CN108025038B - 治疗1b型pha的环状多肽 - Google Patents

治疗1b型pha的环状多肽 Download PDF

Info

Publication number
CN108025038B
CN108025038B CN201680053340.8A CN201680053340A CN108025038B CN 108025038 B CN108025038 B CN 108025038B CN 201680053340 A CN201680053340 A CN 201680053340A CN 108025038 B CN108025038 B CN 108025038B
Authority
CN
China
Prior art keywords
type
enac
pubmed pmid
pha
henac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680053340.8A
Other languages
English (en)
Other versions
CN108025038A (zh
Inventor
安妮塔·威廉
罗撒·莱门斯-格鲁伯
苏珊·简·特佐特佐斯
伯纳德·费希尔
瓦希德·沙比尔
鲁道夫·卢卡斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apeptico Forschung und Entwicklung GmbH
Original Assignee
Apeptico Forschung und Entwicklung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apeptico Forschung und Entwicklung GmbH filed Critical Apeptico Forschung und Entwicklung GmbH
Publication of CN108025038A publication Critical patent/CN108025038A/zh
Application granted granted Critical
Publication of CN108025038B publication Critical patent/CN108025038B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/38Drugs for disorders of the endocrine system of the suprarenal hormones
    • A61P5/40Mineralocorticosteroids, e.g. aldosterone; Drugs increasing or potentiating the activity of mineralocorticosteroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/56Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Diabetes (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

包括氨基酸序列SEQ ID NO:1 Gly‑Gln‑Arg‑Glu‑Thr‑Pro‑Glu‑Gly‑Ala‑Glu‑Ala‑Lys‑Pro‑Trp‑Tyr中的至少6个连续氨基酸的环状多肽,用于治疗常染色体隐性1型假性醛固酮减少症(1B型PHA)或用于恢复功能丧失突变型ENaC的Na+离子运输能力。

Description

治疗1B型PHA的环状多肽
技术领域
本发明涉及环状多肽及它们在治疗常染色体隐性1型假性醛固酮减少症(1B型PHA)中的用途或用于恢复功能丧失突变型ENaC的Na+离子运输能力的用途。
背景技术
常染色体隐性(AR)1型假性醛固酮减少症,(1B型PHA)是一种罕见的危及生命的疾病,其在刚出生的前几天呈现出无法茁壮成长、体重减轻、盐耗症、高钾血症和代谢性酸中毒。该病症在1958年被第一次表征(Cheek和Perry,1958)。常染色体隐性1型假性醛固酮减少症是在肾脏、结肠、唾液和汗腺以及肺中存在的钠离子通道(ENaC)已经丧失了促进钠离子(Na+离子)跨越细胞层运动的功能而危及生命的一种病症。功能丧失型ENaC导致尿液和粪便中缺失钠离子并且造成体内严重的盐失衡。主要特征是血液中含有低水平的钠(低钠血症)和高水平的钾(高钾血症)。这种紊乱涉及多个器官系统,因此也被称为系统性1型PHA而使其区别于比较温和的常染色体显性(AD)或肾性1型PHA,在肾性1型PHA情况下盐损失主要局限于肾脏且是由不同基因的突变所引起的(Riepe,2009)。根据对Na的需求、对电解质失衡管理的难易程度、汗液试验结果和基因检测可以区分肾性1型PHA和系统性1型PHA(Amin等人,2013)。值得注意的是,患有系统性而非肾性假性醛固酮减少症的儿童常伴有病因不明的下呼吸道疾病且常被误诊为患有囊胞性纤维症(Hanukoglu等人,1994;Marthinsen等人,1998;Huber等人,2010。)
首次诊断患有1b型PHA的新生儿典型地具有升高的肾素值和醛固酮值,但不能维持血压。1B型PHA患者的实验室评估显示出增加的血浆肾素活性,具有高血清醛固酮浓度和已经提到的低钠血症以及高钾血症。对高钾血症进行积极盐置换和控制是必要的以确保存活下来。
常染色体隐性I型假性醛固酮减少症(1B型PHA)是由编码上皮钠通道(ENaC)的亚基(α亚基、β亚基、γ亚基)的三种基因中的任意一种的纯合突变和复合杂合突变引起的。
由于编码上皮钠通道(ENaC)的α亚基、β亚基和γ亚基的三种基因中的任意一种的突变,因此表达突变体氨基酸序列的ENaC蛋白是不完整的或不同于成熟(非突变型)ENaC。突变型ENaC几乎是无活性的且并不促进钠离子跨越细胞和细胞膜的运输。
系统性1型PHA的临床表现发生在新生儿阶段,其通常是根据汗液中Na浓度升高以及鼻腔或直肠中缺乏经上皮压差而做出诊断(Riepe,2009)。临床表型为严重的肾性盐耗、高钾血症、代谢性酸中毒以及血浆肾素和醛固酮水平升高中的一种。患有AR1型PHA的儿童常常表现出由Na-依赖性体液吸收减少和气道表面体液体积变大引起的肺部并发症(Kerem等人,1999)。呼吸系统症状的发作通常在出生几周或几个月内,并经常观察到持续性鼻溢、复发性耳部和鼻窦感染、胸闷、咳嗽和呼吸急促(通常伴随有发热、喘鸣和湿啰音)。在每年可能会发作几次的呼吸系统疾病发作期间,患者的胸部X-射线结果可能显示出支气管增厚、肺膨胀不全和/或小绒毛浸润(Thomas等人,2002)。肺部并发症有时是致命的(Sharma等人,2013)。
常染色体隐性I型假性醛固酮减少症是一种终身疾病且随着时间推移没有什么改善(Zennaro等人,2004)。患有1B型PHA的患者都面临着在他们整个人生中都伴随有严重高钾血症和脱水症的危及生命的失盐危象。
现阶段,1B型PHA的治疗仅限于对体液和电解质的管理。目前1B型PHA的对症治疗是减少过量肺部液体的β2受体激动剂疗法与恢复电解质平衡的对高钾血症的积极盐置换和控制相结合。
发明内容
目前还不存在基于药物使功能丧失突变型ENaC的Na+离子运输能力恢复或至少提高的疗法。
因此,本发明的目的是提供基于药物使功能丧失突变型ENaC的Na+离子运输能力恢复到生理水平的疗法。
该目的通过以下环状多肽得到解决,该环状多肽包括氨基酸序列SEQ ID NO:1Gly-Gln-Arg-Glu-Thr-Pro-Glu-Gly-Ala-Glu-Ala-Lys-Pro-Trp-Tyr中的至少6个连续氨基酸,用于在治疗常染色体隐性1型假性醛固酮减少症(1B型PHA)中使用或用于恢复功能丧失突变型ENaC的Na+离子运输能力中使用。
虽然目前并不存在基于药物使几乎没有活性的突变型ENaC转变为生理活性的ENaC的疗法,但是已经发现,根据本发明的环状多肽使得功能丧失突变型ENaC的Na+离子运输能力恢复至正常水平以补偿氨基酸突变。尽管如下详述的环肽已被描述为调节“正常”(野生型活性)非突变型ENaC的ENaC活性,但令人惊讶的是,环肽还能够补偿氨基酸突变并将功能丧失突变型ENaC恢复至正常水平。
在优选的实施方式中,环状多肽包括氨基酸序列SEQ ID NO:1中的至少9个连续氨基酸。
结果表明,包括SEQ ID NO:1的氨基酸序列Thr-Pro-Glu-Gly-Ala-Glu(=SEQ IDNO:5)的环状多肽显示出与ENaC受体的最强结合。因此,在一个实施方式中,优选的是环状多肽包括SEQ ID NO:1的氨基酸序列SEQ ID NO:5Thr-Pro-Glu-Gly-Ala-Glu。
在一个实施方式中,环状多肽以氨基酸序列Gly-Gln-Arg-Glu-Thr-Pro-Glu-Gly-Ala-Glu-Ala-Lys-Pro-Trp-Tyr为特征。
存在不同的成环方式以提供根据本发明的环状多肽。
a)在一个实施方式中,环状环由多肽中用于形成肽主链的若干个单个氨基酸之间的酰胺键和用于成环的两个半胱氨酸氨基酸之间的二硫桥键形成。因此,一个实施方式中,包含在两个半胱氨酸氨基酸之间的二硫键。
在该实施方式中,多肽优选地包括SEQ ID NO:2Cys-Gly-Gln-Arg-Glu-Thr-Pro-Glu-Gly-Ala-Glu-Ala-Lys-Pro-Trp-Tyr-Cys,其中二硫键形成在SEQ ID NO:2中第一位Cys和第17位Cys之间。
那么,优选的环状多肽会是SEQ ID NO:3
Figure BDA0001596731870000031
也称为AP301。
b)在一个实施方式中,环状环由多肽中用于形成环形多肽的若干个单个氨基酸之间的酰胺键形成。在一个实施方式中,该环状环包含非天然氨基酸,如γ-氨基丁酸(GABA)。
那么,优选的环状多肽会是SEQ ID NO:4
Figure BDA0001596731870000032
也称为AP318。
在上述所有实施方式中最优选的是,环状多肽以包括SEQ ID NO:1中的至少10个,优选至少14个氨基酸的环状多肽为特征。
本发明的一个方面涉及包括上述环状多肽的药物组合物。
本发明涉及含有根据本发明的环肽(或根据本发明的肽混合物)和药物载体分子的药物组合物。该药物组合物用于治疗1B型PHA。
术语“药物组合物”是指含有如上所述使功能丧失突变型ENaC的Na+离子运输能力恢复至正常水平的环肽的任何组合物或制剂。特别地,表达“药物组合物”是指包括根据本发明的环肽和药学上可接受的载体分子或辅料(这两个术语可互换使用)的组合物。合适的载体或辅料是本领域技术人员所已知的,例如生理盐水、林格氏溶液、葡萄糖溶液、缓冲液、Hank溶液、泡囊形成化合物、固定油、油酸乙酯、葡萄糖盐、增强等渗性和化学稳定性的物质、缓冲剂和防腐剂。其它合适的载体包括其本身并不诱导患者体内产生对患者有害的抗体的任何载体。示例为可良好耐受的蛋白质、多糖、聚乳酸、聚羟基乙酸、聚氨基酸和氨基酸共聚物。这种药物组合物可以(作为药物)通过技术人员已知的适当方法施用。施用的优选途径是以气溶胶进行肺部吸入或静脉内施用。对于肠胃外施用,将本发明的药物组合物提供为与上述限定的药学上可接受的辅料一起配制成的可注射剂量单位的形式,诸如以溶液剂、悬浮剂或乳剂。然而,施用的剂量和方法取决于待治疗的个体患者。一般来说,将根据本发明的肽以在1μg/kg和10mg/kg之间,更优选在10μg/kg和5mg/kg之间,最优选在0.1和2mg/kg之间的剂量进行施用。优选地,会将组合物以腹腔推注剂量施用。也可是采用持续输注。在这种情况下,将肽以5至20微克/公斤/分钟,更优选7至15微克/公斤/分钟的输注剂量进行递送。
对于以气溶胶进行肺部吸入,将本发明的药物组合物提供为与上述限定的药学上可接受的辅料一起配制成以合适剂量单位形式的干粉制剂或液体制剂,诸如提供为通过低压冻干法和/或喷雾干燥法制备的干粉颗粒剂,提供为溶液剂、悬浮剂和乳剂。适用于肺部吸入的气溶胶颗粒剂(无论是干粉颗粒还是液态气溶胶颗粒)的颗粒直径低于50μm,更优选地低于10μm。可以利用干粉吸入器来吸入干粉颗粒。液体颗粒可以是利用喷雾器吸入的。然而,肺部吸入的施用剂量和方法取决于待治疗的个体患者。一般来说,将根据本发明的肽以1μg/kg和10mg/kg之间,更优选在10μg/kg和5mg/kg之间,最优选在0.1和2mg/kg之间的剂量进行施用。优选地,会以多次重复吸入剂量来施用组合物。也可以采用持续吸入。在这种情况下,将肽以5至20微克/公斤/分钟,更优选7-15微克/公斤/分钟的剂量进行递送。
本发明的一个方面涉及治疗患有常染色体隐性1型假性醛固酮减少症(1B型PHA)的患者的方法,包括上述环肽。
阿米洛利敏感型上皮钠离子通道(ENaC)
具有功能活性的ENaC通常由一种或两种α或δ亚基与β和γ亚基一起组成。每个ENaC多肽链都是由位于细胞内的-NH2和-COOH短末端和位于较大细胞外环状结构域的任意一侧的两个跨膜区域组成。
ENaC位于肺、远端结肠、远端肾元、汗腺和唾液腺以及其它器官和组织的极化上皮细胞的顶端膜。在极化致密的上皮细胞内,ENaC是Na+离子吸收的限速步骤;异常ENaC功能扰乱了盐和水的体内平衡同时扰乱和发生异常ENaC功能的器官和组织的生理运行(Garty和Palmer,1997;Kellenberger和Schild,2002)。Na+离子通过细胞的经上皮运输可以被描述为两步过程,其驱动力由存在于整个顶端膜上的Na+离子形成的较大电化学梯度提供。具有功能活性的ENaC介导Na+离子从细胞膜的顶端侧进入。这种由ENaC介导Na+从顶端进入可以通过施用亚微摩尔浓度的阿米洛利来阻断。
在哺乳类动物的肺中,调控Na+离子运输对于维持高效气体交换所需的最佳水平肺泡内膜体液是很重要的。
无论是ENaC基因内还是上游调控区中的突变均破坏ENaC正常表达,导致通道功能障碍和对通道的异常调控。
1B型PHA患者的ENaCα亚基中具有功能丧失型突变,较少观察到β亚基和γ亚基具有突变。
原AP301肽模拟TNF-α的凝集素样或TIP结构域,相当于野生型人TNF的残基C101-E116(Lucas等人,1994)。在AP301(环(CGQRETPEGAEAKPWYC),理论平均分子量1923.1)中,C101已经被甘氨酸取代,而E116被半胱氨酸取代,增加了N-末端半胱氨酸,且代表凝集素样结构域的氨基酸残基的序列通过末端半胱氨酸残基的侧链之间的二硫键被限制在环状结构中。通过氧化末端半胱氨酸残基形成二硫桥键来实现环化。
AP318(环(4-氨基丁酸-GQRETPEGAEAKPWYD),理论平均分子量1901.0)是TIP肽,其中环化作用是通过在N-末端4-氨基丁酸的氨基基团和连接到C-末端天冬氨酸残基的β-碳上的侧链羧基基团之间生产酰胺键来实现的。
AP301
[CGQRETPEGAEAKPWYC](环Cβ1-Cβ17)
Figure BDA0001596731870000051
Cys-Gly-Gln-Arg-Glu-Thr-Pro-Glu-Gly-Ala-Glu-Ala-Lys-Pro-Trp-Tyr-Cys
AP318
[γ-氨基丁酸(GABA)-GQRETPEGAEAKPWYD-OH](环1-Dγ17)
Figure BDA0001596731870000052
具体实施方式
本发明的进一步细节描述在附图及其描述中。
附图说明
图1示出了肽AP301和AP318的对比。
图2示出了AP301对αG70Sβγ-hENaC的作用。绘制了对照期、存在240nM AP301期间和继而添加10μM阿米洛利后的瞬时表达αG70Sβγ-hENaC的HEK-293细胞的全细胞I/V关系。
图3示出了AP301对αβγG40S-hENaC的作用。绘制了对照期、存在240nM AP301期间和继而添加10μM阿米洛利后的瞬时表达αβγG40S-hENaC的HEK-293细胞的全细胞I/V关系。
图4示出了AP301对δG71Sβγ-hENaC的作用。绘制了对照期、存在240nM AP301期间和继而添加10μM阿米洛利后的瞬时表达δG71Sβγ-hENaC的HEK-293细胞的全细胞I/V关系。
图5示出了AP301对Ib型PHA的突变型αβG37Sγ-hENaC的作用。绘制了对照期、存在240nM AP301期间和添加10μM阿米洛利后的瞬时表达αβG37Sγ-hENaC的HEK-293细胞的全细胞I/V关系。
图6示出了阿米洛利敏感型内向钠电流的条形图。在全细胞模式下修补被所示突变亚基瞬时转染的HEK-293细胞,以-100mV激发内向电流。采用200nM的AP318或AP301。
环肽的合成
通过固相方法合成所有肽;它们已经经过设计以尽可能保留凝集素样结构域的天然构象同时探索使线性序列产生环化作用的替代连接方案。
通过根据芴甲氧羰基/叔-丁基对2-氯三苯甲基氯树脂的保护策略的肽固相合成法来合成肽。将二异丙基碳二亚胺和N-羟基苯并三唑用作偶联剂。所有的偶联步骤均是在N-N-二甲基甲酰胺中进行的。从C-末端氨基酸开始,将受保护的氨基酸相继偶联到肽链中。在20%哌啶的N-N-二甲基甲酰胺中去除芴甲氧羰基的保护。在乙酸和二氯甲烷的1:1混合液中将完整且部分受保护的肽从树脂中裂解下来。对于合成肽solnatide和TIP突变肽,在从树脂裂解下来后,在95%的氟乙酸和5%的水中去除侧链保护,随后通过使粗制线性肽在8.5的pH下起泡(aeration)90小时来实现对末端半胱氨酸残基的氧化而进行环化作用。在乙腈梯度为5%至40%的RP-C18-硅胶柱上通过反相中压液相色谱(RP-MPLC)对肽的粗产物进行纯化。最后,在Lewatit MP64柱(乙酸盐形式)上用乙酸盐置换出三氟乙酸盐反离子。最后的水洗后,对经过纯化的肽(乙酸盐形式)进行冷冻干燥,得到白色至灰白色粉末。对于不含半胱氨酸的肽,在从2-氯三苯甲基氯树脂裂解下来后,对部分受保护的线性肽进行环化步骤。对不含半胱氨酸的肽进行选择性环化后,三氟乙酸中去除侧链保护后通过RP-MPLC进行纯化,用乙酸盐置换出三氟乙酸盐离子,并与冷冻干燥含半胱氨酸的肽的相同方式对以乙酸盐形式存在的肽进行冷冻干燥。对于环化涉及通过天冬氨酸的侧链羧基基团形成酰胺键的AP318,通过采用N被芴甲氧羰基基团保护且α碳位羧基被叔丁基(OtBu)基团保护的C末端天冬氨酸开始合成来实现选择性环化。通过侧链羧基基团将C-末端天冬氨酸残基连接到三苯甲基树脂,然后逐步将被保护的氨基酸残基添加至肽链来继续合成。在去除了对N-末端4-氨基丁酸的氨基基团的保护并将侧链受保护的肽从树脂裂解下来后,通过N-末端4-氨基丁酸的游离侧链羧基基团和氨基基团进行环化作用。最后,用三氟乙酸去除侧链保护基团,并利用RP-MPLC对肽进行纯化,如对其它肽进行的步骤一样。
通过电喷雾电离质谱或MALDI-TOF-MS确定肽的分子量,通过分析型高效液相色谱确定它们的纯度。
AP301和AP318活化的内源表达和异源表达的ENaC的电生理学试验
采用全细胞和单细胞膜片钳技术对环肽的ENaC-活化性能以电生理学方式进行体外测试(Hazemi等人,2010;Tzotzos等人,2013;Shabbir等人,2013)。全细胞膜片钳试验用于测量阿米洛利诱导的敏感型Na+电流,计算浓度-响应值曲线,从而评估环肽的效力,即半数最大响应值对应的有效浓度(EC50)。
进行膜片钳实验以评估AP301/AP318对HEK-293、CHO细胞和A549细胞中瞬间表达的αβγ-hENaC的效力。
研究AP301和AP318用于治疗1b型PHA患者肺部症状的应用潜力的原理概述
1B型假性醛固酮减少症(1B型PHA)由编码阿米洛利敏感型上皮钠通道(ENaC)的基因中功能丧失型突变引起。由于肾脏、结肠、肺以及汗腺和唾液腺中的钠流失,该病症在新生儿中表现为危及生命的重度脱水、低钠血症和高钾血症;因为钠依赖性体液吸收的减少会造成肺中体液水平升高,患儿罹患肺部疾病。该疾病随着年龄增长没有改善,且患者终生都需要盐补充剂和膳食调理来降低钾水平。
可以将AP301和AP318施加到膜片钳试验中以测试表达异源性人ENaC亚基的细胞的响应性,其中已经通过定点诱变将已知会引起1B型PHA的功能丧失突变型引入到人ENaC亚基。这样可以测量AP301和AP318恢复表达这些功能丧失突变型ENaC亚基的细胞中的阿米洛利敏感型钠电流的能力。环肽存在下钠电流的增加指示了环肽通过具有1B型PHA突变的功能丧失型ENaC恢复Na+离子运动而恢复其ENaC功能的能力,以及环肽作为针对1B型PHA患者的疗法的潜力。
出人意料的是,已经检测到环肽(如AP301和AP318)能够恢复功能丧失突变型ENaC的Na+离子运输活性。因此,AP301和AP318是针对IB型PHA的肺部症状的潜在疗法。
实验方案
AP301和AP318对表达具有IB型PHA突变的异源性ENaC作用的体外研究
在表达异源性人ENaC亚基的HEK细胞(HEK细胞不表达内源性ENaC,[Ruffieux-Daidie等人,2008])中观察到环肽对阿米洛利敏感型Na+电流的作用,其中已经通过定点诱变将α、β和γENaC的单个位点突变引入到该人ENaC亚基,这些单个位点突变与所发现的造成IB型PHA患者的病理学表型的那些突变相同。此外,同样通过定点诱变来构建δ突变ENaC亚基,其含有与其它三种ENaC亚基中保守位点中观察到的那些突变同源的突变。
I型PHA的ENaC突变体的构建体和其在HEK 293中的表达
通过对野生型ENaC亚基DNA进行定点诱变并克隆到质粒载体中可以繁殖各种类型的ENaC突变。
定点诱变
利用市售可得的定点诱变试剂盒(QuikChange Lightning Site-DirectedMutagenesis Kit;安捷伦科技)将点突变引入到编码α、β、γ和δENaC的cDNA中。编码α、β和γ-hENaC的cDNA由Peter Snyder博士(爱荷华大学,医学院,爱荷华市,IA)捐赠;编码δ-hENaC的cDNA由Mike Althaus博士(吉森大学,吉森,德国)捐赠。
根据原始科学报告中对各个突变的描述单独设计各个诱变引物。将制造商网站上提供的引物设计方案用作指导,并从Sigma-Aldrich公司订购各个诱变引物。采用100ng编码α、β、γ或δ-hENaC的野生型(WT)cDNA、利用基于Pfu的DNA聚合酶通过PCR合成突变链。除去亲代(WT)链,并将所得到的含有突变ENaC的质粒DNA转化到大肠杆菌感受态细胞中。在培养基中生长后,利用市售可得的质粒分离试剂盒(GeneJET Plasmid Miniprep Kit;Thermoscientific)从大肠杆菌细胞中提取出质粒DNA并通过柱色谱法将其分离出来。通过限制性位点比对和测序检查所有突变构建体。
对HEK-293细胞进行转染以表达异源性hENaC
利用市售可得的试剂盒(X-treme Gene HP transfection reagent(罗氏诊断,曼海姆,德国)按照制造商推荐的方案用突变型α-、β-、γ-和δ-hENaC质粒DNA以及野生型α-、β-、γ-和δ-hENaC质粒DNA转染HEK-293细胞。将一种突变型亚基与其余两种野生型亚基一起进行同时转染以表达三聚体突变型ENaC。通过同时转染野生型α-、β-和γ-hENaC质粒DNA或同时转染野生型δ-、β-和γ-hENaC质粒DNA实现野生型ENaC的表达。
利用膜片钳技术在瞬时表达突变型ENaC的HEK细胞中检测AP301和AP318活化ENaC 的能力
在全细胞膜片钳技术中,测试AP301对瞬时表达野生型αβγ-hENaC、野生型δβγ-hENaC或与野生型亚基共同表达的突变型hENaC亚基的各个HEK-293细胞株的作用,并测试AP318对保守位点选定突变体的作用。按先前的描述记录全细胞电流(Shabbir等人,2013)
浓度响应测量值
绘制浓度-响应值曲线,用Microcal Origin 7.0确定EC50值和希尔系数。向槽液(bath solution)中累积性添加AP301储备溶液而形成终浓度在3.5至240nM范围内的合成肽solnatide后,在细胞钳制电位(holding potential,Eh)为-80mV时记录瞬时转染有野生型αβγ-hENaC、野生型δβγ-hENaC或突变型hENaC的HEK-293细胞的全细胞钠电流。最后,添加阿米洛利以评估肽对阿米洛利敏感型Na+电流增加的诱导作用。由于不同批次培养出的细胞在hENaC表达方面具有差异性,因此用阿米洛利配对响应值的百分比来表示AP301的活性。野生型αβγ-hENaC、野生型δβγ-hENaC或突变型hENaC均采用10μM的阿米洛利;这些浓度产生大于95%的hENaC抑制作用。数据分析中仅包含对阿米洛利具有明确响应值的细胞。
电流-电压关系
分别确定对照期(加入AP301之前)、240nM AP301处理后以及后续添加10μM阿米洛利的瞬时转染有αβγ-hENaC、野生型δβγ-hENaC或突变型hENaC的HEK-293细胞的全细胞电流-电压(I/V)关系。在GOhm-密封(GΩ-密封)形成和5min平衡时间后,在–80至+80mV的Eh范围内,以20mV的增量,在各个Eh处保持1min来记录钠电流。
统计分析
除非另有规定,否则数据表示平均值±S.E.;对3到7批次HEK-293异源表达体系中的独立转染的细胞进行实验。采用非配对双尾学生t检验利用3.02版本的GraphPad Prism(GraphPad软件,圣地亚哥)确定不同组之间的统计显著性。
结果
表1.全细胞膜片钳试验AP301对表达IB型PHA的突变hENaC和同源物的HEK-293细胞的结果
Figure BDA0001596731870000091
Figure BDA0001596731870000101
(a-患者体内观察到的突变体)
AP301对IB型PHA的αβG37Sγ-hENaC和同源物的作用
后面附图中示出了AP301对表达1b型PHA的突变型αβG37Sγ-hENaC或其实验室构建的同源物中的一种的HEK-293细胞的作用。示出了瞬时表达各种功能丧失突变型hENaC的HEK-293细胞的全细胞电流-电压(I/V)关系以及在对照期、向槽液继而添加有240nM AP301期间和向槽液最终添加了阿米洛利(10μM)后在细胞钳制电位为-80mV时的内向电流密度的绝对平均值(后面的附图)。
AP318对IB型PHA突变型ENaC的作用
为了测试是否只有AP301对1B型PHA突变型ENaC具有活性恢复的作用或者这种作用是否是环肽的一般性质,在全细胞膜片钳试验中测试了AP318存在对三种IB型PHA突变型ENaC(分别在α-、β-和γ-hENaC亚基中存在突变)的作用,以及AP301存在的作用。已经在1B型PHA患者中观察到所有三种突变体,并且三种突变体存在于ENaC亚基的保守位点;先前已经测试了AP301对这些突变体中两种Q101Kβγ-hENaC和αβG37Sγ-hENaC)的作用。第三种突变体存在于γ亚基中,即αβγV543fs-hENaC,且与目前为止测试的所有突变体不同的是产生截短γ亚基的移码突变体。
表2和图6中示出了全细胞膜片钳试验中AP318和AP301的存在对表达这些突变型ENaC的HEK-293的测试结果。
表2.全细胞膜片钳试验中AP301和AP318不存在(对照)和存在对瞬时表达野生型ENaC和瞬时表达具有1b型PHA突变的ENaC的HEK-293细胞的阿米洛利敏感型电流(内向电流为平均值±SE,以pA计,n=5;肽浓度为220nM)
Figure BDA0001596731870000111
从目前获得的结果可以得出以下结论:
1)与野生型hENaC相比,IB型PHA突变导致阿米洛利敏感型钠电流穿过ENaC的功能丧失。
2)AP301恢复了Na+离子运输能力并补偿了IB型PHA患者中观察到的所有功能丧失突变型hENaC:αβG37Sγ-、αQ101Kβγ-和αG327Cβγ-hENaC的氨基酸突变。
3)与野生型αβγ-和δβγ-hENaC中观察到的阿米洛利敏感型钠离子电流的生理水平相比,AP301使功能丧失突变型ENaC的阿米洛利敏感型钠离子电流恢复至可与非突变型的活性ENaC相比的水平。
4)IB型PHA突变型αβG37Sγ-hENaC和相应的同源物的浓度-响应曲线和EC50值表明AP301具有恢复活性的潜力和补偿与野生型αβγ-和δβγ-hENaC相比丧失功能的所有这些突变型ENaC通道中的氨基酸突变的潜力。
5)IB型PHA αβG37Sγ-hENaC突变体和相应的同源物的电流-电压(I/V)关系更加详细地表征了AP301恢复这些突变体通道的作用。通过AP301的存在使得活性恢复而清楚地反映出,在hENaC不同亚基的保守位点存在的相同突变使得钠离子通道具有不同功能性质和表型效应(表3)。
6)全细胞电生理学试验中不存在AP301和AP318的结果表明,与野生型相比,所有αβγ-hENaC亚基中的1B型PHA突变均导致功能丧失。AP301和AP318的存在显著升高了穿过PHA-1B突变体的阿米洛利敏感型钠离子电流,这表明观察到了恢复至正常钠离子通道功能。
总体结论
从这些结果可以得出,AP301和AP318能够恢复Na+离子运输并补偿功能丧失的IB型PHA的突变hENaC中的氨基酸突变,这表明了环肽恢复受损ENaC功能和补偿这些突变体中的氨基酸突变的潜力,并由此作为治疗患有系统性I型PHA患者的疗法。
参考
1.Aberer E,Gebhart W,Mainitz M,Pollak A,Reichel G,Scheibenreiter S.[Sweat glands in pseudohypoaldosteronism].Hautarzt.1987Aug;38(8):484-7.German.PubMed PMID:3654220.
2.Adachi M,Tachibana K,Asakura Y,Abe S,Nakae J,Tajima T,FujiedaK.Compound heterozygous mutations in the gamma subunit gene of ENaC(1627delGand 1570-1G-->A)in one sporadic Japanese patient with a systemic form ofpseudohypoaldosteronism type 1.J Clin Endocrinol Metab.2001Jan;86(1):9-12.PubMed PMID:11231969.
3.Akkurt I,Kuhnle U,Ringenberg C.Pseudohypo-aldosteronism andcholelithiasis:coincidence or pathogenetic correlation?Eur J Pediatr.1997May;156(5):363-6.PubMed PMID:9177977.
4.Althaus M,Clauss WG,Fronius M.Amiloride-sensitive sodium channelsand pulmonary edema.Pulm Med.2011;2011:830320.Epub 2010 Dec 29.PubMed PMID:21637371.
5.Amin N,Alvi NS,Barth JH,Field HP,Finlay E,Tyerman K,Frazer S,SavillG,Wright NP,Makaya T,Mushtaq T.Pseudohypoaldosteronism type 1:clinicalfeatures and management in infancy.Endocrinol Diabetes Metab Case Rep.2013;2013:130010.doi:10.1530/EDM-13-0010.Epub 2013 Aug 30.PubMed PMID:24616761;PubMed Central PMCID:PMC3922296.
6.Baconguis I,Bohlen CJ,Goehring A,Julius D,Gouaux E.X-ray structureof acid-sensing ion channel 1snake toxin complex reveals open state of a Na(+)-selective channel.Cell.2014 Feb 13;156(4):717-29.doi:10.1016/j.cell.2014.01.011.Epub 2014 Feb 6.PubMed PMID:24507937;PubMed Central PMCID:PMC4190031.
7.Belot A,Ranchin B,Fichtner C,Pujo L,Rossier BC,Liutkus A,Morlat C,Nicolino M,Zennaro MC,Cochat P.Pseudohypoaldosteronisms,report on a 10-patient series.Nephrol Dial Transplant.2008 May;23(5):1636-41.doi:10.1093/ndt/gfm862.PubMed PMID:18424465.
8.Bonny O,Chraibi A,Loffing J,Jaeger NF,Gründer S,Horisberger JD,Rossier BC.Functional expression of a pseudohypoaldosteronism type I mutatedepithelial Na+channel lacking the pore-forming region of its alpha subunit.JClin Invest.1999 Oct;104(7):967-74.PubMed PMID:10510337;PubMed Central PMCID:PMC408554.
9.Bonny O,Knoers N,Monnens L,Rossier BC.A novel mutation of theepithelial Na+channel causes type 1 pseudohypoaldosteronism.PediatrNephrol.2002 Oct;17(10):804-8.Epub 2002 Aug 21.PubMed PMID:12376807.
10.Bonny O,Rossier BC.Disturbances of Na/K balance:pseudohypoaldosteronism revisited.J Am Soc Nephrol.2002 Sep;13(9):2399-414.Review.PubMed PMID:12191985.
11.Braun C,Hamacher J,Morel DR,Wendel A,Lucas R.Dichotomal role ofTNF in experimental pulmonary edema reabsorption.J Immunol.2005 Sep 1;175(5):3402-8.PubMed PMID:16116234.
12.Canessa CM,Schild L,Buell G,Thorens B,Gautschi I,Horisberger JD,Rossier BC.(B)Amiloride-sensitive epithelial Na+channel is made of threehomologous subunits.Nature.1994Feb 3;367(6462):463-7.PubMed PMID:8107805.
13.Chang SS,Grunder S,Hanukoglu A,
Figure BDA0001596731870000131
A,Mathew PM,Hanukoglu I,Schild L,Lu Y,Shimkets RA,Nelson-Williams C,Rossier BC,Lifton RP.Mutations insubunits of the epithelial sodium channel cause salt wasting withhyperkalaemic acidosis,pseudohypoaldosteronism type 1.Nat Genet.1996 Mar;12(3):248-53.PubMed PMID:8589714.
14.Cheek DB,Perry JW.A salt wasting syndrome in infancy.Arch DisChild.1958 Jun;33(169):252-6.PubMed PMID:13545877;PubMed Central PMCID:PMC2012226.
15.Czikora I,Alli A,Bao HF,Kaftan D,Sridhar S,Apell HJ,Gorshkov B,White R,A,Wendel A,Pauly-Evers M,Hamacher J,Garcia-Gabay I,Fischer B,Verin A,Bagi Z,Pittet JF,Shabbir W,Lemmens-Gruber R,Chakraborty T,Lazrak A,MatthayMA,Eaton DC,Lucas R.A Novel TNF-mediated Mechanism of Direct EpithelialSodium Channel Activation.Am J Respir Crit Care Med.2014 Jul 16.PubMed PMID:25029038.
16.Dirlewanger M,Huser D,Zennaro MC,Girardin E,Schild L,SchwitzgebelVM.A homozygous missense mutation in SCNN1A is responsible for a transientneonatal form of pseudohypoaldosteronism type 1.Am J Physiol EndocrinolMetab.2011 Sep;301(3):E467-73.doi:10.1152/ajpendo.00066.2011.Epub 2011 Jun7.PubMed PMID:21653223.
17.Dogan CS,Erdem D,Mesut P,Merve A,Sema A,Iffet B,Afig B.A novelsplice site mutation of the beta subunit gene of epithelial sodium channel(ENaC)in one Turkish patient with a systemic form of pseudohypoaldosteronismType 1.J Pediatr Endocrinol Metab.2012;25(9-10):1035-9.doi:10.1515/jpem-2012-0083.PubMed PMID:23426840.
18.Dulebo A,Ettrich R,Lucas R,Kaftan D.A computational study of theoligosaccharide binding sites in the lectin-like domain of Tumor NecrosisFactor and the TNF-derived TIP peptide.Curr Pharm Des.2012;18(27):4236-43.PubMed PMID:22697478;PubMed Central PMCID:PMC3495565.
19.Eaton DC,Helms MN,Koval M,Bao HF,Jain L.The contribution ofepithelial sodium channels to alveolar function in health and disease.AnnuRev Physiol.2009;71:403-23.doi:10.1146/annurev.physiol.010908.163250.Review.PubMed PMID:18831683.
20.Edelheit O,Hanukoglu I,Gizewska M,Kandemir N,Tenenbaum-Rakover Y,
Figure BDA0001596731870000141
M,Zajaczek S,Hanukoglu A.Novel mutations in epithelial sodium channel(ENaC)subunit genes and phenotypic expression of multisystempseudohypoaldosteronism.Clin Endocrinol(Oxf).2005May;62(5):547-53.Review.PubMed PMID:15853823.
21.Edelheit O,Hanukoglu I,Shriki Y,Tfilin M,Dascal N,Gillis D,Hanukoglu A.Truncated beta epithelial sodium channel(ENaC)subunitsresponsible for multi-system pseudohypoaldosteronism support partial activityof ENaC.J Steroid Biochem Mol Biol.2010 Mar;119(1-2):84-8.doi:10.1016/j.jsbmb.2010.01.002.Epub 2010 Jan 12.PubMed PMID:20064610.
22.Ekinci Z,Aytac MB,Cheong HI.A case of SCNN1A splicing mutationpresenting as mild systemic pseudohypoaldosteronism type 1.J PediatrEndocrinol Metab.2013;26(11-12):1197-200.doi:10.1515/jpem-2013-0053.PubMedPMID:23813355.
23.Elia N,Tapponnier M,Matthay MA,Hamacher J,Pache JC,Brundler MA,Totsch M,De Baetselier P,Fransen L,Fukuda N,Morel DR,Lucas R.Functionalidentification of the alveolar edema reabsorption activity of murine tumornecrosis factor-alpha.Am J Respir Crit Care Med.2003 Nov 1;168(9):1043-50.Epub 2003 Jul 3.PubMed PMID:12842853.
24.Fukuda N,Jayr C,Lazrak A,Wang Y,Lucas R,Matalon S,MatthayMA.Mechanisms of TNF-alpha stimulation of amiloride-sensitive sodiumtransport across alveolar epithelium.Am J Physiol Lung Cell Mol Physiol.2001Jun;280(6):L1258-65.PubMed PMID:11350806.
25.Garty H,Palmer LG.Epithelial sodium channels:function,structure,and regulation.Physiol Rev.1997 Apr;77(2):359-96.Review.PubMed PMID:9114818.
26.Geller DS,Rodriguez-Soriano J,Vallo Boado A,Schifter S,Bayer M,Chang SS,Lifton RP.Mutations in the mineralocorticoid receptor gene causeautosomal dominant pseudohypoaldosteronism type I.Nat Genet.1998 Jul;19(3):279-81.PubMed PMID:9662404.
27.Gonzales EB,Kawate T,Gouaux E.Pore architecture and ion sites inacid-sensing ion channels and P2X receptors.Nature.2009 Jul 30;460(7255):599-604.doi:10.1038/nature08218.PubMed PMID:19641589;PubMed Central PMCID:PMC2845979.
28.Gründer S,Firsov D,Chang SS,Jaeger NF,Gautschi I,Schild L,LiftonRP,Rossier BC.A mutation causing pseudohypoaldosteronism type 1 identifies aconserved glycine that is involved in the gating of the epithelial sodiumchannel.EMBO J.1997 Mar 3;16(5):899-907.PubMed PMID:9118951;PubMed CentralPMCID:PMC1169690.
29.Güran T,
Figure BDA0001596731870000151
S,Bulut
Figure BDA0001596731870000153
Say A,Riepe FG,Güran
Figure BDA0001596731870000152
Critical pointsin the management of pseudohypoaldosteronism type 1.J Clin Res PediatrEndocrinol.2011;3(2):98-100.doi:10.4274/jcrpe.v3i2.20.Epub 2011 Jun 8.PubMedPMID:21750640;PubMed Central PMCID:PMC3119449.
30.Hamacher J,Stammberger U,Roux J,Kumar S,Yang G,Xiong C,Schmid RA,Fakin RM,Chakraborty T,Hossain HM,Pittet JF,Wendel A,Black SM,Lucas R.Thelectin-like domain of tumor necrosis factor improves lung function after ratlung transplantation--potential role for a reduction in reactive oxygenspecies generation.Crit Care Med.2010 Mar;38(3):871-8.PubMed PMID:20081530.
31.Hanukoglu A,Bistritzer T,Rakover Y,MandelbergA.Pseudohypoaldosteronism with increased sweat and saliva electrolyte valuesand frequent lower respiratory tract infections mimicking cystic fibrosis.JPediatr.1994 Nov;125(5 Pt 1):752-5.PubMed PMID:7965429.
32.Hanukoglu A,Edelheit O,Shriki Y,Gizewska M,Dascal N,HanukogluI.Renin-aldosterone response,urinary Na/K ratio and growth inpseudohypoaldosteronism patients with mutations in epithelial sodium channel(ENaC)subunit genes.J Steroid Biochem Mol Biol.2008 Sep;111(3-5):268-74.doi:10.1016/j.jsbmb.2008.06.013.Epub 2008 Jun 26.PubMed PMID:18634878.
33.Hartmann EK,Boehme S,Duenges B,Bentley A,Klein KU,Kwiecien R,ShiC,Szczyrba M,David M,Markstaller K.An inhaled tumor necrosis factor-alpha-derived TIP peptide improves the pulmonary function in experimental lunginjury.Acta Anaesthesiol Scand.2013 Mar;57(3):334-41.doi:10.1111/aas.12034.Epub 2012 Dec 6.PubMed PMID:23216436.
34.Hartmann EK,Thomas R,Liu T,Stefaniak J,Ziebart A,Duenges B,EckleD,Markstaller K,David M.TIP peptide inhalation in experimental acute lunginjury:effect of repetitive dosage and different synthetic variants.BMCAnesthesiol.2014 May 26;14:42.doi:10.1186/1471-2253-14-42.eCollection2014.PubMed PMID:24904234;PubMed Central PMCID:PMC4046002.
35.Hazemi P,Tzotzos SJ,Fischer B,Andavan GS,Fischer H,Pietschmann H,Lucas R,Lemmens-Gruber R.Essential structural features of TNF-αlectin-likedomain derived peptides for activation of amiloride-sensitive sodium currentin A549 cells.J Med Chem.2010 Nov 25;53(22):8021-9.doi:10.1021/jm100767p.Epub2010 Oct 27.PubMed PMID:20979368;PubMed Central PMCID:PMC2996585.
36.Hribar M,Bloc A,van der Goot FG,Fransen L,De Baetselier P,Grau GE,Bluethmann H,Matthay MA,Dunant Y,Pugin J,Lucas R.The lectin-like domain oftumor necrosis factor-alpha increases membrane conductance in microvascularendothelial cells and peritoneal macrophages.Eur J Immunol.1999 Oct;29(10):3105-11.PubMed PMID:10540321.
37.Huber R,Krueger B,Diakov A,Korbmacher J,Haerteis S,Einsiedel J,Gmeiner P,Azad AK,Cuppens H,Cassiman JJ,Korbmacher C,Rauh R.Functionalcharacterization of a partial loss of-function mutation of the epithelialsodium channel(ENaC)associated with atypical cystic fibrosis.Cell PhysiolBiochem.2010;25(1):145-58.doi:10.1159/000272059.Epub 2009 Dec 22.PubMed PMID:20054153.
38.Hummler E,Barker P,Gatzy J,Beermann F,Verdumo C,Schmidt A,BoucherR,Rossier BC.Early death due to defective neonatal lung liquid clearance inalpha-ENaC-deficient mice.Nat Genet.1996 Mar;12(3):325-8.PubMed PMID:8589728.
39.Huppmann S,Lankes E,Schnabel D,Bührer C.Unimpaired postnatalrespiratory adaptation in a preterm human infant with a homozygous ENaC-αunitloss-of-function mutation.J Perinatol.2011 Dec;31(12):802-3.doi:10.1038/jp.2011.46.PubMed PMID:22124517.
40.Jain L,Chen XJ,Ramosevac S,Brown LA,Eaton DC.(2001)Expression ofhighly selective sodium channels in alveolar type II cells is determined byculture conditions.Am J Physiol Lung Cell Mol Physiol.280:L646–58.
41.Jasti J,Furukawa H,Gonzales EB,Gouaux E.Structure of acid-sensingion channel 1 at 1.9 A resolution and low pH.Nature.2007 Sep 20;449(7160):316-23.PubMed PMID:17882215.
42.Kala Ahluwalia G,Dasouki M,Lennon A.Phenotypic variation ofautosomal recessive pseudohypoaldosteronism type I:a case in point.Clin CaseRep.2014 Dec;2(6):326-30.doi:10.1002/ccr3.129.Epub 2014 Sep 15.PubMed PMID:25548639;PubMed Central PMCID:PMC4270719.
43.Kashlan OB,Adelman JL,Okumura S,Blobner BM,Zuzek Z,Hughey RP,Kleyman TR,Grabe M.Constraint-based,homology model of the extracellulardomain of the epithelial Na+channelαsubunit reveals a mechanism of channelactivation by proteases.J Biol Chem.2011 Jan 7;286(1):649-60.doi:10.1074/jbc.M110.167098.Epub 2010 Oct 25.PubMed PMID:20974852;PubMed Central PMCID:PMC3013024.
44.Kellenberger S,Schild L.Epithelial sodium channel/degenerin familyof ion channels:a variety of functions for a shared structure.PhysiolRev.2002 Jul;82(3):735-67.Review.PubMed PMID:12087134.
45.Kerem E,Bistritzer T,Hanukoglu A,Hofmann T,Zhou Z,Bennett W,MacLaughlin E,Barker P,Nash M,Quittell L,Boucher R,Knowles MR.Pulmonaryepithelial sodium-channel dysfunction and excess airway liquid inpseudohypoaldosteronism.N Engl J Med.1999 Jul 15;341(3):156-62.PubMed PMID:10403853.
46.Kosari F,Sheng S,Li J,Mak DO,Foskett JK,Kleyman TR.Subunitstoichiometry of the epithelial sodium channel.J Biol Chem.1998 May 29;273(22):13469-74.PubMed PMID:9593680.
47.Krueger B,
Figure BDA0001596731870000171
-Schrehardt U,Haerteis S,Zenkel M,ChankiewitzVE,Amann KU,Kruse FE,Korbmacher C.Four subunits(αβγδ)of the epithelialsodium channel(ENaC)are expressed in the human eye in variouslocations.Invest Ophthalmol Vis Sci.2012 Feb 2;53(2):596-604.doi:10.1167/iovs.11-8581.PubMed PMID:22167092.
48.Lazrak A,Samanta A,Venetsanou K,Barbry P,Matalon S.Modification ofbiophysical properties of lung epithelial Na(+)channels by dexamethasone.Am JPhysiol Cell Physiol.2000 Sep;279(3):C762-70.PubMed PMID:10942727.
49.Lifton RP,Gharavi AG,Geller DS.Molecular mechanisms of humanhypertension.Cell.2001 Feb 23;104(4):545-56.Review.PubMed PMID:11239411.
50.Lingueglia E,Voilley N,Waldmann R,Lazdunski M,Barbry P.Expressioncloning of an epithelial amiloride-sensitive Na+channel.A new channel typewith homologies to Caenorhabditis elegans degenerins.FEBS Lett.1993 Feb 22;318(1):95-9.PubMed PMID:8382172.
51.Lucas R,Magez S,De Leys R,Fransen L,Scheerlinck JP,Rampelberg M,Sablon E,De Baetselier P.Mapping the lectin-like activity of tumor necrosisfactor.Science.1994 Feb 11;263(5148):814-7.PubMed PMID:8303299.
52.Lucas R,Yang G,Gorshkov BA,Zemskov EA,Sridhar S,Umapathy NS,Jezierska-Drutel A,Alieva IB,Leustik M,Hossain H,Fischer B,Catravas JD,VerinAD,Pittet JF,Caldwell RB,Mitchell TJ,Cederbaum SD,Fulton DJ,Matthay MA,Caldwell RW,Romero MJ,Chakraborty T.Protein kinase C-αand arginase I mediatepneumolysin-induced pulmonary endothelial hyperpermeability.Am J Respir CellMol Biol.2012 Oct;47(4):445-53.doi:10.1165/rcmb.2011-0332OC.Epub 2012 May10.PubMed PMID:22582175;PubMed Central PMCID:PMC3488628.
53.Marquardt A,Bernevic B,Przybylski M.Identification,affinitycharacterisation and biological interactions of lectin-like peptide-carbohydrate complexes derived from human TNF-alpha using high-resolutionmass spectrometry.J Pept Sci.2007 Dec;13(12):803-10.PubMed PMID:17918767.
54.Marthinsen L,
Figure BDA0001596731870000181
R,Aili M,Andersson D,Westgren U,SchaedelC.Recurrent Pseudomonas bronchopneumonia and other symptoms as in cysticfibrosis in a child with type I pseudohypoaldosteronism.Acta Paediatr.1998Apr;87(4):472-4.PubMed PMID:9628311.
55.McDonald FJ,Yang B,Hrstka RF,Drummond HA,Tarr DE,McCray PB Jr,Stokes JB,Welsh MJ,Williamson RA.Disruption of the beta subunit of theepithelial Na+channel in mice:hyperkalaemia and neonatal death associatedwith a pseudohypoaldosteronism phenotype.Proc Natl Acad Sci U S A.1999 Feb16;96(4):1727-31.PubMed PMID:9990092;PubMed Central PMCID:PMC15575.
56.Mora-Lopez F,Bernal-Quiros M,Lechuga-Sancho AM,Lechuga-Campoy JL,Hernandez-Trujillo N,Nieto A.Novel mutation in the epithelial sodium channelcausing type I pseudohypoaldosteronism in a patient misdiagnosed with cysticfibrosis.Eur J Pediatr.2012 Jun;171(6):997-1000.doi:10.1007/s00431-012-1697-5.Epub 2012 Feb 28.PubMed PMID:22371258.
57.Riepe FG,van Bemmelen MX,Cachat F,Plendl H,Gautschi I,Krone N,Holterhus PM,Theintz G,Schild L.Revealing a subclinical salt-losing phenotypein carriers of the novel S562P mutation in the alpha subunit of theepithelial sodium channel.Clin Endocrinol(Oxf).2009 Feb;70(2):252-8.doi:10.1111/j.1365-2265.2008.03314.x.PubMed PMID:18547339.
58.Riepe FG.Clinical and molecular features of type 1pseudohypoaldosteronism.Horm Res.2009;72(1):1-9.doi:10.1159/000224334.Epub2009 Jun 30.Review.PubMed PMID:19571553.
59.Rossier BC,Canessa CM,Schild L,Horisberger JD.Epithelial sodiumchannels.Curr Opin Nephrol Hypertens.1994 Sep;3(5):487-96.Review.PubMed PMID:7804746.
60.Ruffieux-DaidiéD,Poirot O,Boulkroun S,Verrey F,Kellenberger S,Staub O.Deubiquitylation regulates activation and proteolytic cleavage ofENaC.J Am Soc Nephrol.2008Nov;19(11):2170-80.doi:10.1681/ASN.2007101130.Epub2008 Aug 13.PubMed PMID:18701608;PubMed Central PMCID:PMC2573013.
61.Saravanapandian N,Paul S,Matthai J.Pseudohypoaldosteronism type 1:a rare cause of severe dyselectrolytemia and cardiovascular collapse inneonates.J Clin Neonatol.2012 Oct;1(4):224-6.doi:10.4103/2249-4847.106007.PubMed PMID:24027733;PubMed Central PMCID:PMC3762049.
62.Saxena A,Hanukoglu I,Saxena D,Thompson RJ,Gardiner RM,HanukogluA.Novel mutations responsible for autosomal recessive multisystempseudohypoaldosteronism and sequence variants in epithelial sodium channelalpha-,beta-,and gamma-subunit genes.J Clin Endocrinol Metab.2002 Jul;87(7):3344-50.PubMed PMID:12107247.
63.Schaedel C,Marthinsen L,Kristoffersson AC,
Figure BDA0001596731870000191
R,Nilsson KO,Orlenius B,Holmberg L.Lung symptoms in pseudohypoaldosteronism type 1 areassociated with deficiency of the alpha-subunit of the epithelial sodiumchannel.J Pediatr.1999 Dec;135(6):739-45.PubMed PMID:10586178.
64.Shabbir W,Scherbaum-Hazemi P,Tzotzos S,Fischer B,Fischer H,Pietschmann H,Lucas R,Lemmens Gruber R.Mechanism of action of novel lungedema therapeutic AP301 by activation of the epithelial sodium channel.MolPharmacol.2013 Dec;84(6):899-910.doi:10.1124/mol.113.089409.Epub 2013 Sep27.PubMed PMID:24077967;PubMed Central PMCID:PMC3834145.
65.Sharma R,Pandey M,Kanwal SK,Zennaro MC.Pseudohypoaldosteronismtype 1:management issues.Indian Pediatr.2013 Mar;50(3):331-3.PubMed PMID:23680607.
66.Silva N,Costa M,Silva A,SáC,Martins S,Antunes A,Marques O,CastedoS,Pereira A.A case of systemic pseudohypoaldosteronism with a novel mutationin the SCNN1A gene.Endocrinol Nutr.2013 Jan;60(1):33-6.doi:10.1016/j.endonu.2012.07.002.Epub 2012 Sep 30.PubMed PMID:23031435.
67.Staruschenko A.Regulation of transport in the connecting tubuleand cortical collecting duct.Compr Physiol.2012 Apr;2(2):1541-84.Review.PubMed PMID:23227301;PubMed Central PMCID:PMC3516049.
68.Stockand JD,Staruschenko A,Pochynyuk O,Booth RE,SilverthornDU.Insight toward epithelial Na+channel mechanism revealed by the acid-sensing ion channel 1 structure.IUBMB Life.2008 Sep;60(9):620-8.doi:10.1002/iub.89.Review.PMID:18459164.
69.Strautnieks SS,Thompson RJ,Gardiner RM,Chung E.A novel splice-sitemutation in the gamma subunit of the epithelial sodium channel gene in threepseudohypoaldosteronism type 1families.Nat Genet.1996 Jun;13(2):248-50.PubMedPMID:8640238.
70.Strautnieks SS,Thompson RJ,Hanukoglu A,Dillon MJ,Hanukoglu I,Kuhnle U,Seckl J,Gardiner RM,Chung E.Localisation of pseudohypoaldosteronismgenes to chromosome 16p12.2-13.11 and 12p13.1-pter by homozygositymapping.Hum Mol Genet.1996 Feb;5(2):293-9.PubMed PMID:8824886.
71.Thomas CP,Zhou J,Liu KZ,Mick VE,MacLaughlin E,Knowles M.Systemicpseudohypoaldosteronism from deletion of the promoter region of the humanBeta epithelial na(+)channel subunit.Am J Respir Cell Mol Biol.2002 Sep;27(3):314-9.PubMed PMID:12204893.
72.Tzotzos S,Fischer B,Fischer H,Pietschmann H,Lucas R,DupréG,Lemmens-Gruber R,Hazemi P,Prymaka V,Shabbir W.AP301,a synthetic peptidemimicking the lectin-like domain of TNF,enhances amiloride-sensitive Na(+)current in primary dog,pig and rat alveolar type II cells.Pulm PharmacolTher.2013 Jun;26(3):356-63.doi:10.1016/j.pupt.2012.12.011.Epub 2013 Jan9.PubMed PMID:23313096;PubMed Central PMCID:PMC3646188.
73.Vadász I,Schermuly RT,Ghofrani HA,Rummel S,Wehner S,Mühldorfer I,
Figure BDA0001596731870000202
KP,Seeger W,Morty RE,Grimminger F,Weissmann N.The lectin-like domainof tumor necrosis factor alpha improves alveolar fluid balance in injuredisolated rabbit lungs.Crit Care Med.2008May;36(5):1543 50.PubMed PMID:18434905.
74.Waldmann R,Champigny G,Bassilana F,Voilley N,Lazdunski M.Molecularcloning and functional expression of a novel amiloride-sensitive Na+channel.JBiol Chem.1995 Nov 17;270(46):27411-4.PubMed PMID:7499195.
75.Wang J,Yu T,Yin L,Li J,Yu L,Shen Y,Yu Y,Shen Y,Fu Q.Novelmutations in the SCNN1A gene causing Pseudohypoaldosteronism type 1.PLoSOne.2013 Jun 6;8(6):e65676.doi:10.1371/journal.pone.0065676.Print 2013.PubMedPMID:23762408;PubMed Central PMCID:PMC3675083.
76.Welzel M,Akin L,Büscher A,Güran T,Hauffa BP,
Figure BDA0001596731870000201
W,Leonards J,Karges B,Kentrup H,Kirel B,Senses EE,Tekin N,Holterhus PM,Riepe FG.Five novelmutations in the SCNN1A gene causing autosomal recessivepseudohypoaldosteronism type 1.Eur J Endocrinol.2013 Apr 15;168(5):707-15.doi:10.1530/EJE-12-1000.Print 2013 May.PubMed PMID:23416952.
77.Wong GP,Levine D.Congenital pseudohypoaldosteronism presenting inutero with acute polyhydramnios.J Matern Fetal Med.1998 Mar-Apr;7(2):76-8.PubMed PMID:9584819.
78.Zennaro MC,Lombès M.Mineralocorticoid resistance.Trends EndocrinolMetab.2004 Aug;15(6):264-70.Review.PubMed PMID:15358279.
Figure IDA0003387110240000011
Figure IDA0003387110240000021

Claims (1)

1.环状多肽在制备用于治疗常染色体隐性1型假性醛固酮减少症(1B型PHA)的药物中的用途,其中所述环状多肽的氨基酸序列为SEQ ID NO:3
Figure FDA0003286765010000011
或SEQ ID NO:4
Figure FDA0003286765010000012
CN201680053340.8A 2015-09-14 2016-09-14 治疗1b型pha的环状多肽 Active CN108025038B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15185093.0 2015-09-14
EP15185093 2015-09-14
PCT/EP2016/071636 WO2017046124A1 (en) 2015-09-14 2016-09-14 Cyclic polypeptide for the treatment of pha type 1b

Publications (2)

Publication Number Publication Date
CN108025038A CN108025038A (zh) 2018-05-11
CN108025038B true CN108025038B (zh) 2022-02-01

Family

ID=54147015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680053340.8A Active CN108025038B (zh) 2015-09-14 2016-09-14 治疗1b型pha的环状多肽

Country Status (9)

Country Link
US (1) US20190351010A1 (zh)
EP (1) EP3349779B1 (zh)
JP (1) JP7104622B2 (zh)
KR (1) KR102707661B1 (zh)
CN (1) CN108025038B (zh)
CA (1) CA2998443A1 (zh)
ES (1) ES2805698T3 (zh)
IL (1) IL258067B (zh)
WO (1) WO2017046124A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102770442A (zh) * 2010-01-14 2012-11-07 阿佩普蒂科研究和开发有限责任公司 用于调节载体离子通道的有机化合物
WO2014173843A1 (en) * 2013-04-23 2014-10-30 Apeptico Forschung Und Entwicklung Gmbh Pharmaceutical composition comprising a cyclic peptide of formula x1 -gqretpegaeakpwy-x2 and use for extracorporeal lung treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102770442A (zh) * 2010-01-14 2012-11-07 阿佩普蒂科研究和开发有限责任公司 用于调节载体离子通道的有机化合物
WO2014173843A1 (en) * 2013-04-23 2014-10-30 Apeptico Forschung Und Entwicklung Gmbh Pharmaceutical composition comprising a cyclic peptide of formula x1 -gqretpegaeakpwy-x2 and use for extracorporeal lung treatment

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Mechanism of action of novel lung edema therapeutic AP301 by activation of the epithelial sodium channel;Waheed Shabbir;《Mol Pharmacol》;20130927;第84卷(第6期);摘要 *
Mechanisms of Type I and Type II Pseudohypoaldosteronism;Seth B. Furgeson等;《J Am Soc Nephrol》;20100909;第21卷(第11期);摘要,第1842页右栏第1段 *
Small Molecule Activator of the Human Epithelial Sodium Channel;Min Lu等;《THE JOURNAL OF BIOLOGICAL CHEMISTRY》;20080502;第283卷(第18期);第11981-11994页 *
Waheed Shabbir.Mechanism of action of novel lung edema therapeutic AP301 by activation of the epithelial sodium channel.《Mol Pharmacol》.2013,第84卷(第6期),摘要,"Results"部分. *

Also Published As

Publication number Publication date
EP3349779A1 (en) 2018-07-25
US20190351010A1 (en) 2019-11-21
CA2998443A1 (en) 2017-03-23
CN108025038A (zh) 2018-05-11
JP2018528221A (ja) 2018-09-27
ES2805698T3 (es) 2021-02-15
JP7104622B2 (ja) 2022-07-21
WO2017046124A1 (en) 2017-03-23
IL258067A (en) 2018-05-31
IL258067B (en) 2022-08-01
KR20180042275A (ko) 2018-04-25
KR102707661B1 (ko) 2024-09-13
EP3349779B1 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
US5302581A (en) Pulmonary surfactant protein fragments
EP0350506B1 (en) Pulmonary surfactant protein and related polypeptide
Schild The epithelial sodium channel: from molecule to disease
EP1151008B1 (en) Artificial peptides having surface activity and the use thereof in the preparation of artificial surfactant
EP2152738B1 (en) Novel peptides and their use for the treatment of edema
CA2875749C (en) Pharmaceutical composition for treatment of the pulmonary form of altitude sickness caused by lack of oxygen and reduced air pressure
CA2628472C (en) Surfactant protein-d for prevention and treatment of lung infections and sepsis
Chanez et al. Platelet‐derived growth factor in asthma
Sun et al. Biophysical and physiological properties of a modified porcine surfactant enriched with surfactant protein A
CA2708134C (en) Cyclic protein free from cysteines
CN108025038B (zh) 治疗1b型pha的环状多肽
EP2362881A2 (en) Crhr2 peptide agonists and uses thereof
Ross et al. Intermolecular cross-links mediate aggregation of phospholipid vesicles by pulmonary surfactant protein SP-A
WO2000076535A1 (en) Pharmaceutical preparation containing modifications of surfactant protein b (sp-b) and surfactant protein c (sp-c)
US20080146493A1 (en) Use of Haptoglobin and Hemoglobin to Modulate Na Ion Transport in a Vertebrate
CA2375214C (en) Surfactant protein c esters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant