CN108039376A - 基于Black phosphorus材料的SPPs效应纳米谐振腔及其制作方法 - Google Patents

基于Black phosphorus材料的SPPs效应纳米谐振腔及其制作方法 Download PDF

Info

Publication number
CN108039376A
CN108039376A CN201711105350.4A CN201711105350A CN108039376A CN 108039376 A CN108039376 A CN 108039376A CN 201711105350 A CN201711105350 A CN 201711105350A CN 108039376 A CN108039376 A CN 108039376A
Authority
CN
China
Prior art keywords
layer
black phosphorus
materials
spps
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711105350.4A
Other languages
English (en)
Inventor
刘艳
方慈浙
韩根全
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201711105350.4A priority Critical patent/CN108039376A/zh
Publication of CN108039376A publication Critical patent/CN108039376A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种基于Black phosphorus材料的SPPs效应纳米谐振腔及其制作方法,解决长期存在于光学吸收与吸收层厚度之间的矛盾关系。包括反射层、空间损耗层、吸收层和纳米多孔层。反射层采用金属Al材料;空间损耗层采用Al2O3材料;吸收层采用二维材料黑磷;纳米多孔层采用金属Ag材料;纳米多孔层、吸收层、空间损耗层、反射层依次由上而下竖直分布。本发明通过黑磷材料的应用,增强了光学吸收,同时纳米多孔层的引入,在Ag/Black phosphorus界面处形成明显的SPPs效应,进一步提高吸收增益,拓展了吸收光谱,提升了光伏器件的整体性能,进而推动超薄能量捕获和转换应用的发展。

Description

基于Black phosphorus材料的SPPs效应纳米谐振腔及其制作 方法
技术领域
本发明属于光电子器件技术领域,特别涉及一种引入新型二维材料Blackphosphorus的利用SPPs效应的纳米谐振腔,这有助于推动超薄能量捕获和有源器件的发展。
背景技术
光伏技术由于其能够将清洁且可持续的太阳能转化成电能的能力而受到广泛的关注。不断有新的技术和材料被探索来制备高效率的太阳能电池。迄今为止,太阳能电池已经发展到第三代,其中超薄技术和新颖材料的应用是它最明显的特征。众所周知,光学吸收和材料层厚度之间有一个长期存在的矛盾,这意味着只有引入光吸收增强机制才能实现超薄,低成本及高效率的光伏器件。在这种情况下,纳米谐振腔结构应运而生,它利用多层结构来实现限制光子,通过光的不断反射产生共振来增强吸收。与此同时,其他一些光捕获策略也被不断探索和发展,这其中最有应用前景的当属等离子体极化激元(SPPs)效应。SPPs效应是电磁辐射耦合到电子,它沿着金属和介质界面传播,在垂直于界面的方向呈指数衰减,可以产生强烈的亚波长光学限制。更重要的是,它突破了光学衍射极限,提高了能量吸收。基于表面等离子体激元的纳米谐振腔结合了谐振腔和SPPs两者的特性,已经成为了一种开发实现各种超薄型光伏器件的新方式。
近年来,二维材料被逐渐用作超薄能量捕获设备的吸收层材料。尤其是最近被单层剥离的黑磷,它独特的层内各向异性和随厚度变化的带隙特性使其能够满足不同的特定应用。将黑磷材料作为吸收层应用于超薄能量捕获和有源器件成为了一个具有很大发展空间的研究方向。
发明内容
本发明的目的在于针对常见的光伏器件存在的吸收光谱较窄,光学吸收增益低等不足,结合谐振腔和SPPs两者的特性,利用Black phosphorus材料自身性质,提供一种基于Black phosphorus材料的SPPs效应纳米谐振腔及其制作方法,以拓展吸收光谱,增强光学吸收,提高光伏器件的整体性能,从而推动超薄能量捕获和有源器件的发展。
本发明的技术方案是这样实现的:
一、技术原理
根据材料特性研究表明,新型二维材料黑磷具有独特的带隙可调性,可以通过厚度的调整来实现不同带宽以满足不同的应用。在纳米谐振腔中引入Black phosphorus材料,通过对空间损耗层厚度的调整来实现吸收光谱的拓宽和光学吸收的增强。同时纳米多孔层的存在会引入另一种吸收增强机制——SPPs效应,通过对顶部纳米多孔层几何参数的调整来进一步实现宽光谱高增益的光学吸收,提高器件的短路电流密度,进而提升器件整体性能。
二、器件结构
根据此原理本发明的基于Black phosphorus材料的SPPs效应纳米谐振腔,包括:反射层、空间损耗层、吸收层及纳米多孔层;纳米多孔层、吸收层和空间损耗层在反射层上依次由上至下竖直分布,其特征在于:反射层采用金属Al材料、空间损耗层采用Al2O3材料、吸收层采用二维材料黑磷及纳米多孔层采用金属Ag材料,从而在纳米多孔层Ag与吸收层黑磷界面形成强烈的SPPs效应,其中纳米多孔层上分布周期性圆孔图案,圆孔孔径D为170nm,周期P为300nm。
制作上述本发明器件的方法,包括如下步骤:
1、利用化学气相淀积工艺,在Al反射层上生长Al2O3材料,形成空间损耗层;
2、利用化学气相淀积工艺,在Al2O3空间损耗层上生长Black phosphorus材料,形成吸收层;
3、利用等离子体增强原子层淀积工艺,在Black phosphorus吸收层上生长Ag材料,形成顶部金属层;
4、利用刻蚀工艺,将顶部金属层进行刻蚀,形成周期性图案分布的纳米多孔层;
本发明具有如下优点:
本发明由于可以通过调整所设计结构的参数来实现不同波段的吸收能力,因此具有较高的灵活性,应用面广泛。在纳米谐振腔中引入二维材料Black phosphorus,不仅较好地解决吸收层厚度与吸收的矛盾,同时增强光学吸收,也拓展吸收光谱和应用范围。另外,纳米多孔层的存在导致在吸收层和纳米多孔层界面(即Black phosphorus与Ag界面)附近形成强烈的SPPs效应,进一步提高光学吸收,从而改善了器件特性,这有助于推动超薄能量捕获和有源器件的发展。
附图说明
图1是本发明的基于Black phosphorus材料的SPPs效应纳米谐振腔侧面图。
图2是本发明制作基于Black phosphorus材料的SPPs效应纳米谐振腔的流程示意图。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合附图和实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
参照图1,本发明中基于Black phosphorus材料的SPPs效应纳米谐振腔包括:反射层1、空间损耗层2、吸收层3及纳米多孔层4。该反射层1采用金属Al材料;该空间损耗层2采用Al2O3材料;该吸收层3采用二维材料黑磷;该纳米多孔层4采用金属Ag材料。
纳米多孔层4、吸收层3和空间损耗层2在反射层1上依次由上至下竖直分布,其中纳米多孔的图案是周期性排列的圆孔。
参照图2,本发明制作基于Black phosphorus材料的SPPs效应纳米谐振腔的方法,给出如下实施例。
参照图2,制作基于Black phosphorus材料的SPPs效应纳米谐振腔的实现步骤如下:
步骤1:生长空间损耗层
利用化学气相淀积工艺,在Al反射层上,以乙酰丙酮铝(Al(acac)3)和混合气体(含氧20.5%的氮气)作为前驱物,在温度为475℃条件下,生长Al2O3材料,形成空间损耗层2,如图2(a)。
步骤2:生长吸收层
利用化学气相淀积工艺,在空间损耗层上,以红磷作为蒸发源,锡(Sn)和四碘化锡(SnI4)作为矿化剂,在压力维持在27.2个大气压的条件下,生长Black phosphorus材料,形成吸收层3,如图2(b)。
本步骤的化学气相淀积工艺,参照Joshua B Smith,Daniel Hagaman,andHaifeng Ji,Growth of 2D black phosphorus film from chemical vapordeposition.Nanotechnology,2016,27(21):215602.
步骤3:生长顶部金属层
利用等离体增强原子层淀积工艺,以(三乙基磷)(6,6,7,7,8,8,8-七氟-2,2-二甲基-3,5-辛二酮酸酸酸)银配合物作为前驱物,等离子体活化氢作为还原剂,氢气(纯度99.999%)与氦气(纯度99.999%)混合来保证等离子点火。淀积过程中,压力和温度分别在5-8毫巴和120-150摄氏度之间,等离子体通过13.56MHz的射频功率来形成。在上述条件下,生长一层金属Ag材料,形成顶部金属层,如图2(c)。
步骤4:刻蚀顶部金属层,形成纳米多孔层
利用湿法刻蚀工艺,以Fe3+作为刻蚀剂,结合S2O3 2-与Cl,在掩模版的掩蔽下,对顶部金属层进行刻蚀,形成周期性图案排列的纳米多孔层4,如图2(d)。
以上所述仅是本发明的一个优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.基于Black phosphorus材料的SPPs效应纳米谐振腔,包括:反射层(1)、空间损耗层(2)、吸收层(3)及纳米多孔层(4);纳米多孔层(4)、吸收层(3)和空间损耗层(2)在反射层(1)上依次由上至下竖直分布,从而形成由上而下的多层结构,其特征在于:反射层(1)采用金属Al材料、空间损耗层(2)采用Al2O3材料、吸收层(3)采用二维材料黑磷及纳米多孔层(4)采用金属Ag材料,从而在纳米多孔层Ag与吸收层黑磷界面形成强烈的SPPs效应,增强了光学吸收。
2.如权利要求1所述的基于Black phosphorus材料的SPPs效应纳米谐振腔,其特征在于:纳米谐振腔的制作方法,包括如下步骤:
步骤(1)利用化学气相淀积工艺,在Al反射层(1)上淀积Al2O3材料,形成空间损耗层;
步骤(2)利用化学气相淀积工艺,在Al2O3空间损耗层上淀积Black phosphorus材料,形成吸收层(3);
步骤(3)利用等离子体增强原子层淀积工艺,在Black phosphorus吸收层上生长Ag材料,形成顶部金属层;
步骤(4)利用刻蚀工艺,将顶部金属层进行刻蚀,形成周期性图案排列的纳米多孔层(4)。
3.如权利要求2所述的基于Black phosphorus材料的SPPs效应纳米谐振腔,其特征在于:其中所述步骤(1)的化学气相淀积工艺,以乙酰丙酮铝和含氧20.5%的氮气作为前驱物,在温度为475℃条件下,生长Al2O3材料。
4.如权利要求2所述的基于Black phosphorus材料的SPPs效应纳米谐振腔,其特征在于:其中所述步骤(2)的化学气相淀积工艺,以红磷作为蒸发源,锡和四碘化锡作为矿化剂,在压力维持在27.2个大气压条件下,生长Black phosphorus材料。
5.如权利要求2所述的基于Black phosphorus材料的SPPs效应纳米谐振腔,其特征在于:其中所述步骤(3)的等离体增强原子层淀积工艺,以Ag(fod)(PEt3)作为前驱物,等离子体活化氢作为还原剂,氢气与氦气混合来保证等离子点火,淀积过程中,压力和温度分别在5-8毫巴和120-150摄氏度之间,等离子体通过13.56MHz的射频功率来形成,在上述条件下,生长一层金属Ag材料。
6.如权利要求2所述的基于Black phosphorus材料的SPPs效应纳米谐振腔,其特征在于:其中所述步骤(4)的刻蚀工艺,以Fe3+作为刻蚀剂,结合S2O3 2-与Cl,在掩模版的掩蔽下,对顶部金属层进行周刻蚀,形成周期性图案排列的纳米多孔层(4)。
CN201711105350.4A 2017-11-10 2017-11-10 基于Black phosphorus材料的SPPs效应纳米谐振腔及其制作方法 Pending CN108039376A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711105350.4A CN108039376A (zh) 2017-11-10 2017-11-10 基于Black phosphorus材料的SPPs效应纳米谐振腔及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711105350.4A CN108039376A (zh) 2017-11-10 2017-11-10 基于Black phosphorus材料的SPPs效应纳米谐振腔及其制作方法

Publications (1)

Publication Number Publication Date
CN108039376A true CN108039376A (zh) 2018-05-15

Family

ID=62092870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711105350.4A Pending CN108039376A (zh) 2017-11-10 2017-11-10 基于Black phosphorus材料的SPPs效应纳米谐振腔及其制作方法

Country Status (1)

Country Link
CN (1) CN108039376A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254413A (zh) * 2020-04-01 2020-06-09 江苏迈纳德微纳技术有限公司 一种原子层沉积技术制备银薄膜的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CIZHE FANG: ""Absorption Enhancement for Black Phosphorus Active Layer Based on Plasmonic Nanocavity"", 《IEEE PHOTONICS JOURNAL》 *
HONG WEI等: "" Directionally-Controlled Periodic Collimated Beams of Surface Plasmon"", 《NANO LETTERS》 *
JOSHUA B SMITH ET.AL.: ""Growth of 2D black phosphorus film from chemical vapor deposition"", 《NANOTECHNOLOGY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254413A (zh) * 2020-04-01 2020-06-09 江苏迈纳德微纳技术有限公司 一种原子层沉积技术制备银薄膜的方法

Similar Documents

Publication Publication Date Title
Zeng et al. Fabrication of pn heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties
CN105070772B (zh) 在单晶硅表面制备均匀倒金字塔绒面的湿化学方法
Wei et al. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting
Wu et al. Droplet epitaxy for advanced optoelectronic materials and devices
CN103199161B (zh) 一种在GaP表面制备锥状结构的方法
Chang et al. Light-trapping effects and dye adsorption of ZnO hemisphere-array surface containing growth-hindered nanorods
CN104752117B (zh) 一种垂直发射AlGaAs/GaAs纳米线的NEA电子源
Hou et al. Insights on advanced substrates for controllable fabrication of photoanodes toward efficient and stable photoelectrochemical water splitting
CN108328646A (zh) 一种制备三维花状氧化锌-硫化镉异质结纳米材料的方法
CN108039376A (zh) 基于Black phosphorus材料的SPPs效应纳米谐振腔及其制作方法
KR101179823B1 (ko) 나노 로드를 갖는 기능소자 및 그 제조방법
Shalan et al. Controlling the microstructure and properties of titanium dioxide for efficient solar cells
KR101633075B1 (ko) 3차원 플라즈모닉 나노 구조체 및 그 제조방법
CN110634966B (zh) 一种超薄太阳光黑硅吸波器及其制备方法
CN106486560B (zh) 等离子体液滴外延砷化镓量子点太阳电池及其制造方法
CN104817112B (zh) 一种简便合成碘氧化铋量子点光触媒的方法
KR101529140B1 (ko) 헥사고날 텅스텐 브론즈, 및 그의 제조 방법
Cheng et al. Catalytically solid-phase self-organization of nanoporous SnS with optical depolarizability
Tao et al. Surface plasmon assisted high-performance photodetectors based on hybrid TiO2@ GaOxNy-Ag heterostructure
Wang et al. Nanostructured TiO2 for improving the solar-to-hydrogen conversion efficiency
Yuan et al. The magnetic and structural properties of BiFeO3-x (0< x< 3) thin films with controllable oxygen vacancy
Oussidhoum et al. Optimization of physicochemical and optical properties of nanocrystalline TiO2 deposited on porous silicon by metal-organic chemical vapor deposition (MOCVD)
CN110331388B (zh) 一种基于水热法快速生长ZnO纳米多孔薄膜的方法
Meng et al. Can the phase-pure BiVO4 (010) epitaxial film be fabricated with a stoichiometric target?
Sun Recent progress in anti-reflection layer fabrication for solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180515

RJ01 Rejection of invention patent application after publication