CN108088863A - 一种结构无损的褐煤有机大分子结构模型的构建方法 - Google Patents

一种结构无损的褐煤有机大分子结构模型的构建方法 Download PDF

Info

Publication number
CN108088863A
CN108088863A CN201711351856.3A CN201711351856A CN108088863A CN 108088863 A CN108088863 A CN 108088863A CN 201711351856 A CN201711351856 A CN 201711351856A CN 108088863 A CN108088863 A CN 108088863A
Authority
CN
China
Prior art keywords
coal
msub
mrow
analysis
molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711351856.3A
Other languages
English (en)
Inventor
何亚群
王婕
赵小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201711351856.3A priority Critical patent/CN108088863A/zh
Publication of CN108088863A publication Critical patent/CN108088863A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2206Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • G01N23/2273Measuring photoelectron spectrum, e.g. electron spectroscopy for chemical analysis [ESCA] or X-ray photoelectron spectroscopy [XPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/071Investigating materials by wave or particle radiation secondary emission combination of measurements, at least 1 secondary emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/085Investigating materials by wave or particle radiation secondary emission photo-electron spectrum [ESCA, XPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种结构无损的褐煤有机大分子结构模型的构建方法,包括以下步骤:工业分析及元素分析;X射线衍射分析;高分辨透射电镜分析;X‑射线光电子能谱分析;13C核磁共振分析;基于以上多物理测试技术确定的煤有机分子结构参数,构建煤有机大分子结构模型,基于半经验分子轨道计算其基团振动转动红外光谱图,与实际测试的红外光谱图对比分析,优化分子结构模型。本发明在不破坏煤有机大分子结构的基础上,直接获得煤中芳香结构的尺寸及含量分布;且实际测试的红外光谱图不作为构建分子结构的数据基础,而作为验证、优化煤分子结构模型,保证了煤分子结构的代表性。

Description

一种结构无损的褐煤有机大分子结构模型的构建方法
技术领域
本发明涉及一种不破坏煤的大分子结构,以现代分析测试手段直接获取芳香结构尺寸、桥连与侧链结构,构建煤有机大分子结构模型的方法。
背景技术
人类对于煤大分子结构研究有近70年的历史。起初,煤结构模型的建立是为了有助于对煤的理解,主要展示煤化作用带来的煤结构差异。1980年代,基于煤气化产品产生了大量煤分子结构模型,这些模型受到热解或气化产品的影响。随着现代分析仪器的发展,可以在不破坏煤大分子结构的前提下获得煤的芳香结构骨架及桥连、侧链结构参数。
13C NMR测试能够给出芳香碳原子和脂肪碳原子,从而计算芳碳率,结合元素分析,可以确定煤基本分子式。通过高分辨透射电镜(HRTEM)能够直接捕捉到芳香结构的大小,为构建煤分子结构的骨架提供直接的依据。XRD测试的样品量相对较多,因而对于结构不单一的煤来说,能够提供一个平均的结构参数较为重要。而XPS与FTIR对煤表面的桥连、侧链、含氧基团的检测较为有效。因此,多种物理检测技术联合使用,测试结果相互补充、验证,为构建有效的煤分子结构模型提供保障。
随着计算化学的发展,其在构建煤分子结构、研究煤的反应活性及反应机理中也得到了应用。
发明内容
本发明的目的是在不破坏煤的分子结构的前提下,提供一种结构无损的褐煤有机大分子结构模型的构建方法。
为实现上述目的,本发明采用的技术方案为:
一种结构无损的褐煤有机大分子结构模型的构建方法,包括以下步骤:
步骤a,对煤样进行脱矿物质处理,然后对脱矿物质煤样进行工业分析及元素分析,确定煤变质程度及元素组成,初步确定煤有机分子结构的最简分子式;
步骤b,对脱矿物质煤样进行X射线衍射分析,得出煤中微晶结构信息;
步骤c,对脱矿物质煤样进行高分辨透射电镜分析,得到的高分辨透射图片经傅里叶变换消除噪音影响,然后再逆变换,获得的线条长度代表着芳香结构的尺寸;
步骤d,对脱矿物质煤样进行X射线光电子能谱分析,获得X射线光电子能谱,得到煤表面原子的化合态;
步骤e,对脱矿物质煤样进行13C核磁分析,获得13C核磁共振谱图,得到煤中不同碳结构信息;
步骤f,基于半经验分子轨道计算的VAMP计算煤结构的基团振动光谱图与红外光谱分析图对比验证煤大分子结构的代表性。
所述步骤b具体为:
依据X射线衍射分析得到的半峰全宽强度β及峰位θ,用Braggs与Scherrer经验方程得到芳香层间距d002,晶格高度Lc,平均每个碳晶体的芳香层数Nave
式中,λ是入射光X-射线的波长,θ002是峰位(002)的角度;β002是(002)峰的半峰全宽;Kc是Cu KαX-射线反射面常数,取值为0.89;
(002)峰面积对应芳香碳原子数,γ带面积对应着脂链碳原子数,则芳香度fa为:
式中,A002,Aγ分别是峰(002),(γ)带所对应的面积。
所述步骤c中,获得的线条长度等于其宽度,通过分子模拟软件构建煤的芳香结构;其中,获得的线条长度与芳香长度之间存在以下关系:
为苯环,为萘环,为蒽环;为2×2, 为3×3,为4×4,
其中,是长度单位,等于0.1纳米。
所述步骤d中,根据含氧基团化合态分峰拟合得到煤表面含氧官能团的种类及含量,分峰拟合采用XPS Peak4.1基于Smart模式扣除背底,Gaussian/Lorentzian峰形。
所述步骤e中,13C核磁共振谱图得到煤中不同碳结构信息:175-240ppm为羰基、羧基峰,100-175ppm为芳碳峰,0-100ppm为脂链峰;由此计算芳碳率,与XRD结构计算所得的芳碳率对比验证。
所述步骤f中,基于高分辨透射电镜确定芳香结构长度组成比例,X射线衍射和13C核磁共振结果,确定侧链及含氧官能团碳原子的比例;结合煤分子质量,确定芳香结构及含氧官能团的数量;通过分子模拟软件绘制煤分子结构三维模型,并对其结构优化及基于半经验分子轨道计算其基团振动转动红外光谱图;对比模拟红外光谱图与实际测试红外光谱图,检验、优化煤分子结构模型的代表性。
有益效果:本发明通过上述多物理测试技术联用,高分辨透射电镜能够直接给出芳香结构的尺寸,此为煤分子结构的重要骨架,避免了传统方法为获取芳香结构而破坏煤分子结构。其他测试结果可以相互补充、验证,为构建有效的煤分子结构模型提供保障。且通过分子模拟方法计算煤分子结构模型的基团振动转动红外光谱图,与实际测试的红外光谱图对比分析,不断检验、优化煤分子结构模型。实际测试的红外光谱图不作为模型构建的依据,而是作为验证模型代表性的验证,为煤分子模型的代表性提供保障。
附图说明
图1为5×5芳香结构示意图,长边与短边长度表示此芳香结构的线条长度范围;
图2为脱矿物质煤样X射线衍射图谱;
图3a-3c为脱矿物质煤样的高分辨透射电镜芳香结构图,其中,a为高分辨透射电镜原始图,b为抽提芳香结构线条图,c为对b的反色处理图;
图4为高分辨透射电镜芳香结构尺寸分布图;
图5为XPS宽扫元素原子数图;
图6为XPS分峰拟合O1s含氧官能团;
图7为脱矿物质煤样13C CP-TOSS图;
图8a-8b为煤结构分子模型图,分子式为C166H130O49,其中,a为三维图,b为平面图;
图9a-9b为红外光谱图,其中,a为实际测试煤样,b为计算煤分子结构
图10a-10b为基团复杂区间1800-900cm-1的分析结果图,其中,a为实际测试红外光谱图的高斯分峰拟合,b为计算红外光谱图的包络。
具体实施方式
下面结合附图及实施例对本发明作更进一步的说明。
实施例
本实施例以构建内蒙锡市褐煤的有机质结构为例进行说明。
取10g锡市褐煤,通过盐酸和氢氟酸脱除矿物质处理,获得超低灰褐煤。以下多物理测试技术均采用此超低灰褐煤。包括以下步骤:
步骤a、对脱矿物质煤样进行工业分析及元素分析
煤有机质是由碳、氢、氧、氮、硫元素组成,采用工业分析及元素分析能够确定煤变质程度及元素组成,能够初步确定煤有机分子结构的最简分子式;
步骤b、X-射线衍射分析
X射线衍射分析能够给出煤中微晶结构信息,依据X射线衍射分析得到的半峰全宽强度β及峰位θ,用Braggs与Scherrer经验方程得到芳香层间距d002,晶格高度Lc,平均每个碳晶体的芳香层数Nave
式中,λ是入射光X-射线的波长,θ002是峰位(002)的角度;β002是(002)峰的半峰全宽;Kc是Cu KαX-射线反射面常数,取值为0.89;
(002)峰面积对应芳香碳原子数,γ带面积对应着脂链碳原子数,则芳香度fa为:
式中,A002,Aγ分别是峰(002),(γ)带所对应的面积。
根据以上公式(1)-(4)得到的内蒙锡市褐煤的结构参数如表1所示。
表1内蒙锡市褐煤结构参数
步骤c、高分辨透射电镜分析
脱矿物质煤样的高分辨透射图片经傅里叶变换消除噪音影响,然后再逆变换,或得的线条长度代表着芳香结构的尺寸;基于马修斯理论,线条长度等于其宽度,则可以通过分子模拟软件构建煤的芳香结构。对芳香长度做了以下规定:
获得的线条长度与芳香长度之间存在以下关系:
为苯环,为萘环,为蒽环。为2×2,为3×3,为4×4,为5×5。其中,是长度单位,等于0.1纳米。5×5芳香结构如图1所示。
锡市褐煤高分辨透射电镜图如图3a和3b所示,芳香结构尺寸分布如图4所示。苯的比例为3.33%,萘环为10.63%,蒽环为16.88%,为37.29%,为23.33%,为5.83%,为2.08%。
步骤d、X射线光电子能谱分析
X射线光电子能谱能给出煤表面原子的化合态,根据含氧基团化合态分峰拟合得到煤表面含氧官能团的种类及含量,分峰拟合采用XPS Peak4.1基于Smart模式扣除背底,Gaussian/Lorentzian峰形。X射线光电子能谱宽扫锡市褐煤表面元素如图4所示,对O1s进行分峰拟合,拟合结果如图5所示,38.06%-OH,16.96%C-O,26.93%C=O,18.05%-COOH。
步骤e、13C核磁共振分析
13C核磁共振谱图能提供煤中不同碳结构信息:175-240ppm为羰基、羧基峰,100-175ppm为芳碳峰,0-100ppm为脂链峰,由此计算的芳碳率为0.64,XRD结构计算所得的芳碳率为0.7,可见比较接近。
步骤f、煤结构模型的构建与检验
基于高分辨透射电镜确定芳香结构长度组成比例,X射线衍射和13C核磁共振结果,确定侧链及含氧官能团碳原子的比例。结合煤分子质量,确定芳香结构及含氧官能团的数量。基于以上多物理测试技术,确定锡市褐煤分子结构中的芳香结构与含氧基团的数量如表2所示。
表2芳香结构、含氧官能团的类型与数量
通过分子模拟软件绘制煤分子结构三维模型,如图8a和8b所示,分子式为C166H130O49;并对其结构优化及基于半经验分子轨道计算其基团振动转动红外光谱图,如图9所示,对比模拟红外光谱图与实际测试红外光谱图,并对基团复杂区间1800-900cm-1进一步分析,如图10a和b所示,(1)实际测试红外光谱图的高斯分峰拟合,(2)为计算红外光谱图的包络。由图9与10a、10b可以看出,实际测试的红外光谱图与计算红外光谱图匹配的较好。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种结构无损的褐煤有机大分子结构模型的构建方法,其特征在于:包括以下步骤:
步骤a,对煤样进行脱矿物质处理,然后对脱矿物质煤样进行工业分析及元素分析,确定煤变质程度及元素组成,初步确定煤有机分子结构的最简分子式;
步骤b,对脱矿物质煤样进行X射线衍射分析,得出煤中微晶结构信息;
步骤c,对脱矿物质煤样进行高分辨透射电镜分析,得到的高分辨透射图片经傅里叶变换消除噪音影响,然后再逆变换,获得的线条长度代表着芳香结构的尺寸;
步骤d,对脱矿物质煤样进行X射线光电子能谱分析,获得X射线光电子能谱,得到煤表面原子的化合态;
步骤e,对脱矿物质煤样进行13C核磁分析,获得13C核磁共振谱图,得到煤中不同碳结构信息;
步骤f,基于半经验分子轨道计算的VAMP计算煤结构的基团振动光谱图与红外光谱分析图对比验证煤大分子结构的代表性。
2.根据权利要求1所述的结构无损的褐煤有机大分子结构模型的构建方法,其特征在于:所述步骤b具体为:
依据X射线衍射分析得到的半峰全宽强度β及峰位θ,用Braggs与Scherrer经验方程得到芳香层间距d002,晶格高度Lc,平均每个碳晶体的芳香层数Nave
<mrow> <msub> <mi>d</mi> <mn>002</mn> </msub> <mo>=</mo> <mfrac> <mi>&amp;lambda;</mi> <mrow> <mn>2</mn> <msub> <mi>sin&amp;theta;</mi> <mn>002</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>L</mi> <mi>c</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mi>c</mi> </msub> <mi>&amp;lambda;</mi> </mrow> <mrow> <msub> <mi>&amp;beta;</mi> <mn>002</mn> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>cos&amp;theta;</mi> <mn>002</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>N</mi> <mrow> <mi>a</mi> <mi>v</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>L</mi> <mi>c</mi> </msub> <msub> <mi>d</mi> <mn>002</mn> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
式中,λ是入射光X-射线的波长,θ002是峰位(002)的角度;β002是(002)峰的半峰全宽;Kc是Cu KαX-射线反射面常数,取值为0.89;
(002)峰面积对应芳香碳原子数,γ带面积对应着脂链碳原子数,则芳香度fa为:
<mrow> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>A</mi> <mn>002</mn> </msub> <mrow> <msub> <mi>A</mi> <mn>002</mn> </msub> <mo>+</mo> <msub> <mi>A</mi> <mi>&amp;gamma;</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
式中,A002,Aγ分别是峰(002),(γ)带所对应的面积。
3.根据权利要求1所述的结构无损的褐煤有机大分子结构模型的构建方法,其特征在于:所述步骤c中,获得的线条长度等于其宽度,通过分子模拟软件构建煤的芳香结构;其中,获得的线条长度与芳香长度之间存在以下关系:
为苯环,为萘环,为蒽环;为2×2, 为3×3,为4×4,5×5;
其中,是长度单位,等于0.1纳米。
4.根据权利要求1所述的结构无损的褐煤有机大分子结构模型的构建方法,其特征在于:所述步骤d中,根据含氧基团化合态分峰拟合得到煤表面含氧官能团的种类及含量,分峰拟合采用XPS Peak4.1基于Smart模式扣除背底,Gaussian/Lorentzian峰形。
5.根据权利要求1所述的结构无损的褐煤有机大分子结构模型的构建方法,其特征在于:所述步骤e中,13C核磁共振谱图得到煤中不同碳结构信息:175-240ppm为羰基、羧基峰,100-175ppm为芳碳峰,0-100ppm为脂链峰;由此计算芳碳率,与XRD结构计算所得的芳碳率对比验证。
6.根据权利要求1所述的结构无损的褐煤有机大分子结构模型的构建方法,其特征在于:所述步骤f中,基于高分辨透射电镜确定芳香结构长度组成比例,X射线衍射和13C核磁共振结果,确定侧链及含氧官能团碳原子的比例;结合煤分子质量,确定芳香结构及含氧官能团的数量;通过分子模拟软件绘制煤分子结构三维模型,并对其结构优化及基于半经验分子轨道计算其基团振动转动红外光谱图;对比模拟红外光谱图与实际测试红外光谱图,检验、优化煤分子结构模型的代表性。
CN201711351856.3A 2017-12-15 2017-12-15 一种结构无损的褐煤有机大分子结构模型的构建方法 Pending CN108088863A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711351856.3A CN108088863A (zh) 2017-12-15 2017-12-15 一种结构无损的褐煤有机大分子结构模型的构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711351856.3A CN108088863A (zh) 2017-12-15 2017-12-15 一种结构无损的褐煤有机大分子结构模型的构建方法

Publications (1)

Publication Number Publication Date
CN108088863A true CN108088863A (zh) 2018-05-29

Family

ID=62176746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711351856.3A Pending CN108088863A (zh) 2017-12-15 2017-12-15 一种结构无损的褐煤有机大分子结构模型的构建方法

Country Status (1)

Country Link
CN (1) CN108088863A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540828A (zh) * 2018-10-30 2019-03-29 沈阳环境科学研究院 煤质分析的红外结构参数法
CN109765256A (zh) * 2019-01-30 2019-05-17 太原理工大学 一种煤的核磁共振碳谱边带效应的校正方法
CN112086132A (zh) * 2020-08-18 2020-12-15 深圳晶泰科技有限公司 有机分子晶体构建方法及系统
CN112903621A (zh) * 2021-01-21 2021-06-04 中国矿业大学 一种基于多种表征手段的煤分子模型建立方法
CN113903230A (zh) * 2021-11-19 2022-01-07 中国矿业大学 一种构建煤大分子2d结构模型的方法
WO2022036538A1 (zh) * 2020-08-18 2022-02-24 深圳晶泰科技有限公司 有机分子晶体构建方法及系统
WO2023044947A1 (zh) * 2021-09-23 2023-03-30 滨州学院 一种褐煤分子结构模型的构建与优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106169016A (zh) * 2016-06-17 2016-11-30 安徽理工大学 一种炼焦煤含硫大分子结构模型的构建方法
CN106777958A (zh) * 2016-12-12 2017-05-31 中国矿业大学 一种构建复杂有机大分子平均分子结构模型的方法
CN106896209A (zh) * 2015-12-17 2017-06-27 北京化工大学 一种构建油页岩有机质结构模型的方法
CN106898220A (zh) * 2015-12-17 2017-06-27 北京化工大学 一种构建褐煤有机质大分子结构模型的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896209A (zh) * 2015-12-17 2017-06-27 北京化工大学 一种构建油页岩有机质结构模型的方法
CN106898220A (zh) * 2015-12-17 2017-06-27 北京化工大学 一种构建褐煤有机质大分子结构模型的方法
CN106169016A (zh) * 2016-06-17 2016-11-30 安徽理工大学 一种炼焦煤含硫大分子结构模型的构建方法
CN106777958A (zh) * 2016-12-12 2017-05-31 中国矿业大学 一种构建复杂有机大分子平均分子结构模型的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG JIE ET AL.: "The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13C NMR, HRTEM and XPS techniques", 《FUEL》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540828A (zh) * 2018-10-30 2019-03-29 沈阳环境科学研究院 煤质分析的红外结构参数法
CN109540828B (zh) * 2018-10-30 2021-06-29 沈阳环境科学研究院 煤质分析的红外结构参数法
CN109765256A (zh) * 2019-01-30 2019-05-17 太原理工大学 一种煤的核磁共振碳谱边带效应的校正方法
CN112086132A (zh) * 2020-08-18 2020-12-15 深圳晶泰科技有限公司 有机分子晶体构建方法及系统
WO2022036538A1 (zh) * 2020-08-18 2022-02-24 深圳晶泰科技有限公司 有机分子晶体构建方法及系统
CN112903621A (zh) * 2021-01-21 2021-06-04 中国矿业大学 一种基于多种表征手段的煤分子模型建立方法
WO2023044947A1 (zh) * 2021-09-23 2023-03-30 滨州学院 一种褐煤分子结构模型的构建与优化方法
CN113903230A (zh) * 2021-11-19 2022-01-07 中国矿业大学 一种构建煤大分子2d结构模型的方法
CN113903230B (zh) * 2021-11-19 2024-01-30 中国矿业大学 一种构建煤大分子2d结构模型的方法

Similar Documents

Publication Publication Date Title
CN108088863A (zh) 一种结构无损的褐煤有机大分子结构模型的构建方法
Craig et al. Surface enhanced Raman spectroscopy enables observations of previously undetectable secondary organic aerosol components at the individual particle level
Tumanski Principles of electrical measurement
Dickey et al. Initial results from the Bermuda Testbed Mooring program
Ţălu et al. Multifractal analysis of drop‐casted copper (II) tetrasulfophthalocyanine film surfaces on the indium tin oxide substrates
CN103994979B (zh) 大气分析装置
Senesi et al. Metal ion complexation by soil humic substances
Zou et al. Multisource spectral-integrated estimation of cadmium concentrations in soil using a direct standardization and Spiking algorithm
Cross et al. Great Basin hydrology, paleoclimate, and connections with the North Atlantic: A speleothem stable isotope and trace element record from Lehman Caves, NV
Petrovskii et al. The use of FTIR methods for rapid determination of contents of mineral and biogenic components in lake bottom sediments, based on studying of East Siberian lakes
Koczoń et al. The analytical possibilities of FT-IR spectroscopy powered by vibrating molecules
Wetzel et al. Pollution trace gases C 2 H 6, C 2 H 2, HCOOH, and PAN in the North Atlantic UTLS: observations and simulations
Gamache Lineshape parameters for water vapor in the 3.2–17.76 μm region for atmospheric applications
CN110068605A (zh) 一种基于pca-lda分析鉴别大米产地的方法
Chrysostom et al. Coherent Raman and infrared studies of sulfur trioxide
Brill Activation of electron transfer reactions of the blue proteins
CN207180650U (zh) 车轮转角测量仪
Wang et al. Decadal-scale precipitation variations in arid and semiarid zones of northern China during the last 500 years
Pruett et al. Assessment of sulfate sources in high-elevation Asian precipitation using stable sulfur isotopes
Ma et al. Dynamics of water extractable organic carbon at a subtropical catchment using fluorescence excitation‐emission matrix spectroscopy coupled with parallel factor analysis
Etheridge et al. Metadata report: Arcturus atmospheric greenhouse gas monitoring
Widjaja et al. Use of Raman microscopy and band-target entropy minimization technique to differentiate physical mixture from chemical mixture in mixed metal oxides
Krinker Experiments with the Spinning Electric Vector Analyzer SEVA-Integral-M1. Angular Momentum of Objects and Events, Manifested in the Field Gyroscope
Stojanović et al. Low-processing data enrichment and calibration for PM2. 5 low-cost sensors
Hoskins Pure rotational Raman spectroscopy: A dry-lab experiment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180529