CN108047458B - 铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子及其薄膜的制备方法 - Google Patents

铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子及其薄膜的制备方法 Download PDF

Info

Publication number
CN108047458B
CN108047458B CN201810038408.6A CN201810038408A CN108047458B CN 108047458 B CN108047458 B CN 108047458B CN 201810038408 A CN201810038408 A CN 201810038408A CN 108047458 B CN108047458 B CN 108047458B
Authority
CN
China
Prior art keywords
europium
coordination polymer
film
infinite
trifluoroacetone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810038408.6A
Other languages
English (en)
Other versions
CN108047458A (zh
Inventor
钟声亮
刘冉
帅敏
王雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN201810038408.6A priority Critical patent/CN108047458B/zh
Publication of CN108047458A publication Critical patent/CN108047458A/zh
Application granted granted Critical
Publication of CN108047458B publication Critical patent/CN108047458B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/18Spheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供了铕‑噻吩甲酰三氟丙酮无限配位聚合物纳米粒子及其薄膜的制备方法。以Eu(NO3)3·6H2O为金属离子源,以噻吩甲酰三氟丙酮有机配体,采用简单、无模板剂的混合溶剂热法,成功制备了铕‑噻吩甲酰三氟丙酮无限配位聚合物球形纳米粒子;将得到的干燥样品再与聚甲基丙烯酸甲酯混合,以N,N‑二甲基酰胺为溶剂,通过旋涂法,制备了其薄膜。采用混合溶剂热法,不仅节约能源,操作简便,还可实现对目标产物的形貌、颗粒大小等的精确控制。本发明的方法所制备的配位聚合物纳米球形貌均匀直径约为100nm,制备的薄膜表面平整,致密程度好,合成路径简单且易调控。

Description

铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子及其薄膜的 制备方法
技术领域
本发明涉及稀土配位聚合物,具体涉及铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子及其薄膜的制备方法。
背景技术
配位聚合物作为一类新型的有运用前景的杂化材料,被研究者们广泛的研究。由于金属离子和有机配体的多变性,以及它们构建单元的多变性,使得配位聚合物有着无限的结构和种类从而被应用的领域非常广泛,包括气体吸收,分离,催化,化学传感,光电材料,绿色能源,生物成像以及药物运输等。在配合物材料的研究中,调控配位聚合物材料形貌和尺寸,来控制其性能及应用成为研究者们的重要研究方向。由于纳米粒子区别于宏观物体结构的独特特点,往往表现出一些新异的物理化学特性。因此可通过调控配位聚合物的纳米颗粒来优化其性能。材料纳米化后,具有许多特性,如小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,从而更广泛地应用于发光,磁性,气体吸附和分离,多相催化,药物运输,化学传感等领域。
稀土发光配位聚合物纳米材料不仅极大地丰富了发光材料的种类,而且因其具有优异荧光性能使其在化学传感、药物运输以及细胞成像等方面显示出了诱人的应用前景。特别是Eu3+有着独特的光谱特征,包括长至毫秒的荧光寿命,高的色纯度,尖窄的发射光谱带以及大的斯托克斯位移。一般地,Eu3+在可见光区域表现出很弱的吸光率,所以通常需要有机配体吸收光能随后传递给Eu3+,来实现有效发光。稀土β-二酮配位聚合物不仅表现出高的发光性能,并且稳定性好。因此噻吩甲酰三氟丙酮常被选择与其他辅助配体一起合成配位聚合物,研究其发光性能。文献[Journal of Rare Earth,2013 31(12),1130-1136]利用噻吩甲酰三氟丙酮为有机配体、丙烯酸为辅助配体与氯化铕溶液调节pH=7条件下合成配合物并研究其发光性能。文献[Journal of Rare Earth,2010,28(3),333-339]利用噻吩甲酰三氟丙酮和1,10-邻菲罗啉和稀土铕离子采用溶剂挥发法制备出双配体铕基配合物,再采用静电纺丝法合成聚苯乙烯复合纳米纤维直径为350nm-700nm。文献[Journal ofMaterials Chemistry,2011,21(11),3796-3802]利用噻吩甲酰三氟丙酮和稀土氯化物调节pH在弱酸条件下合成配合物,然而尚未报道其配合物形貌及尺寸。尽管如此,直接合成铕-噻吩甲酰三氟丙酮单配体无限配位聚合物纳米粒子仍鲜有报道。本发明利用噻吩甲酰三氟丙酮与稀土铕离子的分子组装,采用简单的无模板剂溶剂热合成法,直接合成大小均一的球状无限配位聚合物纳米粒子并将其制成发光薄膜。
如今,功能薄膜已经成为发展信息技术、生物技术、能源技术等领域和国防建设的重要表面材料和器件,关系到资源、环境及社会的可持续发展。目前,许多研究者们发展能够广泛应用于物理学、医学、生物学、化学等领域功能性薄膜的制备方法。现如今,已经开发的制备功能性薄膜的方法有溅射法,金属有机化学气相沉积法,脉冲激光沉积法,电子束蒸发法,原子层取向生长法,凝胶-溶胶法等。本专利采用的凝胶-溶胶旋涂法,相比于其他方法,有着无法比拟的优点,如价格低廉,工艺条件温和,不需要真空设备,制备的薄膜较平整,致密程度好,薄膜厚度可控。功能薄膜在解决通讯技术、环境以及能源等诸多领域中的重要作用和地位。然而,将稀土配位聚合物纳米颗粒制成薄膜进行深入研究及应用的报道仍然较少。
发明内容
本发明的目的在于提供一种铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子,和提供一种操作简便、成本低廉的制备该铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子的方法,以及提供铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子发光薄膜的制备方法。
本发明通过无模版剂溶剂热法合成具有优异光学性能的铕基无限配位聚合物纳米球粒子,将铕基无限配位聚合物配制成混合溶胶,采用旋涂法将其制备成稀土无限配位聚合物纳米颗粒薄膜。该方法可以通过调节旋涂仪转速、流体粘度、挥发速率等控制其薄膜的结构、厚度、面积等性能参数。为稀土无限配位聚合物纳米粒子薄膜的进一步应用提供了可能。此外,该方法还可用于其它稀土无限配位聚合物纳米颗粒及其薄膜的制备。为下一步荧光探针、催化等方面的研究应用提供了可能,具有很好的潜在应用前景。
铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子的制备方法,其特征是:在无模板剂、混合溶剂热条件下,使用噻吩甲酰三氟丙酮与硝酸铕直接合成铕基无限配位聚合物纳米球。该方法以Eu(NO3)3·6H2O为金属离子源,以噻吩甲酰三氟丙酮有机配体,溶剂为去离子水和 DMF,不仅产量高且过程简单。具体包括如下步骤:
(1)将Eu(NO3)3·6H2O溶解在去离子水中,搅拌得到澄清透明溶液;加入溶有噻吩甲酰三氟丙酮(HTTA)的DMF溶液;
(2)将混合溶液置于聚四氟乙烯内衬的不锈钢反应釜中,磁力悬浮搅拌器搅拌10min;密封,置于160℃电热鼓风干燥箱中加热6h;
(3)待反应完成后,自然冷却至室温,用去离子水和无水乙醇交替洗涤各3次;将得到的产物放入80℃的真空干燥箱中干燥8h,得到白色的铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子。
该铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子,形貌均一,直径约为100nm的实心球;结晶度低,粉末X射线衍射无衍射峰;荧光强度高,在394nm处,呈现出典型的铕离子尖锐窄带特征峰,发生出红色荧光,可作为红色荧光粉体材料。
铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子薄膜的制备方法,在通过旋涂仪将上述的无限配位聚合物纳米粒子混合溶胶逐滴滴到样片上,得到旋涂膜。旋涂法不仅操作简便,节约能源,而且能够对薄膜厚度、配位聚合物含量等精确控制,薄膜性质也较稳定。具体包括如下步骤:
(1)将上述的铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子作为前驱体,溶解于2.6mL DMF溶剂,超声并搅拌,使得样品均匀分散至DMF溶剂中;
(2)加聚甲基丙烯酸甲酯,置于搅拌器搅拌12h;
(3)将旋涂仪的低速和高速分别设为770r/min和2220r/min,时间分别设为15s和20s;随后将所得配位聚合物混合溶胶逐滴滴到样片上,得到旋涂膜,自然风干,最终得到样品膜。需要经过旋涂制膜过程,旋涂仪的低速和高速分别设为770r/min和2220r/min,时间分别为15s和20s。
本发明的有益效果主要表现在以下几个方面:
(1)本发明中,我们首次利用溶剂热合成法无模板剂、无需调剂PH值,以噻吩甲酰三氟丙酮为桥联配体和铕离子为中心的铕基配位聚合物纳米粒子,与之前报道的方法相比,本发明方法制备的铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子,低结晶度为无限配位聚合物。不仅产量高,尺寸均一可调,更具有操作简便,更符合绿色化学的优势。采用旋涂膜法将其制备成发光薄膜不仅大大提高了其稳定性和发光性能,还可通过控制旋涂仪转速及配合物与PMMA浓度比实现对薄膜厚度、配位聚合物含量等做到精确控制。
(2)本发明采用溶剂热和旋涂膜法,与已报道的本方法所制备的稀土无限配位聚合物纳米粒子形貌均一;薄膜表面平整,致密程度好;合成路径简单且易调控。
(3)本发明采用混合溶剂热方法合成纳米粒子,由于反应处于密闭环境,合成的纳米颗粒较为均匀且不易团聚。本发明通过对原料配方的选择,噻吩甲酰三氟丙酮为有机连接体,主要是由于(i)噻吩甲酰三氟丙酮含有酮基,能与Eu形成较稳定的Eu-O键;(ii)噻吩甲酰三氟丙酮含有三个氟原子能够有效提高铕基配位聚合物发光的量子产率;(iii)噻吩甲酰三氟丙酮含酮基拥有丰富的配位模式有利于构建稀土配位聚合物。聚甲基丙烯酸甲酯为粘合剂,分子量大,粘稠性好,有利于薄膜的制备。DMF为配位聚合物混合溶胶溶剂,主要是由于DMF 为挥发性能极佳,能够排除残余溶剂对薄膜性能的影响。
(4)目前,以配位键为主链的金属-有机配位聚合物由于兼具无机及有机材料的特性,是近几年来倍受关注的一类新型杂化材料。本发明合成的铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子,直径大小约为100nm,其薄膜表面光滑,致密度较好,厚度可控。该产品不仅可以开发新的有机-无机杂化材料,而且可以为膜技术领域提供一种全新类型的薄膜材料,在化学催化、发光器件、光电转换电极等领域具有极大的应用潜力。
附图说明
图1为铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子的XRD图
图2为铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子的SEM图和TEM图。
图3为铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子薄膜图像及SEM图。
具体实施方式
以下实施例中,原料选用六水硝酸铕(Eu(NO3)3·6H2O,分析纯)、噻吩甲酰三氟丙酮 (C8H5F3O2S,98%)、聚甲基丙烯酸甲酯([-CH3CH2COOCH3-]n,通用型射出级)。
实施例1:铕基无限配位聚合物纳米粒子的制备
将0.1mmol Eu(NO3)3·6H2O溶解在5mL去离子水中,搅拌得到澄清透明溶液。加入20mL 溶有0.1mmol噻吩甲酰三氟丙酮(HTTA)的DMF溶液,将混合溶液置于40mL聚四氟乙烯内衬的不锈钢反应釜中,磁力悬浮搅拌器搅拌10min。密封,置于160℃电热鼓风干燥箱中加热6h。待反应完成后,自然冷却至室温,用去离子水和无水乙醇交替洗涤各3次。将得到的产物放入80℃的真空干燥箱中干燥8h,得到白色的铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子。
实施例2:稀土无限配位聚合物薄膜的制备
将0.0298g实施例1中所制备的配位聚合物前驱体溶解于2.6mL DMF溶剂,超声并搅拌,使得样品均匀分散至DMF溶剂中。加入0.4470g聚甲基丙烯酸甲酯,置于搅拌器搅拌12h,将旋涂仪的低速和高速分别设为770r/min和2220r/min,时间分别设为15s和20s。随后将所得配位聚合物混合溶胶逐滴滴到样片上,得到旋涂膜,自然风干,最终得到样品膜。
将实施例1和2制备的产物分别进行表征。XRD图是X射线衍射仪(德国BrukerD8ADVANCE)上测试鉴定的。SEM图是在扫描电子显微镜上进行拍摄的(S-3400N,30kV)。透射电子显微镜图片是在日本JEOL-2010透射电子显微镜上得到的,加速电压200kV。
图1为铕基无限配位聚合物纳米颗粒的XRD图。如图1所示,图中没有明显的衍射峰,表明样品无定型的。这是无限配位聚合物纳米粒子(ICPs)典型特征。
图2为铕基无限配位聚合物纳米颗粒的SEM图和TEM图。如图2(a)和(b)所示前驱体是一系列较为均匀的纳米球体,粒径约为50-100nm。图2(c)和(d)是铕基无限配位聚合物中的透射电镜图。由图可知,该前驱体为纳米实心球。
图3为铕基无限配位聚合物薄膜的图片及SEM图。有图可知,通过旋涂仪制备的薄膜表面光滑、厚度均匀、致密度较好。由SEM图所示,旋涂膜内均匀分散着铕基配位聚合物纳米球。说明本方法成功制备了稀土配位聚合物薄膜。

Claims (1)

1.铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子的制备方法,其特征在于:在混合溶剂热条件下,使用噻吩甲酰三氟丙酮与铕源直接合成所述的铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子;具体包括以下步骤:
(1)将六水硝酸铕溶解在去离子水中,搅拌得到澄清透明溶液;加入溶有噻吩甲酰三氟丙酮的DMF溶液,得到混合溶液;
(2)将混合溶液置于聚四氟乙烯内衬的不锈钢反应釜中,搅拌均匀;密封,在温度为160℃条件下反应6 h;
(3)自然冷却至室温,用去离子水和无水乙醇交替洗涤各3次,干燥后得到白色产物,即铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子。
CN201810038408.6A 2018-01-13 2018-01-13 铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子及其薄膜的制备方法 Expired - Fee Related CN108047458B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810038408.6A CN108047458B (zh) 2018-01-13 2018-01-13 铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子及其薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810038408.6A CN108047458B (zh) 2018-01-13 2018-01-13 铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子及其薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN108047458A CN108047458A (zh) 2018-05-18
CN108047458B true CN108047458B (zh) 2021-02-26

Family

ID=62126728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810038408.6A Expired - Fee Related CN108047458B (zh) 2018-01-13 2018-01-13 铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子及其薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN108047458B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101402855A (zh) * 2008-07-17 2009-04-08 大连理工大学 聚芳醚稀土配合物发光材料及其制备方法
CN103289102A (zh) * 2013-06-08 2013-09-11 长春理工大学 具有荧光性的双重响应型磁性纳米粒子及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101402855A (zh) * 2008-07-17 2009-04-08 大连理工大学 聚芳醚稀土配合物发光材料及其制备方法
CN103289102A (zh) * 2013-06-08 2013-09-11 长春理工大学 具有荧光性的双重响应型磁性纳米粒子及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Intermolecular energy transfer and photostability of luminescence-tuneable multicolour PMMA films doped with lanthanide–b-diketonate complexes;Jiang Kai, Maria C. F. C. Felinto,Luiz A. O. Nunes, Oscar L. Mal;《Journal of Materials Chemistry》;20110321;第3800-3801页 *
oordination polymer core/shell structures: Preparation and up/down-conversion luminescence;Li Bingmei,Xu Hualan,Xiao Chen,et.al;《Journal of Colloid and Interface Science》;20161031;全文 *
苯甲酸及其衍生物和噻吩甲酰三氟丙酮铕;湛雪辉,赵学辉2,湛含辉;《湖南师范大学自然科学学报》;20080331;全文 *
铕- 噻吩甲酰三氟丙酮- 活性配体三元配合物的;郭栋才,舒万艮,周悦,刘又年,张为;《稀土》;20040430;全文 *

Also Published As

Publication number Publication date
CN108047458A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
CN106634961B (zh) 一种有机无机杂化钙钛矿量子点及其制备方法
Sun et al. pH-guided self-assembly of silver nanoclusters with aggregation-induced emission for rewritable fluorescent platform and white light emitting diode application
Song et al. Tumor cell-targeted Zn 3 In 2 S 6 and Ag–Zn–In–S quantum dots for color adjustable luminophores
CN108046314A (zh) 一种全无机钙钛矿纳米棒的制备方法及其应用
CN112457499B (zh) 一种稀土基金属有机框架荧光纳米材料及其制备方法与应用
CN104745193B (zh) 一种荧光磁性纳米复合材料及其制备方法
CN113025316B (zh) 一种高量子产率铜纳米团簇荧光纳米花及其制备方法与在led中的应用
Medina-Velazquez et al. Synthesis of luminescent terbium-thenoyltriflouroacetone MOF nanorods for green laser application
Zhang et al. Synthesis and fluorescent pH sensing properties of nanoscale lanthanide metal-organic frameworks with silk fibroin powder as polymer ligands
Li et al. Carbon dots for promoting the growth of ZIF-8 crystals to obtain fluorescent powders and their application for latent fingerprint imaging
Zhou et al. Superhydrophobic luminous nanocomposites from CsPbX3 perovskite nanocrystals encapsulated in organosilica
Liu et al. Large-scale synthesis of layered double hydroxide nanosheet-stabilized CsPbBr3 perovskite quantum dots for WLEDs
CN107140677B (zh) 一种功能器件用金属氧化物纳米颗粒的制备方法
CN111139065B (zh) 一种生物基发光纳米材料及其制备方法和应用
Wu et al. Template route to chemically engineering cavities at nanoscale: a case study of Zn (OH) 2 template
Cai et al. Manganese‐doped zinc orthosilicate‐bearing phosphor microparticles with controlled three‐dimensional shapes derived from diatom frustules
CN111748340A (zh) 一种新型荧光银纳米团簇及其合成方法与应用
Mao et al. Red luminescent metal–organic framework phosphor enhanced by CaSrS: Cu, Eu for agricultural film
CN108047458B (zh) 铕-噻吩甲酰三氟丙酮无限配位聚合物纳米粒子及其薄膜的制备方法
Shao et al. Photofunctional hybrids of rare earth complexes covalently bonded to ZnO core–shell nanoparticle substrate through polymer linkage
Nath et al. One-step synthesis of highly fluorescent perovskite nanocrystals in antisolvent for bioimaging
Jiménez et al. Modulating the photophysical properties of high emission Europium complexes and their processability
CN110015691B (zh) 一种制备纳米级钼酸钡颗粒的方法
Jadhav et al. Synthesis of monodispersed red emitting LiAl5O8: Fe3+ nanophosphors
CN111073635B (zh) 一种多级手性发光增强复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210226

Termination date: 20220113

CF01 Termination of patent right due to non-payment of annual fee