CN108107241B - 一种稳定漏电压的新型探针结构 - Google Patents

一种稳定漏电压的新型探针结构 Download PDF

Info

Publication number
CN108107241B
CN108107241B CN201711254623.1A CN201711254623A CN108107241B CN 108107241 B CN108107241 B CN 108107241B CN 201711254623 A CN201711254623 A CN 201711254623A CN 108107241 B CN108107241 B CN 108107241B
Authority
CN
China
Prior art keywords
probe
drain voltage
speed operation
high speed
operation amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711254623.1A
Other languages
English (en)
Other versions
CN108107241A (zh
Inventor
赵毅
张捷
曲益明
陈冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201711254623.1A priority Critical patent/CN108107241B/zh
Publication of CN108107241A publication Critical patent/CN108107241A/zh
Application granted granted Critical
Publication of CN108107241B publication Critical patent/CN108107241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes

Abstract

本发明公开了一种稳定漏电压的新型探针结构。在Id‑Vg测试系统中的高频探针上焊接一个能够稳定漏极电压的芯片;所述芯片包含高速运算放大器,高速运算放大器的负极输入端通过引脚连接高频探针signal针芯,负极输入端与输出端之间接有反馈电阻R2,负极输入端和地之间接有电阻R3,在高速运算放大器的输出端接有电阻R1,在高速运算放大器的正极输入端和电源端均接直流电源;本发明的创新在于通过在探针上安装带有运放电路的芯片,利用运算放大器的虚拟短路特性将漏极电压固定,从而得到更准确的晶体管电学特性的测试结果。本发明方法避免了传统测量时因栅漏极的电压改变导致寄生电容充放电,而使测得的漏极电流失真。

Description

一种稳定漏电压的新型探针结构
技术领域
本发明属于半导体器件电学特性测试与参数提取领域,具体涉及一种用于测试晶体管电学特性的稳定漏电压的新型探针结构。
背景技术
金属氧化物半导体场效应管(MOSFETs)的特征尺寸遵从摩尔定律不断减小,其中栅极长度从微米级、亚微米级直至目前的14nm。但随着栅极长度的不断缩小,会导致关态栅漏电流的增大,进而导致功耗密度增加、迁移率退化等问题,使得器件的性能会有所下降。传统的硅基场效应晶体管已接近其工作原理的物理极限,为了进一步实现晶体管器件密度和性能的提高,则必须通过发展新型栅极材料、新型沟道材料以及新型器件结构等方向来解决短沟道效应的问题,才能在提高器件集成度的同时提高器件的性能。如High‐k/Metalgate工艺、多栅极晶体管和晶体管应力等新技术,又如采用具有极高载流子迁移率的新沟道材料,包括Ge、Ⅲ‐Ⅴ族半导体、石墨烯等,来提高沟道内载流子的迁移率等等。
随着半导体技术的发展,MOSFET特征栅极长度的不断缩小使得其氧化层电电场不断增加,进而使位于栅介质氧化层与沟道界面处的载流子会在强电场作用下加速到具有极高动能。这些载流子会破坏器件结构,影响器件特性,因此准确提取晶体管的电学参数十分重要。已有研究表明,栅叠层与沟道界面缺陷捕获释放载流子时间甚至快至十几皮秒。而目前报道的最快的快速金属氧化物半导体场效应晶体管转移特性ID‐VG测试方法中上升下降沿为纳秒级,并不能完整反映载流子与缺陷之间的传输活动,因此提出一种半导体超快速电学特性的测试系统与方法是很有必要的。
Kerber等人很早提出快速Id‐Vg的方法来测试high‐k介质层陷阱,该方法一般在MOSFET器件的栅极加载一个快速转换的脉冲信号。当栅极电压从低电平向高电平快速转换时,器件沟道表面的电子还来不及被栅介质的陷阱捕获,因此获得了沟道材料的本征电流特性。当栅极电压转为高电平后,栅介质的陷阱逐渐捕获了沟道电子并趋于稳定,这时沟道电流在表面电势的作用下逐渐减小直至趋于稳定。但是这种方法在测量大面积超高性能器件时会出现传输线阻抗匹配与旁路电容选择等问题,且在这种方法下,漏极电压会随着漏极电流的变化而变化,而漏极电压与栅极电压的改变又会引起寄生电容的充放电,充放电的电流会使测得的漏极电流失真,造成比较严重的误差,有时甚至会得出错误的结论。为此,本发明设计了一种能够稳定漏极电压的新型探针结构。
发明内容
本发明的目的在于针对现有技术的不足,在半导体器件皮秒级超快速电学特性测试系统的基础上,提供一种用于测试晶体管电学特性的稳定漏电压的新型探针结构,通过在探针上安装带有运放电路的芯片,利用运算放大器的虚拟短路特性将漏极电压固定,从而得到更准确的晶体管电学特性的测试结果,避免了传统测量时因栅漏极的电压改变导致寄生电容充放电,而使测得漏极电流的失真。
本发明的目的是通过以下技术方案来实现的:在MOSFET晶体管的Id-Vg测试系统中的高频探针上,焊接一个能够稳定漏极电压的芯片,组成本发明的稳定漏电压的高频探针;所述芯片包含高速运算放大器,高速运算放大器的负极输入端通过第一引脚连接高频探针signal针芯,在高速运算放大器的负极输入端与输出端之间接有反馈电阻R2,在高速运算放大器的负极输入端和地之间接有电阻R3,在高速运算放大器的输出端接有电阻R1,在高速运算放大器的正极输入端和电源端均通过电源接口(SMA、BNC、Banana、PIN)接入直流电源,整个芯片的地分别通过第二引脚、第三引脚与高频探针GND针芯相连,芯片的输出端通过SMA接口接出;MOSFET晶体管漏极电压值由直流电源提供的偏置电压值确定,漏电流通过反馈电阻R2测得,反馈电阻R2的大小可以根据不同的跨阻增益进行调整,通过电阻R1和R3实现Id-Vg测试系统的阻抗匹配。高速运算放大器通过虚拟短路的特性,将漏极电压固定在由直流电源提供的电压信号上,使得寄生电容上不产生充放电,从而使测得的漏电流更加准确。
进一步地,所述稳定漏极电压的芯片通过精密焊接直接安装在高频探针针芯上,可以在探针台的环境下进行测量,且新型探针中芯片这一部件与所测MOSFET晶体管之间的距离控制在1nm到10cm之间,可以减少反射。
进一步地,Id-Vg测试系统中的数字示波器与第一微波探针之间,数字示波器与所述的稳定漏电压的高频探针之间的传输线缆均为毫米波电缆,且两段电缆长度相等,其极限带宽也需保证信号传输的完整性。
进一步地,Id-Vg测试系统的直流电源的第一通道为高速运算放大器提供偏置电压,偏置电压的大小根据测试MOSFET晶体管所需的漏极电压决定;第二通道为高速运算放大器提供工作电压;直流电源通过电源接口提供电压,电源接口可以为SMA接口、BNC接口、Banana接口和PIN接口。
进一步地,为了减少系统噪声,在整个系统中建立公共地。
本发明的有益技术效果是:本发明的创新在于为了在极短时间内完成晶体管的电学特性的测试,通过第一微波探针在MOSFET晶体管的栅极加载上升沿和下降沿均为100pS的电压脉冲信号,利用运算放大器的虚拟短路特性,通过本发明的新型微波探针在待测MOSFET晶体管的漏极上稳定漏极的电压信号,在保证高频信号完整性的同时,通过本发明的新型微波探针采集MOSFET晶体管的漏极电流信号,采集的漏电流信号经过运算放大器放大后无失真地传输至数字示波器的输入通道。最终得到更准确的栅极电压脉冲信号和漏极电流信号,则可以得到正确的晶体管转移特性曲线ID‐VG
附图说明
图1为本发明稳定漏电压的新型探针结构用于测试的Id‐Vg测试系统示意图;
图2为本发明稳定漏电压的新型探针结构中芯片与探针的连接示意图以及芯片具体的运放电路;
图3为本发明稳定漏电压的新型探针结构在测试时脉冲发生器输出的栅极电压信号的波形示意图;
图4为本发明稳定漏电压的新型探针结构在测试时漏极电压信号的效果示意图,(a)为使用普通探针测试的漏电压信号,(b)为使用本发明的新型探针结构的漏电压信号。
具体实施方式
下面结合附图及具体实验例对本发明的技术方案进行详细说明。
如图1所示,MOSFET晶体管的Id-Vg测试系统由脉冲发生器101、宽频带放大及偏置电路102、第一微波探针103、本发明的新型微波探针105(包含稳定漏极电压芯片106部件)、直流电源107和数字示波器108组成。脉冲发生器101产生上升沿和下降沿都小于100ps的电压脉冲信号经过宽频带放大及偏置电路102后,通过第一微波探针103在待测MOSFET晶体管104的栅极上加载栅极电压脉冲信号110,数字示波器108的带宽和采样率满足在皮秒级快速上升或下降沿采集到足够多的数据点的要求,栅极电压信号110的上升沿和下降沿时间以及占空比均可调;通过本发明的新型微波探针105中的稳定漏极电压芯片106部件,在待测MOSFET晶体管104的漏极上加载偏置电压信号,在保证高频信号完整性的同时,通过本发明的新型微波探针105采集MOSFET晶体管104的漏极电流信号,采集的漏电流信号经过部件106中的运算放大器后,无失真地传输至数字示波器108的输入通道,部件106中的运算放大器带宽至少为2GHz;根据系统总延时确定栅极电压信号110和漏电流信号111的对应关系,即得到ID-VG关系曲线。
本实施例中,该系统的直流电源107的第一通道为高速运算放大器提供偏置电压113,偏置电压113的大小由MOSFET晶体管104的漏极工作电压决定;第二通道为高速运算放大器提供+5V的直流工作电压112;为了减小系统噪声,在整个系统中建立公共地109。
图2给出芯片与探针的连接示意图以及具体的运放电路图。芯片通过三个引脚直接精密焊接在探针的针芯上,输出端通过SMA接口接出。新型探针中芯片这一部件与所测MOSFET晶体管之间的距离可控制在1nm到10cm之间,这样可以减少反射。图中V1是MOSFET晶体管漏极的电压,其电压值由直流电源107提供的偏置电压值113确定,V2是数字示波器上显示的输出的漏极电压值。漏电流通过检测电阻R2测得,其中R2的大小可以根据不同的跨阻增益进行调整。为了保证晶体管在关闭时电路的稳定性,R2与R3相等,为了保证信号的完整性,数字示波器内接有50Ω的电阻。根据基尔霍夫电压电流定律,可以将数字示波器上显示的电压转化为对应的MOSFET晶体管的漏极电流。
图3给出脉冲发生器101输出的栅极电压信号110的波形示意图。栅极电压信号110为脉冲波形,脉冲的上升和下降沿为100pS;脉冲的高电平值由MOSFET晶体管104的栅极工作电压决定。
图4给出了本发明的测试系统与普通测试系统漏极电压的结果对比。测试的MOSFET晶体管104为HfO2/SiO2(2nm/1nm)nMOSFET,栅长为0.1μm,栅宽为1μm。给器件的栅极施加如图3所示的脉冲电压信号,低电压为0V,高电压为0.4V。在其他条件相同的情况下,分别使用普通探针和本发明设计的新型探针进行测试,测得漏极电压Vd的信号如图4所示。其中(a)图是测试系统采用普通探针的情况,(b)图是测试系统中使用本发明设计的新型探针时Vd的电压波形。显然,使用本发明设计的新型探针能更好的固定住漏极的电压大小,说明本发明设计的新型探针结构用于快速测试准确有效。
上述实施例只是本发明的举例,尽管为说明目的公开了本发明的最佳实例和附图,但是本邻域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换、变化和修改都是可能的。因此,本发明不应局限于最佳实施例和附图所公开的内容。

Claims (4)

1.一种稳定漏电压的探针结构,其特征在于:在MOSFET晶体管的Id-Vg测试系统中的高频探针上,焊接一个能够稳定漏极电压的芯片,组成稳定漏电压的高频探针;所述芯片包含高速运算放大器,高速运算放大器的负极输入端通过第一引脚连接高频探针signal针芯,在高速运算放大器的负极输入端与输出端之间接有反馈电阻R2,在高速运算放大器的负极输入端和地之间接有电阻R3,在高速运算放大器的输出端接有电阻R1,在高速运算放大器的正极输入端和电源端均通过电源接口接入直流电源,整个芯片的地分别通过第二引脚、第三引脚与高频探针GND针芯相连,芯片的输出端通过SMA接口接出;MOSFET晶体管漏极电压值由直流电源提供的偏置电压值确定,漏电流通过反馈电阻R2测得,反馈电阻R2的大小可以根据不同的跨阻增益进行调整,通过电阻R1和R3实现Id-Vg测试系统的阻抗匹配。
2.根据权利要求1所述的一种稳定漏电压的探针结构,其特征在于:所述稳定漏极电压的芯片通过精密焊接直接安装在高频探针针芯上,可以在探针台的环境下进行测量,且新型探针中芯片这一部件与所测MOSFET晶体管之间的距离控制在1nm到10cm之间。
3.根据权利要求1所述的一种稳定漏电压的探针结构,其特征在于:Id-Vg测试系统中的数字示波器与第一微波探针之间,数字示波器与所述的稳定漏电压的高频探针之间的传输线缆均为毫米波电缆,且两段电缆长度相等,其极限带宽也需保证信号传输的完整性。
4.根据权利要求1所述的一种稳定漏电压的探针结构,其特征在于:Id-Vg测试系统的直流电源的第一通道为高速运算放大器提供偏置电压,偏置电压的大小根据测试MOSFET晶体管所需的漏极电压决定;第二通道为高速运算放大器提供工作电压;直流电源通过电源接口提供电压,电源接口为SMA接口、BNC接口、Banana接口或PIN接口。
CN201711254623.1A 2017-12-01 2017-12-01 一种稳定漏电压的新型探针结构 Active CN108107241B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711254623.1A CN108107241B (zh) 2017-12-01 2017-12-01 一种稳定漏电压的新型探针结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711254623.1A CN108107241B (zh) 2017-12-01 2017-12-01 一种稳定漏电压的新型探针结构

Publications (2)

Publication Number Publication Date
CN108107241A CN108107241A (zh) 2018-06-01
CN108107241B true CN108107241B (zh) 2018-12-04

Family

ID=62208895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711254623.1A Active CN108107241B (zh) 2017-12-01 2017-12-01 一种稳定漏电压的新型探针结构

Country Status (1)

Country Link
CN (1) CN108107241B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109270099B (zh) * 2018-11-30 2024-04-19 复旦大学 一种直流至微波频率的透射电镜原位高频电学测试芯片
CN110045173B (zh) * 2019-05-24 2024-02-06 杭州科工电子科技股份有限公司 一种双向电流检测电路
CN110346703B (zh) * 2019-07-01 2020-06-23 浙江大学 一种消除超快速半导体元器件测试中寄生电容影响的方法
CN111562481B (zh) * 2020-05-25 2022-08-02 中国电子科技集团公司第十三研究所 基于加电探针的化合物半导体芯片在片测试电路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853627A (en) * 1985-12-23 1989-08-01 Triquint Semiconductor, Inc. Wafer probes
US5274336A (en) * 1992-01-14 1993-12-28 Hewlett-Packard Company Capacitively-coupled test probe
DE102006052748A1 (de) * 2006-08-14 2008-04-30 Rohde & Schwarz Gmbh & Co. Kg Oszilloskop-Tastkopf
JP4467588B2 (ja) * 2007-02-28 2010-05-26 株式会社日立ハイテクノロジーズ 試料検査装置及び吸収電流像の作成方法
JP2009031223A (ja) * 2007-07-30 2009-02-12 Institute Of Physical & Chemical Research 補償回路、プローブ装置、プローブ装置キット
CN101170865A (zh) * 2007-11-28 2008-04-30 东北大学 等离子体悬浮参考探针
CN101650230B (zh) * 2009-09-09 2011-01-12 大连理工大学 等离子体诊断用多功能探针
CN102053177B (zh) * 2009-11-10 2014-12-10 北京普源精电科技有限公司 一种有源差分电压探头
US8643396B2 (en) * 2011-05-31 2014-02-04 Tektronix, Inc. Probing tip for a signal acquisition probe
JP6008332B2 (ja) * 2011-10-03 2016-10-19 国立大学法人 筑波大学 プローブカード及びノイズ測定装置
CN102692593A (zh) * 2012-06-06 2012-09-26 复旦大学 一种提高快速Id-Vg测试精度的测试系统
CN102735887B (zh) * 2012-07-16 2014-08-27 电子科技大学 一种数字示波器单端有源探头电路
JP6056411B2 (ja) * 2012-11-22 2017-01-11 富士通株式会社 電圧検出回路及びトランジスタの特性測定方法
CN104345185B (zh) * 2013-07-26 2018-09-25 苏州普源精电科技有限公司 一种有源单端探头及一种测试测量仪器
CN106646174B (zh) * 2016-09-30 2018-03-16 浙江大学 一种应用于晶体管的高速三维电学特性测试系统

Also Published As

Publication number Publication date
CN108107241A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
CN108107241B (zh) 一种稳定漏电压的新型探针结构
CN106054054B (zh) 一种应用于半导体器件的皮秒级超快速电学特性测试系统
CN107167719B (zh) 一种应用于半导体器件的超快速偏压温度不稳定性测试系统及方法
CN108718150B (zh) 基于AlGaN/GaN HEMT器件的高频高压动态导通阻抗提取电路及提取方法
CN106680686A (zh) 一种提高半导体器件皮秒级超快速电学特性测试精度的方法
CN106199366A (zh) 一种功率mos器件在线测温的方法
CN108710076A (zh) 基于AlGaN/GaN HEMT器件的动态导通阻抗自动化提取电路及自动化提取方法
CN106646174B (zh) 一种应用于晶体管的高速三维电学特性测试系统
CN115267466B (zh) 一种氮化镓功率器件动态工况下特性研究的测试系统
CN107797045B (zh) 一种量测晶体管自热效应及沟道平均温度变化的方法
Hwang Gradual degradation under RF overdrive of MESFETs and PHEMTs
CN112630544B (zh) 一种高压SiC MOSFET漏源极间非线性电容测量及建模方法
He et al. Time-domain AC characterization of silicon carbide (SiC) nanoelectromechanical switches toward high-speed operations
Beleniotis et al. Localization of trapping effects in GaN HEMTs with pulsed S-parameters and compact models
Yuan et al. Evaluation of hot-electron effect on LDMOS device and circuit performances
Nuo et al. Time-Resolved Extraction of Negatively Shifted Threshold Voltage in Schottky-Type p-GaN Gate HEMT Biased at High $\textit {V} _ {\text {DS}} $
Cui et al. A high power inverse class-F GaN amplifier for L-band GPS applications
CN110673009B (zh) 一种用于高压下SiC MOS热阻测量的栅漏短路及栅压供给装置
CN102565660A (zh) 一种应用于MOSFETs器件的超高速Id-Vg测试方法
CN102854413B (zh) 一种压敏电阻超快电脉冲响应的测试方法
CN102692593A (zh) 一种提高快速Id-Vg测试精度的测试系统
CN103913690A (zh) 晶体管输出电阻频散特性的测量方法及系统
CN103368530B (zh) 一种自适应雪崩三极管脉冲产生器
De Groote et al. High power on-wafer capabilities of a time domain load-pull setup
CN116593853B (zh) 一种提取晶体管器件热特性参数的简单量测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant