CN108050997B - 一种基于容积卡尔曼的光纤陀螺滤波方法 - Google Patents

一种基于容积卡尔曼的光纤陀螺滤波方法 Download PDF

Info

Publication number
CN108050997B
CN108050997B CN201711192035.XA CN201711192035A CN108050997B CN 108050997 B CN108050997 B CN 108050997B CN 201711192035 A CN201711192035 A CN 201711192035A CN 108050997 B CN108050997 B CN 108050997B
Authority
CN
China
Prior art keywords
fiber
time
optic gyroscope
steps
filtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711192035.XA
Other languages
English (en)
Other versions
CN108050997A (zh
Inventor
杨博
孙丽
李勇
赵亚飞
滕飞
张宇飞
王东
崔斌
田亚男
周晓娜
王晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Control Engineering
Original Assignee
Beijing Institute of Control Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Control Engineering filed Critical Beijing Institute of Control Engineering
Priority to CN201711192035.XA priority Critical patent/CN108050997B/zh
Publication of CN108050997A publication Critical patent/CN108050997A/zh
Application granted granted Critical
Publication of CN108050997B publication Critical patent/CN108050997B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H21/0016Non linear filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H21/0025Particular filtering methods
    • H03H21/0029Particular filtering methods based on statistics
    • H03H21/003KALMAN filters

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Nonlinear Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Gyroscopes (AREA)

Abstract

本发明涉及一种基于容积卡尔曼的光纤陀螺滤波方法。本发明将容积卡尔曼滤波技术应用于光纤陀螺的输出数据处理中,通过采用三阶球面‑相径容积原则,在滤波过程中通过对状态向量进行采样,并赋予相同权值,经过非线性函数的传递后,计算后验均值和协方差,以高阶多项式的方式逼近其状态估计。经滤波后,可有效抑制光纤陀螺中诸如随机误差等不确定噪声。此方法简单易行,并且精度高,在光纤陀螺数据处理方面可有效提升陀螺的精度,提高光纤陀螺在空间环境中的性能。

Description

一种基于容积卡尔曼的光纤陀螺滤波方法
技术领域
本发明涉及一种基于容积卡尔曼的光纤陀螺滤波方法,通过进行容积滤波,有效抑制了光纤陀螺输出数据中的随机误差等不确定性噪声,提升了光纤陀螺的性能,在干涉式光纤陀螺中有着重要的应用。
背景技术
光纤陀螺的精度制约着导航系统的导航精度,其中包括刻度因数、安装误差等确定性误差可通过标校进行补偿。因此,随机误差等不确定噪声成为影响陀螺输出精度的主要因素。目前,对随机噪声抑制方法的研究主要是通过建立相应的模型并结合卡尔曼滤波技术进行估计。常用的滤波方法有:卡尔曼滤波(KF)、扩展卡尔曼滤波(EKF)、和粒子滤波(PF)等。
其中,卡尔曼滤波(KF)作为一种线性滤波方法,对系统模型为线性的系统具有良好的滤波效果。然而,现有的大多数系统往往具有非线性,在进行滤波方法设计时往往需要将其线性化,如:扩展卡尔曼滤波(EKF)通过对系统模型进行泰勒技术展开来逼近系统的模、粒子滤波(PF)通过寻找一组在状态空间中传播的随机样本来近似的表示概率密度函数,存在计算量大的,且不适合于非线性较强的工程应用领域。
在光纤陀螺中,陀螺仪器的输出模型实际上为一非线性系统,在小角速率下可近似为线性,而当角速率较大时线性模型并不适合。基于非线性模型线性化的滤波方法虽然在一定程度上能够通过滤波提升性能,但当陀螺工作于非线性区域时,滤波性能会大幅降低。
发明内容
本发明解决的技术问题是:克服现有技术的不足之处,提供一种基于容积卡尔曼滤波的光纤陀螺滤波方法;该方法使用三阶球面-相径容积原则,滤波过程中通过对状态向量进行采样,并赋予相同权值,经过非线性函数的传递后,计算后验均值和协方差,以高阶多项式的方式逼近其状态估计,通过仿真计算,提高了陀螺的精度。
本发明提出基于容积卡尔曼滤波(CKF)的方法,该滤波方法作为一种新型的非线性滤波方法,在进行模型搭建时不需要对模型进行处理,这将降低由于线性化带来的性能降低问题。容积卡尔曼滤波的基于三阶球面-相径容积原则,滤波过程中通过对状态向量进行采样,并赋予相同权值,经过非线性函数的传递后,计算后验均值和协方差,以高阶多项式的方式逼近其状态估计。本发明的方法将容积卡尔曼滤波技术应用于光纤陀螺的输出数据处理中,通过采用三阶球面-相径容积原则,在滤波过程中通过对状态向量进行采样,并赋予相同权值,经过非线性函数的传递后,计算后验均值和协方差,以高阶多项式的方式逼近其状态估计。
本发明的技术方案是:
一种基于容积卡尔曼的光纤陀螺滤波方法,该方法的步骤包括:
(1)假设光纤陀螺的输出状态方程:
xk=Asin(xk-1)+vk-1 (1)
其中,xk为时刻k的光纤陀螺的状态值,A为光纤陀螺的比例因子,xk-1为k-1时刻光纤陀螺的输入角速率,vk-1为k-1时刻光纤陀螺的噪声,vk-1服从于vk-1~N(0,Qk-1),Qk-1为k-1时刻的方差;
(2)假设在k-1时刻,xk-1的后验概率密度
Figure GDA0002983029300000021
是已知的,对Pk-1|k-1做矩阵的平方根分解:
Figure GDA0002983029300000022
其中,Sk-1|k-1
Figure GDA0002983029300000023
为k-1时刻Pk-1|k-1的平方根分解,T代表转置;
(3)计算k-1时刻的容积点集xj,k-1|k-1为:
Figure GDA0002983029300000024
其中,
Figure GDA0002983029300000031
为k-1时刻的预测值,
Figure GDA0002983029300000032
[1]j表示基本容积点,n为xk的维数;
(4)根据光纤陀螺的输出状态方程计算k时刻的容积点
Figure GDA0002983029300000033
Figure GDA0002983029300000034
(5)k时刻的状态值的一步预测值
Figure GDA0002983029300000035
为:
Figure GDA0002983029300000036
(6)误差协方差一步预测值Pk|k-1为:
Figure GDA0002983029300000037
(7)建立光纤陀螺输出的量测方程为:
zk=xk+nk (7)
其中,nk为k时刻的量测噪声,且nk~N(0,Rk),Rk为k时刻的方差;
(8)对k时刻的步骤(6)得到的误差协方差一步预测值Pk|k-1进行平方根分解为:
Pk|k-1=Sk|k-1ST k|k-1 (8)
其中,Sk|k-1
Figure GDA0002983029300000038
为k时刻Pk|k-1的平方根分解,T代表转置;
(9)根据光纤陀螺的输出量测方程计算k时刻的容积点xj,k|k-1为:
Figure GDA0002983029300000039
Figure GDA00029830293000000310
[1]j表示基本容积点,n为xk的维数;
(10)计算经过光纤陀螺的输出量测方程传递后k时刻的容积点Zj,k|k-1
Zj,k|k-1=xj,k|k-1+nk (10)
(11)k时刻的量测值zk的一步预测值
Figure GDA00029830293000000311
Figure GDA00029830293000000312
(12)k时刻的估计量测值的协方差矩阵Pzz,k|k-1为:
Figure GDA0002983029300000041
(13)k时刻的估计交叉协方差矩阵的一步预测值Pxz,k|k-1为:
Figure GDA0002983029300000042
(14)k时刻的估计卡尔曼增益矩阵Wk为:
Figure GDA0002983029300000043
(15)k时刻的估计状态值为:
Figure GDA0002983029300000044
(16)通过步骤(1)-(15)得到了k时刻的估计状态值,采用相同的方法计算不同时刻的估计状态值,得到一组估计状态值,并计算得到的一组估计状态值的方差,得到的方差用于判断光纤陀螺的滤波效果。
本发明与现有技术相比的有益效果是:
在光纤陀螺数据处理中,通常采用滑动求平均的方式,而在系统级测试中,通过采用卡尔曼滤波等线性滤波方法结合其他惯导进行组合滤波。其中,滑动求平均的方式简单,滤波效果较差,系统级滤波需结合其他方式进行,且往往为线性滤波。而完全线性的系统并不存在,本发明提出的一种非线性滤波方法,通过容积滤波的思想应用于光纤陀螺的数据处理中,可有效提升陀螺的精度。本发明提供一种基于容积卡尔曼的光纤陀螺滤波方法,主要是为了解决现有光纤陀螺数据处理过程中由于模型非线性导致的不确定误差较大的问题,提升产品的精度。本发明将容积卡尔曼滤波技术应用于光纤陀螺的输出数据处理中,通过采用三阶球面-相径容积原则,在滤波过程中通过对状态向量进行采样,并赋予相同权值,经过非线性函数的传递后,计算后验均值和协方差,以高阶多项式的方式逼近其状态估计。经滤波后,可有效抑制光纤陀螺中诸如随机误差等不确定噪声。此方法简单易行,并且精度高,在光纤陀螺数据处理方面可有效提升陀螺的精度,提高光纤陀螺在空间环境中的性能。
附图说明
图1是本发明方法的实施示意图。
具体实施方式
如图1所示,一种基于容积卡尔曼的光纤陀螺滤波方法,该方法包括时间更新和量测更新两部分内容,主要包括下列步骤:
步骤1、给定初始条件:根据系统实际情况,给出滤波算法迭代的初始条件;
步骤2、时间更新:根据系统模型和初始条件,计算预测状态向量和预测协方差,并对容积点进行预测;
步骤3、量测更新:更新状态向量和对应的协方差,以及滤波增益,并对量测值、量测误差协方差和互协方差进行预测;
步骤4、迭代更新:经1~3的迭代更新,得到滤波后的数据。
步骤5、对经过非线性滤波模型后的数据进行相应的处理,可用于光纤陀螺的数据处理。
下面结合附图和实施例对本发明作进一步说明。
实施例
本发明的具体实施方式如下:
一种基于容积卡尔曼的光纤陀螺滤波方法,该方法的步骤包括:
(a)实际测试一组光纤陀螺输出原始数据,定义为data,经计算,data的方差为0.006214,其中data为一列向量;
(b)根据光纤陀螺输出的状态方程确定初始值,分别取n=1,A=10,Qk=Q=0.0001,Rk=R=0.0001;
(c)根据(a)和(b)的初始条件,结合公式(1)~(15),对本发明中的滤波方法进行了仿真分析,得到滤波后的数据位data_CKF,并对data_CKF计算方差,计算值为0.004751,优于滤波前的0.006214。据此判断,本发明提出的滤波方法能够有效降低陀螺输出的方差,从而实现随机噪声的滤波。
本发明未详细说明部分属本领域技术人员公知常识。

Claims (2)

1.一种基于容积卡尔曼的光纤陀螺滤波方法,其特征在于该方法的步骤包括:
(1)假设光纤陀螺的输出状态方程为:
xk=Asin(xk-1)+vk-1 (1)
其中,xk为时刻k的光纤陀螺的状态值,A为光纤陀螺的比例因子,xk-1为k-1时刻光纤陀螺的输入角速率,vk-1为k-1时刻光纤陀螺的噪声,vk-1服从于vk-1~N(0,Qk-1),Qk-1为k-1时刻的方差;
(2)假设在k-1时刻,xk-1的后验概率密度
Figure FDA0002983029290000011
是已知的,对Pk-1|k-1做矩阵的平方根分解:
Figure FDA0002983029290000012
其中,Sk-1|k-1
Figure FDA0002983029290000013
为k-1时刻Pk-1|k-1的平方根分解,T代表转置;
(3)计算k-1时刻的容积点集xj,k-1|k-1为:
Figure FDA0002983029290000014
其中,
Figure FDA0002983029290000015
为k-1时刻的预测值,
Figure FDA0002983029290000016
j=1,2...,2n,[1]j表示基本容积点,n为xk的维数;
(4)根据光纤陀螺的输出状态方程计算k时刻的容积点
Figure FDA0002983029290000017
Figure FDA0002983029290000018
(5)k时刻的状态值的一步预测值
Figure FDA0002983029290000019
为:
Figure FDA00029830292900000110
(6)误差协方差一步预测值Pk|k-1为:
Figure FDA00029830292900000111
(7)建立光纤陀螺输出的量测方程为:
zk=xk+nk (7)
其中,nk为k时刻的量测噪声,且nk~N(0,Rk),Rk为k时刻的方差;
(8)对k时刻的步骤(6)得到的误差协方差一步预测值Pk|k-1进行平方根分解为:
Pk|k-1=Sk|k-1ST k|k-1 (8)
其中,Sk|k-1
Figure FDA0002983029290000021
为k时刻Pk|k-1的平方根分解,T代表转置;
(9)根据光纤陀螺的输出量测方程计算k时刻的容积点xj,k|k-1为:
Figure FDA0002983029290000022
Figure FDA0002983029290000023
j=1,2...,2n,[1]j表示基本容积点,n为xk的维数;
(10)计算经过光纤陀螺的输出量测方程传递后k时刻的容积点Zj,k|k-1
Zj,k|k-1=xj,k|k-1+nk (10)
(11)k时刻的量测值zk的一步预测值
Figure FDA0002983029290000024
Figure FDA0002983029290000025
(12)k时刻的估计量测值的协方差矩阵Pzz,k|k-1为:
Figure FDA0002983029290000026
(13)k时刻的估计交叉协方差矩阵的一步预测值Pxz,k|k-1为:
Figure FDA0002983029290000027
(14)k时刻的估计卡尔曼增益矩阵Wk为:
Figure FDA0002983029290000028
(15)k时刻的估计状态值为:
Figure FDA0002983029290000029
(16)测试一组光纤陀螺输出原始数据,定义为data,data为一列向量;根据光纤陀螺输出的状态方程确定初始值,结合公式(1)~(15),进行仿真分析,得到滤波后的数据位data_CKF,并对data_CKF计算方差,得到方差值优于滤波前的方差值。
2.根据权利要求1所述的一种基于容积卡尔曼的光纤陀螺滤波方法,其特征在于:通过步骤(1)-(15)得到了k时刻的估计状态值,采用相同的方法计算不同时刻的估计状态值,得到一组估计状态值,并计算得到的一组估计状态值的方差,得到的方差用于判断光纤陀螺的滤波效果。
CN201711192035.XA 2017-11-24 2017-11-24 一种基于容积卡尔曼的光纤陀螺滤波方法 Active CN108050997B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711192035.XA CN108050997B (zh) 2017-11-24 2017-11-24 一种基于容积卡尔曼的光纤陀螺滤波方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711192035.XA CN108050997B (zh) 2017-11-24 2017-11-24 一种基于容积卡尔曼的光纤陀螺滤波方法

Publications (2)

Publication Number Publication Date
CN108050997A CN108050997A (zh) 2018-05-18
CN108050997B true CN108050997B (zh) 2021-06-11

Family

ID=62120745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711192035.XA Active CN108050997B (zh) 2017-11-24 2017-11-24 一种基于容积卡尔曼的光纤陀螺滤波方法

Country Status (1)

Country Link
CN (1) CN108050997B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112577478A (zh) * 2020-11-11 2021-03-30 北京信息科技大学 微机电系统陀螺随机噪声的处理方法及处理装置
CN114519373B (zh) * 2022-02-10 2024-05-10 中国科学院上海技术物理研究所 一种采用红外长波焦平面探测器的干涉信号去噪方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591965A (zh) * 2013-09-12 2014-02-19 哈尔滨工程大学 一种舰载旋转式捷联惯导系统在线标定的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591965A (zh) * 2013-09-12 2014-02-19 哈尔滨工程大学 一种舰载旋转式捷联惯导系统在线标定的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cubature Kalman Filters;Ienkaran Arasaratnam等;《IEEE TRANSACTIONS ON AUTOMATIC CONTROL》;20090630;第54卷(第6期);第1254-1269页 *
基于CKF的SINS大失准角初始对准;孙枫,唐立军;《仪器仪表学报》;20120229;第33卷(第2期);第327-333页 *

Also Published As

Publication number Publication date
CN108050997A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
CN109974714B (zh) 一种Sage-Husa自适应无迹卡尔曼滤波姿态数据融合方法
Hua et al. Simultaneous unknown input and state estimation for the linear system with a rank-deficient distribution matrix
Eichstädt et al. Deconvolution filters for the analysis of dynamic measurement processes: a tutorial
CN113204038B (zh) 基于时域与频域的卡尔曼平滑滤波方法及平滑滤波器
CN108413986B (zh) 一种基于Sage-Husa卡尔曼滤波的陀螺仪滤波方法
CN105043348A (zh) 基于卡尔曼滤波的加速度计陀螺仪水平角度测量方法
CN108562290B (zh) 导航数据的滤波方法、装置、计算机设备及存储介质
CN108050997B (zh) 一种基于容积卡尔曼的光纤陀螺滤波方法
CN104596514A (zh) 加速度计和陀螺仪的实时降噪系统和方法
CN111896029A (zh) 一种基于组合算法的mems陀螺随机误差补偿方法
CN103604430A (zh) 一种基于边缘化ckf重力辅助导航的方法
Narasimhappa et al. An innovation based random weighting estimation mechanism for denoising fiber optic gyro drift signal
CN111623779A (zh) 一种适用于噪声特性未知的时变系统自适应级联滤波方法
CN110595434B (zh) 基于mems传感器的四元数融合姿态估计方法
Valikhani et al. Bayesian framework for simultaneous input/state estimation in structural and mechanical systems
CN105445798A (zh) 一种基于梯度处理的全波形反演方法和系统
CN109471192B (zh) 一种全自动重力测试仪高精度动态数据处理方法
CN106705995A (zh) 一种MEMS陀螺仪g值敏感系数的标定方法
Lv et al. Allan variance method for gyro noise analysis using weighted least square algorithm
CN114777810A (zh) 一种基于矩阵分解的捷联惯导系统级标定方法
CN108120452B (zh) Mems陀螺仪动态数据的滤波方法
CN114139109A (zh) 一种目标跟踪方法、系统、设备、介质及数据处理终端
CN112632454A (zh) 一种基于自适应卡尔曼滤波算法的mems陀螺滤波方法
CN110989341B (zh) 一种约束辅助粒子滤波方法及目标跟踪方法
CN110161582B (zh) 空中与地面数据结合的重力换算方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant