CN108018315A - 一种分离的基因序列在制备日本青鳉白化品系中的应用 - Google Patents

一种分离的基因序列在制备日本青鳉白化品系中的应用 Download PDF

Info

Publication number
CN108018315A
CN108018315A CN201711381572.9A CN201711381572A CN108018315A CN 108018315 A CN108018315 A CN 108018315A CN 201711381572 A CN201711381572 A CN 201711381572A CN 108018315 A CN108018315 A CN 108018315A
Authority
CN
China
Prior art keywords
albefaction
blue
strain
gene
green medaka
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711381572.9A
Other languages
English (en)
Inventor
陈天圣
方健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201711381572.9A priority Critical patent/CN108018315A/zh
Publication of CN108018315A publication Critical patent/CN108018315A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/461Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Veterinary Medicine (AREA)
  • Mycology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于分子生物学领域,具体涉及一种分离的基因序列在制备日本青鳉白化品系中的应用,所述的基因序列为SEQ ID NO.1所示。以SEQ ID NO.1为靶基因进行基因突变,挑选出色素缺失明显的F0的胚胎培养成亲本鱼,通过F0突变体亲本杂交产生F1胚胎,筛选出色素缺失的F1胚胎继续培养,能产生眼部表现为红色的稳定遗传的青鳉白化品系。利用基因突变的方法获得青鳉白化品系比传统方式具有突变率高(超过90%突变率)、育种时间短(2‑3天后可以观察到突变表型以便后续筛选)、成本低等优点,具有科学研究的基础价值和应用价值。

Description

一种分离的基因序列在制备日本青鳉白化品系中的应用
技术领域
本发明属于分子生物学领域,具体涉及一种分离的基因序列在制备日本青鳉白化品系中的应用,以本发明提供的序列为靶序列,可通过表型筛选快速且高效的获得可稳定遗传的日本青鳉白化突变体。
背景技术
青鳉(Oryzias latipes)具有品系多,体型小、饲养方便、繁殖力强、繁殖周期短、性别差异明显,性别决定基因已知,胚胎透明和胚胎发育速度快等优点,是研究发育生物学、环境毒理学、细胞生物学和免疫学等诸多领域的重要模式生物(Furutani-Seiki&Wittbrodt,2004)。青鳉的基因组和转录组等数据完善(K.P.Lai et al.,2015),胚胎干细胞、生殖干细胞、单倍体干细胞等都已建立(Hong et al.,2004)。青鳉产卵量大且易于收集,胚胎成活率高,DNA显微注射和细胞移植方便等,研究者们已成功得到了半克隆动物(Yi,Hong,&H ong,2009),实现了基因敲降(Paul-Prasanth et al.,2006)和基因敲除(Ansai&Kinoshita,2014)。
在鱼类中关于白化现象的研究较少,主要集中在自然突变的青鳉(Iida et al.,2005)、斑马鱼(Danio rerio)(Jin&Thibaudeau,1999)、大菱鲆(Scophthalmus maximus)(Estevez&Kanazawa,1995)等。典型的青鳉白化表型为皮肤色素减少甚至无色素,眼睛表型为红色(Ko ga,Inagaki,Bessho,&Hori,1995)。目前,已报道的自然突变类型有i1、i2、i3、i4、i6、ib等(Hyodo-Taguchi,Winkler,Kurihara,Schartl,&Schartl,1997;Iida et al.,2004)。tyr-i1品系第一个外显子插入了1.9kb的DNA片段。tyr-i4的形成是由于在第5个外显子上插入了4.7kb的大片段形成的。进过序列比对分析tyr-i6品系有三个地方碱基缺失,分别是8bp,44bp,245bp。前两个缺失片段位于内含子中,最后一个位于第二个内含子和第三个外显子中。tyr-ib白化品系是由于在tyr基因启动子区域插入了tol2转座子结构造成的。目前,青鳉白化品系都是通过人工筛选自然突变获得的纯系,这些突变体的形成具有极大的随机性,突变频率非常低。其白化表型与其序列突变之间的关系依然有待研究。
Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)/CRISPR-associated(Cas9)是2013年初出现的新一代基因编辑技术。它主要是基于细菌的一种获得性免疫系统人工改造而成,具有制作简单、使用方便、成本低、作用效率高等特点(Mussolino&Catho men,2013)。2013年初MIT华裔科学家张锋研究团队首次报道利用CRISPR/Cas9系统对人293T细胞和小鼠Nero2A细胞实现基因定点突变(Cong et al.,2013)。同一期的《科学》杂志也发表了Mail等利用CRISPR/Cas9系统用于人类细胞基因组研究(Mali et al.,2013)。相对于第一、二代基因编辑技术,第三代CRISPR/Cas9基因编辑技术独特的优势迅速吸引了人们的关注,掀起了CRISPR/Cas9基因编辑技术研究热潮,并于2013被《科学》杂志评为年度十大科学进展之一。目前,CRISPR/Cas9技术被广泛应用于人(Homo sapiens)(Liang et al.,2015)、猴子(Macaca fascicularis)(Kang et al.,2015)、猪(Sus scrofa domestica)(S.Lai et al.,2016)小鼠(Mus musculus)(Coppolaet al.,2015)、果蝇(Drosophila melanogas ter)(Port&Bullock,2016)、斑马鱼(Xie etal.,2016)等。
目前,使用最广泛的CRISPR/Cas9系统是来自S.pyogenes细菌的Cas9基因以及人工改造而成的sgRNA(Single guide RNA)体系。Cas9是一种人工核酸内切酶,能与sgRNA结合,在sgRNA的引导下识别PAM(protospacer adjacent motif,PAM)序列,并对特定部位进行切割产生DNA双链断裂(Cong et al.,2013)。DNA双链断裂后在无修复模板的情况下可利用非同源末端连接机制实现靶基因敲除;在有修复模板的情况下可利用同源重组或微同源末端连接机制实现定点基因敲入。CRISPR/Cas9系统的编辑效率取决于sgRNA和Cas9。sgRNA可以通过在线网站设计,选取脱靶位点少、评分高的靶点。Cas9mRNA需要翻译成Cas9蛋白质才能在sgRNA的引导下对DNA进行切割,而在翻译过程中不同物种具有密码子偏好。因此,Cas9基因需要根据相应物种进行密码子优化,才能达到最佳编辑效果。目前,在鱼类中使用最广泛的Cas9基因是经过斑马鱼密码子优化的zCas9基因(Fenghua Zha ng et al.,2016)。
发明内容
本发明的目的在于一种分离的基因序列在制备日本青鳉白化品系中的应用,所述序列为SEQ ID NO.1所示。以该序列为靶序列,进行基因突变,可快速获得白化的日本青鳉,方法易行,操作简单。
本发明的另一个目的在于提供了一种日本青鳉白化品系的突变基因序列,所述的基因序列为SEQ ID NO.2或SEQ ID NO.3所示。
为了达到上述目的,本发明采取以下技术措施:
SEQ ID NO.1所示序列在制备日本青鳉白化品系中的应用,利用本领域的常规方式,以SEQ ID NO.1为靶基因进行基因突变,挑选出色素缺失明显的F0的胚胎培养成鱼亲本,通过F0突变体亲本杂交产生F1胚胎,筛选出色素缺失的F1胚胎继续培养,眼部表现为红色的即为稳定遗传的日本青鳉白化品系。
以上所述的应用中,优选的,采取CRISPR/Cas9的方式,以SEQ ID NO.1所示序列为靶位点进行基因编辑。
以上所述的应用中,优选的,在白化品系中,包含SEQ ID NO.2或SEQ ID NO.3所示的基因序列。
与现有技术相比,本发明具有以下优点:
本发明的方法可用于快速建立青鳉白化品系。该方法易行,操作简单,不需要进行大量的PCR筛选,可以直接通过表型观测,快速且高效的获得白化品系。利用基因突变的方法获得青鳉白化品系比传统方式具有突变率高(超过90%突变率)、育种时间短(2-3天后可以观察到突变表型以便后续筛选)、成本低等优点,具有科学研究的基础价值和应用价值。该方法可以成为一种快速获得青鳉白化品系的新技术,并可用于动物白化病致病机理研究,还为其建立观赏鱼类或者其他鱼类基因突变获得稳定品系提供方法。
附图说明
图1为青鳉tyr基因的突变设计和靶位点的序列分析示意图;
确定靶位获得了序列的突变而导致了白化。
图2为野生青鳉的胚胎和幼鱼。
图3为tyr突变杂合子的青鳉胚胎和幼鱼。
图4为tyr突变纯合子的青鳉胚胎和幼鱼。
图5为野生青鳉的成鱼。
图6为使用CRISPR/Cas9对tyr基因在靶序列突变后获得可稳定遗传的青鳉白化成鱼。
具体实施方式
本发明所述技术方案,如未特别说明,均为本领域的常规方式;所用试剂或材料,如未特别说明,均来源于商业渠道。
实施例1:
一种分离的基因序列在制备日本青鳉白化品系中的应用:
本实施例以CRISPR/Cas9的方法对靶序列进行突变来制备日本青鳉白化品系,本领域的其他基因编辑方式,只要是针对SEQ ID NO.1做的突变,都能成功制备日本青鳉白化品系。
1.1实验材料
野生型日本青鳉饲养于水产学院鱼房28℃水温14:10光照周期条件下。青鳉显微注射所用的胚胎由雌雄青鳉自然产卵获得。
1.2实验方法
1.2.1构建zCas9质粒
zCas9原始质粒pT3TS-nzCas9n来自国家斑马鱼资源中心(http://zfish.cn)(Jaoet al.,2013)。通过添加CMV-T7启动子改造pT3TS-nzCas9n为pCMV-T7zCas9,包括下述步骤:
用CMV-T7F:CCCAAGCTTGGGCTCGAGCGGGCCAGATATACGCGTTG和CMV-T7R:CCCAAGCTTGGGGTCGACGTGGCGGCTCTCCCTATAGTG为引物,以pMLM3质粒(Hwang et al.,2013)为模板,高保真mix(Vazyme,中国)PCR扩增CMV-T7片段。PCR反应条件为:95℃预变性3s,95℃变性15s,60℃退火15s,72℃延伸15s,28个循环,72℃再延伸5min。取3μL PCR产物进行1.2%琼脂糖凝胶电泳,条带大小验证正确后纯化回收PCR产物并加入Hind III酶切4h,直接液体纯化回收酶切的PCR产物及线性化的pT3TS-nzCas9n酶切产物,再用T4DNA Ligase(NEB,美国)连接。取5μL连接产物转化至大肠杆菌DH5α,活化后将转化的菌液均匀涂布于LB平板(含氨苄青霉素Amp 100μg/mL),37℃培养过夜。挑取单个克隆接种于LB液体(Amp抗性)培养基中,37℃摇床培养过夜,提取质粒并用酶切和测序验证,得到质粒pCMV-T7zCas9。
1.2.2确定sgRNA靶位点
确定sgRNA靶位点为:5‘GGACAAACCTCTGACCTGTGTGG’3。
1.2.3体外合成sgRNA
sgRNA以pMD19T gRNA(CZP3,zfish.cn;Chang et al.,2013)骨架质粒为模板,利用带有T7启动子和特异性靶点序列的上游引物(Metyr sgRNA F:5’TGTAATACGACTCACTATAGGACAAACCTCTGACCTGTGGTTTTAGAGCTAGAAATAGC)与通用的下游引物(sgRNA R 5’AAAAGCACCGACTCGGTGCC)进行PCR扩增。PCR体系为:2*MasterMix(Bioteke,北京)10μL,上下游引物(Metyr sgRNA F/sgRNA R)各1μL,pMD19TgRNA模板1μL,H2O 7μL。PCR反应条件为:95℃预变性3min,95℃变性30s,60℃退火30s,72℃延伸15s,30个循环,72℃再延伸5min。取5μL PCR产物进行1.5%琼脂糖凝胶电泳,条带大小验证正确后纯化回收PCR产物,并用Nanodrop 2000测浓度(Thermo Scientific,美国)。根据TranscriptAid T7HighYield Transcription kit(Thermo Scientific,美国)试剂盒转录sgRNA,然后使用氯化锂沉淀法纯化回收sgRNA,具体操作如下:在转录后的样品中加入30μL氯化锂和30μL RNasefree H2O,充分混匀后置于-20℃过夜。4℃,20000g离心15min后移去上清,加入1mL 70%乙醇(RNase free water配制),重复一次。移去上清,小心吸取微量残夜,待干燥后加入约20μLRNase free water溶解。取出1μL测RNA浓度,并通过1.5%琼脂糖凝胶电泳检测RNA的质量后分装置于-80℃保存待用,即为Me tyrs sgRNA。
1.2.4体外转录zCas9mRNA
使用Xba I(NEB,美国)限制性内切酶线性化pCMV-T7zCas9质粒,经过1%琼脂糖凝胶电泳确认线性化完全后用OMEGA Gel Extraction Kit(Omega,美国)液体液体纯化回收。根据T7mMESSAGE mMACHINE Kit(Ambion,美国)说明书体外转录zCas9mRNA,使用氯化锂沉淀法纯化回收zCas9mRNA,加入无酶水溶解并用Nanodrop 2000(Thermo Scientific,美国)测浓度,通过1%琼脂糖凝胶电泳确认转录的mRNA质量后分装置于-80℃保存待用。
1.2.5显微注射
注射前晚上将雌雄青鳉按1:1比例配对并用隔板隔开,次日注射前30min抽出隔板使其自然产卵,20min后收集胚胎并用镊子去除胚胎表面的黏丝清洗后待用。使用MetyrsgRNA和zCas9mRNA配制注射样品,其中Me tyrs sgRNA的终浓度为100ng/μL,zCas9mRNA的终浓度为300ng/μL,并加入终浓度为0.2%的酚红做指示剂。利用PicoliterMicroinjector注射仪(Warner,美国)将实验样品注射到1-2细胞期的青鳉胚胎中。注射完成后用亚甲基蓝培养液培养青鳉胚胎,并置于28℃光照恒温培养箱中(Porazinski etal.,2010)。1.2.6检测靶点突变率
选取10颗注射后24h的胚胎,用碱裂解法快速提取青鳉胚胎基因组DNA。将待裂解的胚胎置于1.5mL EP管中吸干多余的水分,加入100μL溶液I(25mmol/L NaOH+2mmol/LEDTANa2)95℃水浴30min,置于冰上加入等体积的溶液II(40mmol/L Tris-Hcl)涡旋混匀,10000g离心2min取上清置于4℃待用。用靶点扩增引物(Me tyr seq F:5’CGAGTACGCCTACCTGTT/Me tyr seq R:5’CTAGATGTGGTCGGTGAGA)扩增出靶点附近500bp序列。PCR反应体系为:2*MasterMix(Biotek,北京)10μL,上下游引物各1μL,基因组DNA模板1μL,无菌水7μL。PCR反应条件为::95℃预变性3min,95℃变性30s,60℃退火30s,72℃延伸30s,30个循环,72℃再延伸5min。取3μL PCR产物进行1.2%琼脂糖凝胶电泳,条带大小验证正确后送到公司测序(擎科生物技术有限公司,武汉)。根据PCR产物测序的峰形图PAM序列附近的套峰,初步判断靶点能有效产生突变。
将上述PCR产物切胶回收纯化后连到pMD18-T(TaKaRa,中国)载体中,挑取15个阳性克隆送到公司测序(擎科生物技术有限公司,武汉)。分析每个克隆的序列,与野生正常的基因序列相比较,分析突变后的靶序列附件的实际基因序列。tyr基因在黑色素的形成过程中发挥重要的作用,因此tyr基因的突变会导致色素的缺失,但并非tyr基因中的任意序列进行突变都会导致色素的缺失而获得白化的日本青鳉,这个需要设计、筛选、实验确证候选序列。
1.2.7F0突变体的筛选和白化表型F1的获得
青鳉胚胎眼睛色素形成后,能通过眼睛色素缺失的表型直接观察Me tyr基因的突变情况。根据统计眼睛色素缺失的结果,计算靶点的突变率,有效靶位能导致90%的胚胎在眼部色素产生缺失。
对比眼部黑色素正常的野生型胚胎(图2,靶序列测序结果如SEQ ID NO.4所示),挑选出色素缺失明显的F0的胚胎培养成鱼亲本(图3),F0多为杂合子,而且色素缺失的表型在发育到成鱼时候能重新回复为正常的黑色素。通过F0突变体亲本杂交产生F1胚胎。培养观察F1胚胎,其中含有黑色素正常和缺失的两种类型,筛选出色素缺失的F1胚胎继续培养(图4),就是纯合子的白化品系。从F1获得纯合子的成鱼具有白化表型可以稳定遗传(图4),其眼部表现为红色(图6),对比具有明显眼睛含有黑色素的野生型的青鳉成鱼(图5),而杂合子成鱼的表型与正常的野生无区别。我们通过进一步的测交实验,用纯合子的白化品系和野生的杂交,得到的成鱼眼部都具有黑色素和野生的表型一致,说明该基因的隐性遗传,白化表型需要等位基因都突变;用白化品系的自交得到的子代都是白化品系,说明等位基因都已突变,而且产生稳定遗传的表型。通过测序分析,该稳定遗传的白化品系来自于两种突变体,与野生型(SEQ ID NO.4)相比,靶序列附件的序列突变为SEQ ID NO.3所示序列或者突变SEQ ID NO.2所示序列,导致移码突变。
序列表
<110> 华中农业大学
<120> 一种分离的基因序列在制备日本青鳉白化品系中的应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
ggacaaacct ctgacctgtg tgg 23
<210> 2
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
ctgttcagac acccatatcc actctgttcc acacagaggt ttgtccagga gttctt 56
<210> 3
<211> 61
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ctgttcagac acccatatcc actctgttcc acacagagtc agaggtttgt ccaggagttc 60
t 61
<210> 4
<211> 61
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ctgttcagac acccatatcc actctgttcc acacaggtca gaggtttgtc caggagttct 60
t 61

Claims (4)

1.SEQ ID NO.1所示序列在制备日本青鳉白化品系中的应用。
2.根据权利要求1所述的应用,其应用过程包括:以SEQ ID NO.1为靶基因进行基因突变,挑选出色素缺失明显的F0的胚胎培养成鱼亲本,通过F0突变体亲本杂交产生F1胚胎,筛选出色素缺失的F1胚胎继续培养,眼部表现为红色的即为稳定遗传的日本青鳉白化品系。
3.根据权利要求2所述的应用,进行基因突变采用的是CRISPR/Cas9的方式。
4.根据权利要求3所述的应用,获得的稳定遗传的日本青鳉白化品系包含SEQ ID NO.2或SEQ ID NO.3所示的基因序列。
CN201711381572.9A 2017-12-20 2017-12-20 一种分离的基因序列在制备日本青鳉白化品系中的应用 Pending CN108018315A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711381572.9A CN108018315A (zh) 2017-12-20 2017-12-20 一种分离的基因序列在制备日本青鳉白化品系中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711381572.9A CN108018315A (zh) 2017-12-20 2017-12-20 一种分离的基因序列在制备日本青鳉白化品系中的应用

Publications (1)

Publication Number Publication Date
CN108018315A true CN108018315A (zh) 2018-05-11

Family

ID=62074504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711381572.9A Pending CN108018315A (zh) 2017-12-20 2017-12-20 一种分离的基因序列在制备日本青鳉白化品系中的应用

Country Status (1)

Country Link
CN (1) CN108018315A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129328A (zh) * 2019-04-25 2019-08-16 华中农业大学 ltk基因在制备日本青鳉无背景荧光透明品系中的应用
CN115521899A (zh) * 2022-05-06 2022-12-27 西南大学 一种高效的日本青鱂体外培养细胞CRISPR/Cas9基因组编辑方法及其应用
CN116676311A (zh) * 2023-07-11 2023-09-01 中国水产科学研究院黄海水产研究所 海水青鳉母源效应基因org及其sgRNA片段

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104263754A (zh) * 2014-08-29 2015-01-07 中国科学院广州生物医药与健康研究院 白化病模型猪的重构卵及其构建方法和模型猪的构建方法
CN106636204A (zh) * 2017-01-09 2017-05-10 华中农业大学 一种能够稳定遗传的白化大鳞副泥鳅育种方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104263754A (zh) * 2014-08-29 2015-01-07 中国科学院广州生物医药与健康研究院 白化病模型猪的重构卵及其构建方法和模型猪的构建方法
CN106636204A (zh) * 2017-01-09 2017-05-10 华中农业大学 一种能够稳定遗传的白化大鳞副泥鳅育种方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKIHIKO KOGA等: ""Albinism Due to Transposable Element Insertion in Fish"", 《PIGMENT CELL RESEARCH》 *
INAGAKI,H.等: ""Oryzias latipes gene for tyrosine precursor,complete cds"", 《GENBANK DATABASE》 *
JIAN FANG等: ""Generation of albinomedaka (Oryzias latipes) by CRISPR/Cas9"", 《JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION》 *
方健: ""利用CRISPR/Cas9技术编辑青鳉tyr和nanog基因"", 《中国优秀硕士学位论文全文数据库(电子期刊)农业科技辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129328A (zh) * 2019-04-25 2019-08-16 华中农业大学 ltk基因在制备日本青鳉无背景荧光透明品系中的应用
CN110129328B (zh) * 2019-04-25 2021-02-09 华中农业大学 ltk基因在制备日本青鳉无背景荧光透明品系中的应用
CN115521899A (zh) * 2022-05-06 2022-12-27 西南大学 一种高效的日本青鱂体外培养细胞CRISPR/Cas9基因组编辑方法及其应用
CN116676311A (zh) * 2023-07-11 2023-09-01 中国水产科学研究院黄海水产研究所 海水青鳉母源效应基因org及其sgRNA片段
CN117587025A (zh) * 2023-07-11 2024-02-23 中国水产科学研究院黄海水产研究所 海水青鳉母源效应基因org及其sgRNA片段

Similar Documents

Publication Publication Date Title
CN106047930B (zh) 一种PS1基因条件性敲除flox大鼠的制备方法
Yen et al. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes
CN106244557B (zh) 定点突变ApoE基因与LDLR基因的方法
CN108823248A (zh) 一种利用CRISPR/Cas9编辑陆川猪CD163基因的方法
CN104195177B (zh) 一种显著提高鱼类基因组编辑效率的方法
Liu et al. Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny
CN110684777B (zh) 一段分离的核苷酸序列在肌间刺减少的斑马鱼构建中的应用
AU2017101108A4 (en) Construction method of animal model of mucopolysaccharidosis type II and use thereof
CN108018315A (zh) 一种分离的基因序列在制备日本青鳉白化品系中的应用
WO2022111124A1 (zh) 发育正常无肌间刺鱼类新品种培育方法
CN110643636B (zh) 一种团头鲂MSTNa&amp;b基因敲除方法与应用
CN106148406B (zh) 猪ApoE基因敲除载体及其构建方法与应用
CN104351096A (zh) 一种大鳞副泥鳅良种选育方法
CN111549031A (zh) 一种草鱼和青鱼肌间刺变粗的分子育种方法
CN111560401A (zh) 一种翘嘴红鲌和团头鲂肌间刺变粗的分子育种方法
Gong et al. A new type of hybrid bream derived from a hybrid lineage of Megalobrama amblycephala (♀)× Culter alburnus (♂)
CN105274141A (zh) 一种用于原始生殖细胞靶向突变的转基因载体及制备方法和用途
CN110066805A (zh) 基因敲除选育adgrf3b基因缺失型斑马鱼的方法
CN106282230A (zh) 定点突变ldlr基因的方法
CN108300738B (zh) 一种nod遗传背景的中性粒细胞缺失的人源化小鼠模型的制备方法
CN112226465B (zh) 一段分离的核苷酸序列在无矿化肌间骨斑马鱼构建中的应用
CN106244556A (zh) 定点突变ApoE基因的方法
CN116103304B (zh) 一种水稻温敏雄性不育基因及其应用
CN108251456B (zh) 一种nod遗传背景的动脉粥样硬化小鼠模型的制备方法
CN115720874A (zh) 养殖经济鱼类无肌间刺种质创制方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180511