CN108059135B - 氮化钛纳米粉体及其制备方法 - Google Patents

氮化钛纳米粉体及其制备方法 Download PDF

Info

Publication number
CN108059135B
CN108059135B CN201810076263.9A CN201810076263A CN108059135B CN 108059135 B CN108059135 B CN 108059135B CN 201810076263 A CN201810076263 A CN 201810076263A CN 108059135 B CN108059135 B CN 108059135B
Authority
CN
China
Prior art keywords
titanium nitride
titanium
preparation
nanopower
reaction promoter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810076263.9A
Other languages
English (en)
Other versions
CN108059135A (zh
Inventor
韩召
陈琦
万超
许立信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN201810076263.9A priority Critical patent/CN108059135B/zh
Publication of CN108059135A publication Critical patent/CN108059135A/zh
Application granted granted Critical
Publication of CN108059135B publication Critical patent/CN108059135B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种氮化钛纳米粉体及其制备方法,属于氮化钛制备技术领域。本发明的制备方法包括以下步骤;步骤A:准备反应助剂,向反应助剂中加入液氨,待液氨与反应助剂分层之后,向反应助剂中加入四氯化钛,于温度A、压力B下进行化学反应,反应结束之后进行洗涤,得到氮化钛前驱体;步骤B:将步骤A得到的氮化钛前驱体进行焙烧,得到氮化钛纳米粉体。本发明制备的氮化钛纳米粉体的平均晶粒尺寸≤100nm。本发明的制备方法生产成本较低,获得的氮化钛粉体纯度高、颗粒均匀、粒度分布窄、粒径可达纳米级。

Description

氮化钛纳米粉体及其制备方法
技术领域
本发明属于氮化钛制备技术领域,更具体地说,涉及一种氮化钛纳米粉体及其制备方法。
背景技术
氮化钛粉体是制备氮化钛陶瓷的基本原料,是影响氮化钛陶瓷性能的关键,其中纳米级氮化钛粉体呈黑色,微米级氮化钛粉体呈黄色。氮化钛具有熔点高,化学稳定性好,硬度大,导电、导热和光性能好等良好的理化性质,使其在各个领域都有着非常重要的用途,尤其是在新型金属陶瓷领域和代金装饰领域方面。工业对氮化钛粉末的需求越来越多,氮化钛作为涂层价格既低廉又耐磨耐腐蚀,它的好多性能都优于真空涂层。氮化钛陶瓷是一种高性能陶瓷,它具有优异的物理化学性能,如高强度、高硬度、耐高温、耐磨损、耐酸碱侵蚀,另外具有良好的导电性、导热性等一系列优点,被广泛应用。
纳米氮化钛粉体是指其晶粒尺寸在100纳米以内的氮化钛粉体,用它代替微米级氮化钛粉体作原料可以降低氮化钛陶瓷的烧结温度、提高烧结性能;用它作为增强相,可有效提高金属、陶瓷基体的强度和韧性。而且,由于颗粒小、比表面积大,能分散在其它材料中形成导电网络,大大提高复合材料的导电性能。故此,纳米氮化钛是一种具有广阔应用前景的材料。
随着国内外对氮化钛研究的加深,制备氮化钛的方法也越来越多。例如专利公开号:CN101298321A,公开日:2008年11月05日,发明创造名称为:一种氮化钛纳米粉体的制备方法,该申请案公开的制备方法以纳米管钛酸为钛源,在管式炉中通入氨气,从室温升温至800-1000℃进行氮化反应0.5-24H,冷却后即得氮化钛纳米粉体。
目前,氮化钛的制备工艺主要有金属钛粉或TiH2直接氮化法、TiO2碳热还原氮化法、微波碳热还原法、化学气相沉积法、自蔓延高温合成法、机械合金化法、SiCl4液相法等。传统的固相法:金属钛或氢化钛在氮气中高温处理可制得氮化钛粉末,这类方法所需温度较高,而且高温下氮化钛团聚结块,颗粒粗大,与现在市场所需求的纳米级氮化钛相差较大,所以还需要机械破碎,总能耗较高。气相法是最近几十年发展起来的新技术:以四氯化钛、氨气、氢气、氮气为原料,在反应器中进行化学反应制备氮化钛粉末,这类方法反应较快,但反应过程不容易控制,且反应温度较高、能耗较高。
综上所述,以上方法制备氮化钛粉体的方法,都存在不同程度的缺陷,因此需研发出一种成本低廉的氮化钛纳米粉体的制备方法,来克服上述缺陷。
发明内容
1.发明要解决的技术问题
本发明的目的在于克服现有技术中的以上不足,提供了一种氮化钛纳米粉体及其制备方法,该制备方法生产成本较低,获得的氮化钛粉体纯度高、颗粒均匀、粒度分布窄、粒径可达纳米级。
2.技术方案
为达到上述目的,本发明提供的技术方案为:
本发明的氮化钛纳米粉体的制备方法,包括以下步骤:
步骤A:准备反应助剂,向反应助剂中加入液氨,待液氨与反应助剂分层之后,向反应助剂中加入四氯化钛,于温度A、压力B下进行化学反应,反应结束之后进行洗涤,得到氮化钛前驱体;
步骤B:将步骤A得到的氮化钛前驱体进行焙烧,得到氮化钛纳米粉体。
作为本发明更进一步的改进,所述反应助剂为非极性芳香烃或卤代烃中的一种或者多种的混合。
作为本发明更进一步的改进,所述温度A为-60℃~-35℃。
作为本发明更进一步的改进,所述压力B为0.05MPa~0.15MPa。
作为本发明更进一步的改进,步骤A中化学反应开始前,控制四氯化钛、液氨以及反应助剂的质量之比为50~200:300~700:150~400。
作为本发明更进一步的改进,步骤B中焙烧的温度为400℃~1200℃,焙烧的时间为20~120min。
作为本发明更进一步的改进,步骤B中在保护性气氛下进行焙烧;所述保护性气氛为氮气、氦气或氩气中的一种。
作为本发明更进一步的改进,所述反应助剂为甲苯或二氯甲烷或甲苯与二氯甲烷的混合物。
本发明的氮化钛纳米粉体,所述氮化钛纳米粉体的平均晶粒尺寸≤100nm。
作为本发明更进一步的改进,所述氮化钛纳米粉体采用上述的氮化钛纳米粉体的制备方法而制得。
3.有益效果
采用本发明提供的技术方案,与现有技术相比,具有如下显著效果:
(1)本发明采用液相法合成制备氮化钛纳米粉体,反应可控,反应周期短,反应能耗较低,工艺过程简单且无需大型设备,生产成本较低,可大工业化生产,而且反应所得氮化钛粉体纯度高、颗粒均匀、粒度分布窄、粒径可达纳米级,未来将逐步取代传统的氮化钛制备方法,具有广阔前景,且反应中所使用反应助剂、液氨可回收循环使用。
(2)本发明将非极性芳香烃或卤代烃中的一种或者多种的混合作为反应助剂,进行化学反应时四氯化钛溶解在以上反应助剂中,可以防止四氯化钛溶解在其他溶剂中而生成类似于[(C6R6)TiCl3]+的配合物,从而避免因引入碳元素而导致氮化钛纳米粉体纯度降低的现象;进一步的,步骤A进行化学反应时,该反应助剂可与四氯化钛互溶,四氯化钛可被该反应助剂包裹,四氯化钛外层的反应助剂在化学反应时会抑制氮化钛前躯体的长大,从而有利于获得纳米级氮化钛粉。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明中氮化钛纳米粉体的制备方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为进一步了解本发明的内容,结合附图和实施例对本发明作详细描述。
实施例1
参考图1,一种氮化钛纳米粉体的制备方法,包括以下步骤:
步骤A:以甲苯为反应助剂,向甲苯中加入液氨,待液氨与甲苯稳定分层之后,向甲苯中加入四氯化钛并于-60℃、0.5个大气压的条件下进行化学反应,反应结束之后进行洗涤,得到氮化钛前驱体;其中,化学反应开始前,控制四氯化钛、液氨以及反应助剂的质量之比为50:300:150。
步骤B:将步骤A得到的氮化钛前驱体在氮气保护性气氛下进行焙烧,焙烧温度为400℃,焙烧时间控制在120min,最终得到氮化钛纳米粉体,经检测氮化钛纳米粉体的平均粒径为20nm,平均晶粒尺寸为2nm。
本实施例中,步骤A化学反应结束之后进行洗涤、纯化,其具体步骤为:通过液氨反复洗涤过滤、萃取出残留的氯化铵,过滤出剩余的反应助剂,得到纯净的氮化钛前驱体;纯化后的液相通过蒸馏分离出纯净的氨、反应助剂和氯化铵,回收利用。
本发明中,步骤A的化学反应具体为TiCl4+6NH3=Ti(NH)2↓+4NH4Cl,在密闭的反应容器内进行化学反应,使用保护性气体反复置换出反应容器内的空气,使反应容器内处于无水无氧状态,并维持反应容器内压力为0.05MPa~0.15MPa。
实施例2
一种氮化钛纳米粉体的制备方法,包括以下步骤:
步骤A:以甲苯为反应助剂,向甲苯中加入液氨,待液氨与甲苯稳定分层之后,向甲苯中加入四氯化钛并于-45℃、1个大气压的条件下进行化学反应,反应结束之后进行洗涤,得到氮化钛前驱体;其中,化学反应开始前,控制四氯化钛、液氨以及反应助剂的质量之比为100:500:400。
步骤B:将步骤A得到的氮化钛前驱体在氦气保护性气氛下进行焙烧,焙烧温度为1000℃,焙烧时间控制在40min,最终得到氮化钛纳米粉体,经检测氮化钛纳米粉体的平均粒径为300nm,平均晶粒尺寸为50nm。
实施例3
一种氮化钛纳米粉体的制备方法,包括以下步骤:
步骤A:以甲苯为反应助剂,向甲苯中加入液氨,待液氨与甲苯稳定分层之后,向甲苯中加入四氯化钛并于-35℃、1.5个大气压的条件下进行化学反应,反应结束之后进行洗涤,得到氮化钛前驱体;其中,化学反应开始前,控制四氯化钛、液氨以及反应助剂的质量之比为200:700:600。
步骤B:将步骤A得到的氮化钛前驱体在氩气保护性气氛下进行焙烧,焙烧温度为1200℃,焙烧时间控制在60min,最终得到氮化钛纳米粉体,经检测氮化钛纳米粉体的平均粒径为500nm,平均晶粒尺寸为100nm。
实施例4
一种氮化钛纳米粉体的制备方法,包括以下步骤:
步骤A:以二氯甲烷为反应助剂,向二氯甲烷中加入液氨,待液氨与二氯甲烷稳定分层之后,向二氯甲烷中加入四氯化钛并于-60℃、0.5个大气压的条件下进行化学反应,反应结束之后进行洗涤,得到氮化钛前驱体;其中,化学反应开始前,控制四氯化钛、液氨以及反应助剂的质量之比为50:300:150。
步骤B:将步骤A得到的氮化钛前驱体在氮气保护性气氛下进行焙烧,焙烧温度为600℃,焙烧时间控制在30min,最终得到氮化钛纳米粉体,经检测氮化钛纳米粉体的平均粒径为40nm,平均晶粒尺寸为10nm。
实施例5
一种氮化钛纳米粉体的制备方法,包括以下步骤:
步骤A:以二氯甲烷为反应助剂,向二氯甲烷中加入液氨,待液氨与二氯甲烷稳定分层之后,向二氯甲烷中加入四氯化钛并于-45℃、1个大气压的条件下进行化学反应,反应结束之后进行洗涤,得到氮化钛前驱体;其中,化学反应开始前,控制四氯化钛、液氨以及反应助剂的质量之比为100:500:400。
步骤B:将步骤A得到的氮化钛前驱体在氦气保护性气氛下进行焙烧,焙烧温度为1000℃,焙烧时间控制在50min,最终得到氮化钛纳米粉体,经检测氮化钛纳米粉体的平均粒径为350nm,平均晶粒尺寸为60nm。
实施例6
一种氮化钛纳米粉体的制备方法,包括以下步骤:
步骤A:以二氯甲烷为反应助剂,向二氯甲烷中加入液氨,待液氨与二氯甲烷稳定分层之后,向二氯甲烷中加入四氯化钛并于-35℃、1.5个大气压的条件下进行化学反应,反应结束之后进行洗涤,得到氮化钛前驱体;其中,化学反应开始前,控制四氯化钛、液氨以及反应助剂的质量之比为200:700:600。
步骤B:将步骤A得到的氮化钛前驱体在氩气保护性气氛下进行焙烧,焙烧温度为1200℃,焙烧时间控制在40min,最终得到氮化钛纳米粉体,经检测氮化钛纳米粉体的平均粒径为400nm,平均晶粒尺寸为90nm。
实施例7
一种氮化钛纳米粉体的制备方法,包括以下步骤:
步骤A:以甲苯和二氯甲烷的混合物为反应助剂,向甲苯和二氯甲烷的混合物中加入液氨,待液氨与甲苯和二氯甲烷的混合物稳定分层之后,向甲苯和二氯甲烷的混合物中加入四氯化钛并于-60℃、0.5个大气压的条件下进行化学反应,反应结束之后进行洗涤,得到氮化钛前驱体;其中,化学反应开始前,控制四氯化钛、液氨以及反应助剂的质量之比为50:300:150。
步骤B:将步骤A得到的氮化钛前驱体在氮气保护性气氛下进行焙烧,焙烧温度为600℃,焙烧时间控制在30min,最终得到氮化钛纳米粉体,经检测氮化钛纳米粉体的平均粒径为30nm,平均晶粒尺寸为8nm。
实施例8
一种氮化钛纳米粉体的制备方法,包括以下步骤:
步骤A:以甲苯和二氯甲烷的混合物为反应助剂,向甲苯和二氯甲烷的混合物中加入液氨,待液氨与甲苯和二氯甲烷的混合物稳定分层之后,向甲苯和二氯甲烷的混合物中加入四氯化钛并于-45℃、1个大气压的条件下进行化学反应,反应结束之后进行洗涤,得到氮化钛前驱体;其中,化学反应开始前,控制四氯化钛、液氨以及反应助剂的质量之比为100:500:400。
步骤B:将步骤A得到的氮化钛前驱体在氦气保护性气氛下进行焙烧,焙烧温度为1000℃,焙烧时间控制在60min,最终得到氮化钛纳米粉体,经检测氮化钛纳米粉体的平均粒径为400nm,平均晶粒尺寸为90nm。
实施例9
一种氮化钛纳米粉体的制备方法,包括以下步骤:
步骤A:以甲苯和二氯甲烷的混合物为反应助剂,向甲苯和二氯甲烷中加入液氨,待液氨与甲苯和二氯甲烷的混合物稳定分层之后,向甲苯和二氯甲烷的混合物中加入四氯化钛并于-35℃、1.5个大气压的条件下进行化学反应,反应结束之后进行洗涤,得到氮化钛前驱体;其中,化学反应开始前,控制四氯化钛、液氨以及反应助剂的质量之比为200:700:600。
步骤B:将步骤A得到的氮化钛前驱体在氩气保护性气氛下进行焙烧,焙烧温度为1200℃,焙烧时间控制在50min,最终得到氮化钛纳米粉体,经检测氮化钛纳米粉体的平均粒径为450nm,平均晶粒尺寸为95nm。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (5)

1.氮化钛纳米粉体的制备方法,其特征在于,包括以下步骤:
步骤A:准备反应助剂,向反应助剂中加入液氨,待液氨与反应助剂分层之后,向反应助剂中加入四氯化钛,于温度A、压力B下进行化学反应,反应结束之后进行洗涤,得到氮化钛前驱体;
所述反应助剂为非极性芳香烃或卤代烃中的一种或者多种的混合;
所述温度A为-60℃~-35℃;
所述压力B为0.05MPa~0.15MPa;
步骤A中化学反应开始前,控制四氯化钛、液氨以及反应助剂的质量之比为50~200:300~700:150~400;
步骤B:将步骤A得到的氮化钛前驱体进行焙烧,得到氮化钛纳米粉体。
2.根据权利要求1所述的氮化钛纳米粉体的制备方法,其特征在于,步骤B中焙烧的温度为400℃~1200℃,焙烧的时间为20~120min。
3.根据权利要求1或2所述的氮化钛纳米粉体的制备方法,其特征在于,步骤B中在保护性气氛下进行焙烧;所述保护性气氛为氮气、氦气或氩气中的一种。
4.根据权利要求1或2所述的氮化钛纳米粉体的制备方法,其特征在于,所述反应助剂为甲苯或二氯甲烷或甲苯与二氯甲烷的混合物。
5.氮化钛纳米粉体,其特征在于,所述氮化钛纳米粉体的平均晶粒尺寸≤100nm;
所述氮化钛纳米粉体采用如权利要求1~4任意一项所述的氮化钛纳米粉体的制备方法而制得。
CN201810076263.9A 2018-01-26 2018-01-26 氮化钛纳米粉体及其制备方法 Active CN108059135B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810076263.9A CN108059135B (zh) 2018-01-26 2018-01-26 氮化钛纳米粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810076263.9A CN108059135B (zh) 2018-01-26 2018-01-26 氮化钛纳米粉体及其制备方法

Publications (2)

Publication Number Publication Date
CN108059135A CN108059135A (zh) 2018-05-22
CN108059135B true CN108059135B (zh) 2019-06-25

Family

ID=62134222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810076263.9A Active CN108059135B (zh) 2018-01-26 2018-01-26 氮化钛纳米粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN108059135B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113148966B (zh) * 2021-04-20 2022-04-29 安徽工业大学 氨解法制备高纯氮化硅粉体方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312218A (zh) * 2001-03-23 2001-09-12 中国科学院上海硅酸盐研究所 二氧化钛氮化法制备纳米氮化钛粉体
CN1438172A (zh) * 2003-02-27 2003-08-27 北京科技大学 一种液相还原制备氮化钛细微粉末的方法
CN101475151A (zh) * 2008-08-01 2009-07-08 北京科技大学 一种导电氮化钛/氮化硅纳米复合材料的制备方法
CN103864030A (zh) * 2012-12-11 2014-06-18 浙江海洋学院 一种纳米氮化钛粉体的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312218A (zh) * 2001-03-23 2001-09-12 中国科学院上海硅酸盐研究所 二氧化钛氮化法制备纳米氮化钛粉体
CN1438172A (zh) * 2003-02-27 2003-08-27 北京科技大学 一种液相还原制备氮化钛细微粉末的方法
CN101475151A (zh) * 2008-08-01 2009-07-08 北京科技大学 一种导电氮化钛/氮化硅纳米复合材料的制备方法
CN103864030A (zh) * 2012-12-11 2014-06-18 浙江海洋学院 一种纳米氮化钛粉体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Surface Chemistry in the Atomic Layer Deposition of TiN Films from TiCl4 and Ammonia;Hugo Tiznado et al.;《J. Phys. Chem. B》;20060617;第110卷;第13491-13498页

Also Published As

Publication number Publication date
CN108059135A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
US10364193B2 (en) Method for synthesizing high-purity ultrafine ZrC—SiC composite powder
Li et al. Synthesis of nanocrystalline titanium nitride powders by direct nitridation of titanium oxide
Mhadhbi et al. Titanium carbide: synthesis, properties and applications
CN108557783B (zh) 高纯纳米氮化钛粉末的制备方法
Xiang et al. Synthesis of Ti (C, N) ultrafine powders by carbothermal reduction of TiO2 derived from sol–gel process
CN103130506A (zh) 一种制备超细碳氮化钛的方法
CN108129151A (zh) 一种石墨烯/碳化硅纳米复合结构单片陶瓷及其制备方法
Wang et al. Effect of ZrO2 content on microstructure and mechanical properties of W alloys fabricated by spark plasma sintering
Wu et al. Preparation technology of ultra-fine tungsten carbide powders: an overview
CN108543952A (zh) 一种前驱体法合成wc基纳米复合粉末的方法
CN108059135B (zh) 氮化钛纳米粉体及其制备方法
WO2019227811A1 (zh) 一种超细过渡金属硼化物粉体及其制备方法和应用
Wu et al. Synthesis of high purity nano-sized transition-metal carbides
Yu et al. Single-source-precursor synthesis and phase evolution of NbC–SiC–C ceramic nanocomposites with core− shell structured NbC@ C and SiC@ C nanoparticles
Zhang et al. Microstructure and mechanical properties of Ti (C, N)-based cermets fabricated by in situ carbothermal reduction of TiO2 and subsequent liquid phase sintering
CN108585876A (zh) 氮化钛纳米粉体的制备方法
Xu et al. Properties and microstructure of oxide dispersion strengthened tungsten alloy prepared by liquid-phase method: a review
Wang et al. Study on influencing factors and mechanism of high-quality tungsten carbide nanopowders synthesized via carbothermal reduction
CN108101009B (zh) 氮化钛纳米粉体高压液相合成方法
CN111943678A (zh) 一种HfxZr1-xC陶瓷固溶体纳米线及制备方法
Shen et al. A simple route to prepare nanocrystalline titanium carbonitride
CN108928822B (zh) 气态还原氧化钼制备碳化钼的方法
Huang et al. Synthesis of nanocrystalline titanium nitride by reacting titanium dioxide with sodium amide
Jiang et al. Preparation, sintering and electrochemical performance of novel Fe2N-TiN nanocomposites
CN1187261C (zh) 立方相纳米氮化钒粉体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant