:①游离DTX;②游离Cur+游离多西他赛;③(Cur+DTX)/PEG-PLLA(不能时序释放Cur和DTX组);④Cur/PEG-DTX(时序释放Cur和DTX组);⑤Cur/PNBL-NPY-PEG-DTX(PNBL-NPY修饰能够时序释放Cur和DTX组);⑥生理盐水组每周给药一次,连续给药2个月后,计算给药组的抑瘤率。抑瘤率:IRT(%)=(1-D/S)×100(D,治疗组肿瘤重量;S,生理盐水组肿瘤重量)。实验结果见表4,可知时序释放姜黄素、多西他赛的纳米递药系统(Cur/PEG-DTX)抑瘤率为83±5%,抗瘤效果强于不能时序释放姜黄素、多西他赛的纳米递药系统(Cur+DTX)/PEG-PLLA,采用PNBL-NPY修饰,能够进一步提高时序释放序释放姜黄素、多西他赛纳米递药系统的抗瘤效果。
表4 Cur/PNBL-NPY-PEG-DTX体内抗肿瘤效果。
组别 抑瘤率(%)
DTX 41±3%
Cur+DTX 43±4%
(Cur+DTX)/PEG-PLLA 55±3%
Cur/PEG-DTX 83±5%
Cur/ PNBL-NPY-PEG-DTX 92±4%
实施例3酸激活穿膜肽(pHLIP)修饰的具有肿瘤靶向和时序释放姜黄素、紫杉醇的纳米递药系统
以酸激活穿膜肽(pHLIP)修饰的具有肿瘤靶向和时序释放姜黄素、紫杉醇的纳米递药系统为例说明其构建过程、时序释放效果评价及抗MCF-7/ADR耐药肿瘤的效果:
1、纳米递药系统的构建
取一端为马来酰亚胺基一端为羧基的PEG(分子量约为1000)10 mM,溶于 60 mL 无水二氯甲烷中,然后加入 10 mM的紫杉醇(PTX),11 mM DCC和1.1 mM的DMAP,室温下搅拌反应三天,过滤,加入无水乙醚沉淀,真空干燥,即得一端为马来酰亚胺基PEG化的紫杉醇(Mal-PEG-PTX)。取5mMMal-PEG-PTX,1 mM的姜黄素(Cur)溶于30 mL二氯甲烷中,旋转蒸发仪挥干二氯甲烷,然后加入20 mL超纯水,接着涡旋5 min,超声5 min,4000 r/min离心10 min,取上清液用0.45 μm的微孔滤膜过滤,得纳米递药系统溶液(Cur/Mal-PEG-PTX),在该溶液中加入5mM的巯基化的酸激活穿膜肽(pHLIP),室温下孵育24小时后,超速离心得酸激活穿膜肽(pHLIP)修饰的具有肿瘤靶向和时序释放姜黄素、紫杉醇的纳米递药系统(Cur/pHLIP-PEG-PTX)。其构建过程如图3所示。本例中所采用酸激活穿膜肽(pHLIP)的氨基酸系列为:ACEQNPIYWARYADWLFTTPLLLLDLALLVDADET。
2、纳米递药系统溶液的水合直径和直径分布采用动态光散射仪(Dynamic LightScattering,DLS)进行测定。实验光源为4.0 mW He-Ne激光,激光波长633 nm,测定角度173°,实验温度为25℃。测定结果见表5,纳米递药系统的粒径为115.2nm,且粒径均一,PDI为0.223。
表5Cur/pHLIP -PEG-PTX纳米递药系统的粒径及PDI
纳米递药系统 粒径(nm) PDI
Cur/pHLIP -PEG-PTX 115.2±6.67 0.223±0.032
3、Cur/pHLIP -PEG-PTX纳米递药系统时序释放姜黄素、多西他赛效果评价
取10 mg的Cur/pHLIP-PEG-PTX纳米递药系统溶解在3 mL的含1% v/v吐温80的PBS溶液(0.01M,pH7.4)中,然后加入到透析袋中。将透析袋放入12 mL释放介质中,置于37℃的水浴摇床,摇床的转速为120 rpm。在设定的时间点,将释放介质完全取出,更换新鲜的释放介质,采用HPLC法测定姜黄素和紫杉醇的浓度,并计算累计释放率,实验结果见图6所示。
4、Cur/pHLIP-PEG-PTX纳米递药系统抗MCF-7/ADR耐药肿瘤效果评价
建立MCF-7/ADR的裸鼠皮下抑制瘤模型,通过尾静脉给药,设立的组别如下:①游离PTX;②游离Cur+游离PTX;③(Cur+PTX)/PEG-PLLA(不能时序释放Cur和PTX组);④Cur/PEG-PTX(时序释放Cur和PTX组);⑤Cur/pHLIP-PEG-PTX(pHLIP修饰能够时序释放Cur和PTX组);⑥生理盐水组每周给药一次,连续给药2个月后,计算给药组的抑瘤率。抑瘤率:IRT(%)=(1-D/S)×100(D,治疗组肿瘤重量;S,生理盐水组肿瘤重量)。实验结果见表6,时序释放姜黄素、紫杉醇的纳米递药系统(Cur/PEG-PTX)抑瘤率为82±2%,抗瘤效果强于不能时序释放姜黄素、紫杉醇的纳米递药系统(Cur+DTX)/PEG-PLLA,采用pHLIP修饰,能够进一步提高时序释放序释放姜黄素、紫杉醇纳米递药系统的抗瘤效果。
表6 Cur/pHLIP -PEG-PTX体内抗肿瘤效果
组别 抑瘤率(%)
PTX 33±4%
Cur+PTX 37±5%
(Cur+PTX)/PEG-PLLA 63±2%
Cur/PEG-PTX 82±2%
Cur/pHLIP-PEG-PTX 92±2%
综上所述,本发明的具有肿瘤靶向作用和时序释放药物的纳米递药系统,具有明显的抗耐药肿瘤效果,进一步原理阐述如下:本发明所制备的纳米递药系统进入细胞后,能够保证两种药物以不同的顺序和速率释放:通过物理包裹的姜黄素,首先快速释放,通过多种途径(如抑制外排泵P-gp活性,下调NF-κB的表达,抑制BCL-2介导的肿瘤耐药等)恢复耐药肿瘤细胞对化疗药物的敏感性,而通过化学键连接的化疗药物则需通过水解而缓慢释放。由于姜黄素提前增敏了耐药肿瘤细胞,使化疗药物的治疗效果明显增加。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

1.一种时序释放姜黄素和化疗药物的纳米递药系统,其特征在于,由活化的PEG修饰化疗药物形成两亲性轭合物再包裹姜黄素构建而得。
2.根据权利要求1所述的时序释放姜黄素和化疗药物的纳米递药系统,其特征在于,所述的化疗药物为作用于DNA化学结构的药物、作用于核酸转录的药物、拓扑异构酶抑制剂、干扰微管蛋白合成的药物、影响核酸生物合成的药物或作用于酪氨酸激酶的药物。
3.根据权利要求1所述的时序释放姜黄素和化疗药物的纳米递药系统,其特征在于,所述PEG的数均分子量为0.2K~1000K。
4.根据权利要求1所述的时序释放姜黄素和化疗药物的纳米递药系统,其特征在于,所述PEG一端为羧基或一端为马来酰亚胺基另一端为羧基。
5.根据权利要求1所述的时序释放姜黄素和化疗药物的纳米递药系统,其特征在于,所述纳米递药系统连接有特异性靶向肿瘤细胞的靶头分子。
6.权利要求1~5中任一项所述时序释放姜黄素和化疗药物的纳米递药系统在制备抗肿瘤药物中的应用。
7.一种时序释放姜黄素和化疗药物的纳米递药系统的制备方法,其特征在于,包括如下步骤:
S1.将活化的PEG与化疗药物反应,获得PEG化的化疗药物;
S2.将PEG化的化疗药物和姜黄素溶于二氯甲烷中,旋蒸除去二氯甲烷,加入超纯水,涡旋,超声,离心,即得时序释放姜黄素和化疗药物的纳米递药系统溶液。
8.根据权利要求7所述的制备方法,其特征在于,用特异性靶向肿瘤细胞的分子修饰S2得到纳米递药系统溶液,得到具有特异靶向肿瘤和时序释放姜黄素和化疗药物功能的纳米递药系统溶液。
9.根据权利要求7所述的制备方法,其特征在于,所述PEG一端连接有羧基,另一端连接有马来酰亚胺基。
10.根据权利要求9的所述的制备方法,其特征在于,是将巯基修饰的靶分子与纳米递药系统表面的马来酰亚胺基团反应,获得具有特异靶向肿瘤和时序释放姜黄素和化疗药物功能的纳米递药系统溶液。
CN201711166450.8A 2017-11-21 2017-11-21 一种时序释放姜黄素和化疗药物的纳米递药系统及其应用 Active CN108126209B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711166450.8A CN108126209B (zh) 2017-11-21 2017-11-21 一种时序释放姜黄素和化疗药物的纳米递药系统及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711166450.8A CN108126209B (zh) 2017-11-21 2017-11-21 一种时序释放姜黄素和化疗药物的纳米递药系统及其应用

Publications (2)

Publication Number Publication Date
CN108126209A true CN108126209A (zh) 2018-06-08
CN108126209B CN108126209B (zh) 2021-05-28

Family

ID=62389652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711166450.8A Active CN108126209B (zh) 2017-11-21 2017-11-21 一种时序释放姜黄素和化疗药物的纳米递药系统及其应用

Country Status (1)

Country Link
CN (1) CN108126209B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111539085A (zh) * 2020-01-17 2020-08-14 上饶市维斯顿数字科技有限公司 一种图表自动生成系统及方法
CN112957331A (zh) * 2021-03-16 2021-06-15 四川大学华西医院 共载雷帕霉素和姜黄素的纳米组装体及其制备方法和用途

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600063A (zh) * 2011-06-09 2012-07-25 天津大学 一种高载药量姜黄素胶束的制备方法
CN103435718A (zh) * 2013-08-21 2013-12-11 中国药科大学 Peg修饰的透明质酸胆固醇酯
CN103520731A (zh) * 2013-09-27 2014-01-22 华南理工大学 一种包裹疏水性抗癌药物的叶酸-聚乙二醇-聚乳酸嵌段共聚物胶束及其制备方法
CN103736101A (zh) * 2013-12-31 2014-04-23 天津大学 一种pH值敏感的姜黄素载药胶束(单链)及前体的制备方法
CN103877592A (zh) * 2013-12-31 2014-06-25 天津大学 一种pH值敏感的姜黄素载药胶束(双链)及其前体的制备方法
CN104273522A (zh) * 2013-07-03 2015-01-14 江南大学 一种姜黄素纳米复合物及其制备方法
CN105646861A (zh) * 2014-12-02 2016-06-08 上海交通大学 基于聚姜黄素的两亲性嵌段共聚物及其应用
CN106177986A (zh) * 2016-08-16 2016-12-07 国家纳米科学中心 一种脂质体‑聚合物载药纳米粒子及其制备方法和应用
CN107137716A (zh) * 2017-05-10 2017-09-08 北京林业大学 一种聚乙二醇偶联环形多肽iRGD和薯蓣皂苷元载药纳米粒子的制备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600063A (zh) * 2011-06-09 2012-07-25 天津大学 一种高载药量姜黄素胶束的制备方法
CN104273522A (zh) * 2013-07-03 2015-01-14 江南大学 一种姜黄素纳米复合物及其制备方法
CN104273522B (zh) * 2013-07-03 2016-08-10 江南大学 一种姜黄素纳米复合物及其制备方法
CN103435718A (zh) * 2013-08-21 2013-12-11 中国药科大学 Peg修饰的透明质酸胆固醇酯
CN103520731A (zh) * 2013-09-27 2014-01-22 华南理工大学 一种包裹疏水性抗癌药物的叶酸-聚乙二醇-聚乳酸嵌段共聚物胶束及其制备方法
CN103736101A (zh) * 2013-12-31 2014-04-23 天津大学 一种pH值敏感的姜黄素载药胶束(单链)及前体的制备方法
CN103877592A (zh) * 2013-12-31 2014-06-25 天津大学 一种pH值敏感的姜黄素载药胶束(双链)及其前体的制备方法
CN105646861A (zh) * 2014-12-02 2016-06-08 上海交通大学 基于聚姜黄素的两亲性嵌段共聚物及其应用
CN106177986A (zh) * 2016-08-16 2016-12-07 国家纳米科学中心 一种脂质体‑聚合物载药纳米粒子及其制备方法和应用
CN107137716A (zh) * 2017-05-10 2017-09-08 北京林业大学 一种聚乙二醇偶联环形多肽iRGD和薯蓣皂苷元载药纳米粒子的制备

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GUO SHENGRONG,ET AL: ""A nanoparticulate pre-chemosensitizer for efficacious chemotherapy of multidrug resistant breast cancer"", 《SCIENTIFIC REPORTS》 *
JINING WANG,ER AL: ""A multifunctional poly(curcumin) nanomedicine for dual-modal targeted delivery, intracellular responsive release, dual-drug treatment and imaging of multidrug resistant cancer cells"", 《JOURNAL OF MATERIALS CHEMISTRY B》 *
JINING WANG,ET AL: ""A multifunctional poly(curcumin) nanomedicine for dual-modal targeted delivery, intracellular responsive release, dual-drug treatment and imaging of multidrug resistant cancer cells"", 《J MATER CHEM B MATER BIOL MED》 *
SUGATA BARUI ET AL: ""Simultaneous delivery of doxorubicin and curcumin encapsulated in liposomes of pegylated RGDK-lipopeptide to tumor vasculature"", 《BIOMATERIALS》 *
WEI-LIANG YE ET AL,: ""Cellular Uptake and Antitumor Activity of DOX-hyd-PEGFA Nanoparticles"", 《PLOS ONE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111539085A (zh) * 2020-01-17 2020-08-14 上饶市维斯顿数字科技有限公司 一种图表自动生成系统及方法
CN112957331A (zh) * 2021-03-16 2021-06-15 四川大学华西医院 共载雷帕霉素和姜黄素的纳米组装体及其制备方法和用途

Also Published As

Publication number Publication date
CN108126209B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
Wu et al. Synergistic therapeutic effects of Schiff's base cross-linked injectable hydrogels for local co-delivery of metformin and 5-fluorouracil in a mouse colon carcinoma model
Alsaab et al. PLGA-based nanomedicine: history of advancement and development in clinical applications of multiple diseases
Desale et al. Targeted delivery of platinum-taxane combination therapy in ovarian cancer
Wang et al. Enhanced anti-colon cancer efficacy of 5-fluorouracil by epigallocatechin-3-gallate co-loaded in wheat germ agglutinin-conjugated nanoparticles
Zhang et al. Layer-by-layer nanoparticles co-loading gemcitabine and platinum (IV) prodrugs for synergistic combination therapy of lung cancer
Butt et al. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs
Tomoda et al. Preparation and properties of inhalable nanocomposite particles for treatment of lung cancer
Catanzaro et al. Albumin nanoparticles for glutathione-responsive release of cisplatin: New opportunities for medulloblastoma
Luo et al. Co-delivery of paclitaxel and STAT3 siRNA by a multifunctional nanocomplex for targeted treatment of metastatic breast cancer
Wu et al. pH-responsive delivery vehicle based on RGD-modified polydopamine-paclitaxel-loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles for targeted therapy in hepatocellular carcinoma
Mu et al. Chitosan coated pH-responsive metal-polyphenol delivery platform for melanoma chemotherapy
Yoon et al. Docetaxel-loaded RIPL peptide (IPLVVPLRRRRRRRRC)-conjugated liposomes: drug release, cytotoxicity, and antitumor efficacy
Wang et al. Barbaloin loaded polydopamine-polylactide-TPGS (PLA-TPGS) nanoparticles against gastric cancer as a targeted drug delivery system: Studies in vitro and in vivo
Wu et al. A pH-sensitive supramolecular nanosystem with chlorin e6 and triptolide co-delivery for chemo-photodynamic combination therapy
Kefayat et al. Biodegradable and biocompatible subcutaneous implants consisted of pH-sensitive mebendazole-loaded/folic acid-targeted chitosan nanoparticles for murine triple-negative breast cancer treatment
Ma et al. Multi-functionalized dendrimers for targeted co-delivery of sorafenib and paclitaxel in liver cancers
Pourmanouchehri et al. Controlled release of 5-fluorouracil to melanoma cells using a hydrogel/micelle composites based on deoxycholic acid and carboxymethyl chitosan
Hani et al. A comprehensive review of current perspectives on novel drug Delivery systems and approaches for lung cancer management
Xiong et al. Solanesol derived therapeutic carriers for anticancer drug delivery
CN113952463A (zh) 一种纳米诊疗剂及其制备方法与应用
Luo et al. Advances and prospects of prolamine corn protein zein as promising multifunctional drug delivery system for cancer treatment
Moorkoth et al. Star-shaped polylactide dipyridamole conjugated to 5-fluorouracil and 4-piperidinopiperidine nanocarriers for bioimaging and dual drug delivery in cancer cells
CN108126209A (zh) 一种时序释放姜黄素和化疗药物的纳米递药系统及其应用
Yang et al. Synthesis, characterization, and in vivo efficacy evaluation of PGG–docetaxel conjugate for potential cancer chemotherapy
Chen et al. Drug delivery systems for colorectal cancer chemotherapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant