CN108011393A - 一种基于概率灵敏度指标的风电落点配置方法 - Google Patents

一种基于概率灵敏度指标的风电落点配置方法 Download PDF

Info

Publication number
CN108011393A
CN108011393A CN201711284985.5A CN201711284985A CN108011393A CN 108011393 A CN108011393 A CN 108011393A CN 201711284985 A CN201711284985 A CN 201711284985A CN 108011393 A CN108011393 A CN 108011393A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
mfrac
prime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711284985.5A
Other languages
English (en)
Other versions
CN108011393B (zh
Inventor
和萍
杨小亮
金楠
李从善
陶玉昆
李凯章
王浩
和艳萍
蔺小楠
朱瀚光
杨倩
李若铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Light Industry
Original Assignee
Zhengzhou University of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Light Industry filed Critical Zhengzhou University of Light Industry
Priority to CN201711284985.5A priority Critical patent/CN108011393B/zh
Publication of CN108011393A publication Critical patent/CN108011393A/zh
Application granted granted Critical
Publication of CN108011393B publication Critical patent/CN108011393B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Secondary Cells (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明涉及一种基于概率灵敏度指标的风电落点配置方法,包括以下步骤:1)基于留数和灵敏度的关系,提出电力系统概率灵敏度指标;2)根据概率灵敏度指标,确定与系统机电模式强相关的发电机组,拟选配置落点方案;3)基于两质量模块轴系模型,构建双馈风电机组传动系统模型;4)采用特征根分析和动态时域仿真分析,对比分析风电两种配置方案:“增加”和“替换”对系统振荡特性的影响,并根据计算结果得出风电落点优化配置方案。本发明为大规模风电场落点规划以及分析风电入网后系统低频振荡特性提供参考。

Description

一种基于概率灵敏度指标的风电落点配置方法
技术领域
本发明属于新能源发电技术中的风电并网技术领域,具体涉及一种基于概率灵敏度指标的风电落点配置方法。
背景技术
风能以其所具有的缓解能源危机、保护环境、促进能源和环境可持续发展等方面的优势而受到世界各国的高度重视。大规模的风电入网与电力系统联网运行,对系统的稳定性存在积极和消极的影响,特别是小干扰稳定问题。研究表明,大容量风电机组并网点对电力系统的影响不容忽视,因此研究风电机组尤其是目前广泛应用的双馈风电机组落点配置方案是一个重要课题。由于风电机组的入网,系统会发生结构和潮流变化,对风电落点配置方案展开研究,不仅对解析风电并网后系统稳定运行特性具有重要意义,而且还可以为提高互联系统中新能源利用消纳能力提供新思路和新方法。
发明内容
本发明提供一种基于概率灵敏度指标的风电落点配置方法,用于解决现有缺少研究风电机组落点配置的技术问题。
为解决上述技术问题,本发明所采用的技术方案如下:
一种基于概率灵敏度指标的风电落点配置方法,步骤如下:S1,根据电力系统状态矩阵留数和电力系统多运行方式,构造电力系统的概率灵敏度指标。
S1.1,根据电力系统的系统状态矩阵方程,计算电力系统的留数矩阵;
具体步骤为,S1.1.1,获取电力系统的状态矩阵:
其中,X为微分方程组中描述系统动态特性的状态变量;Y为代数方程组中系统的输入向量;A为系统状态矩阵;B为中间状态矩阵;C为输出状态矩阵;Z为系统中间状态变量;
S1.1.2,根据步骤S1.1.1,得到电力系统的第k个模式对应的留数矩阵:
其中,Wk为电力系统第k个模式的左特征向量;Uk为电力系统第k个模式的右特征向量;且WkUk=1。
S1.1.3,考虑电力系统闭环控制器,得到电力系统的留数矩阵:
其中,λk为电力系统第k个模式的特征值;q为控制器参数;Wk为电力系统第k个模式的左特征向量;Uk为电力系统第k个模式的右特征向量;F(λk,q)为控制器传递函数;C为输出状态矩阵。
S1.2,考虑电力系统多运行方式,得出电力系统的特征值实部和阻尼比对第m个发电机的概率灵敏度指标;
其中,αk'为扩展实部;为第m个控制器参数对αk'的灵敏度;ξk'为扩展阻尼比;为第m个控制器参数对ξk'的灵敏度;为实部均值;为阻尼比均值;为实部标准差;为阻尼比标准差;Gm为控制器增益参数。
S2,基于两质量模块轴系模型,构建完整双馈风电机组DFIG的模型:
式中:Ls为定子自感;Lr为转子自感;Lm为定转子互感;rs为定子电阻;rr为转子电阻;xs为定子电抗;xs'为定子暂态电抗;eds'是暂态电势的d轴分量;eqs'是暂态电势的q轴分量;T0'是转子时间常数;ids是定子电流的d轴分量;iqs是定子电流的q轴分量;ωs是发电机同步转速;sr是转子转差率;vds是定子电压的d轴分量;vqs是定子电压的q轴分量;vdr是转子电压的d轴分量;vqr是转子电压的q轴分量;
S3,根据步骤S1的概率灵敏度指标,获得电力系统中风电落点的参考点:
选择电力系统中灵敏度指标值大的发电机组作为风电落点的参考点。
电力系统的传递函数为:
式中:KPSS为电力系统稳定器PSS增益;T1、T2、T3和T4为超前-滞后时间常数;Tw为隔直环节的时间常数。
S4,根据步骤S3,给定风电的配置方案:
所述配置方案为两种,一种是在电力系统参考点增加风电,一种是在电力系统参考点替换原发电机组。
S5,基于概率灵敏度指标,采用特征根分析和动态时域仿真方法,分别研究两种配置方案下电力系统的低频振荡特性,并选择电力系统小干扰稳定性高的配置方案。
本发明的有益效果是,在概率灵敏度指标的基础上,获得电力系统中风电场的并网点的参考位置,并通过仿真和特征根分析,选择使得电力系统小干扰性能更稳定的配置方案作为风电场并入电网的方案,为系统风电场落点入网规划与设计提供了理论依据,对全面而系统的分析风电入网后系统低频振荡特性具有积极意义。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明λ,ΔPa和ΔΩ关系图。
图2为本发明某一特征值的概率密度分布图。
图3为本发明理想特征根分布区域。
图4为本发明WSCC 3机9节点系统。
图5为本发明一个算例系统特征根的概率密度分布图。
图6为本发明系统“增加”和“替换”风电机组示意图。
图7为本发明随DFIG出力增加系统阻尼比变化轨迹。
图8为本发明不同工况下发电机G3的功角曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种基于概率灵敏度指标的风电落点配置方法,步骤如下:S1,根据电力系统状态矩阵留数和电力系统多运行方式,构造电力系统的概率灵敏度指标。
S1.1,根据电力系统的系统状态矩阵方程,计算电力系统的留数矩阵;
具体步骤为,S1.1.1,获取电力系统的状态矩阵:
其中,X为微分方程组中描述系统动态特性的状态变量;Y为代数方程组中系统的输入向量;A为系统状态矩阵;B为中间状态矩阵;C为输出状态矩阵;Z为系统中间状态变量。
S1.1.2,根据步骤S1.1.1,得到电力系统的第k个模式对应的留数矩阵:
其中,Wk为电力系统第k个模式的左特征向量;Uk为电力系统第k个模式的右特征向量;且WkUk=1。
S1.1.3,考虑电力系统闭环控制器,得到电力系统的留数矩阵:
其中,λk为电力系统第k个模式的特征值;q为控制器参数;Wk为电力系统第k个模式的左特征向量;Uk为电力系统第k个模式的右特征向量;F(λk,q)为控制器传递函数;C为输出状态矩阵。
S1.2,考虑电力系统多运行方式,得出电力系统的特征值实部和阻尼比对第m个发电机的概率灵敏度指标;
其中,αk'为扩展实部;为第m个控制器参数对αk'的灵敏度;ξk'为扩展阻尼比;为第m个控制器参数对ξk'的灵敏度;为实部均值;为阻尼比均值;为实部标准差;为阻尼比标准差;Gm为控制器增益参数。
S2,基于两质量模块轴系模型,构建完整双馈风电机组DFIG的模型:
式中:Ls为定子自感;Lr为转子自感;Lm为定转子互感;rs为定子电阻;rr为转子电阻;xs为定子电抗;xs'为定子暂态电抗;eds'是暂态电势的d轴分量;eqs'是暂态电势的q轴分量;T0'是转子时间常数;ids是定子电流的d轴分量;iqs是定子电流的q轴分量;ωs是发电机同步转速;sr是转子转差率;vds是定子电压的d轴分量;vqs是定子电压的q轴分量;vdr是转子电压的d轴分量;vqr是转子电压的q轴分量;
S3,根据步骤S1的概率灵敏度指标,获得电力系统中风电落点的参考点:
选择电力系统中灵敏度指标值大的发电机组作为风电落点的参考点。
电力系统的传递函数为:
式中:KPSS为电力系统稳定器PSS增益;T1、T2、T3和T4为超前-滞后时间常数;Tw为隔直环节的时间常数。
S4,根据步骤S3,给定风电的配置方案:
所述配置方案为两种,一种是在电力系统参考点增加风电,一种是在电力系统参考点替换原发电机组。
S5,基于概率灵敏度指标,采用特征根分析和动态时域仿真方法,分别研究两种配置方案下电力系统的低频振荡特性,并选择电力系统小干扰稳定性高的配置方案。
下面对本发明的思路进行说明。
根据描述电力系统状态矩阵模式留数与灵敏度的关系,提出电力系统概率灵敏度指标;通过计算系统概率灵敏度指标,拟选风电配置落点方案,并考虑电力系统稳定器影响;基于概率灵敏度指标,采用特征根分析和动态时域仿真方法研究风电两种配置方案:“增加”和“替换”对系统振荡特性的影响,并根据计算结果分析风电落点优化配置方案,该方法包括下列步骤:
Step1:概率灵敏度指标
为描述留数和灵敏度的关系,系统的状态矩阵可以表示为:
对于第k个模式。留数矩阵可由系统左右特征向量计算。
其中,Wk、Uk是第k个模式的左右特征向量,且
假设闭环控制器传递函数为:Z=F(s,q)Y,系统系数矩阵变为Ac=A+BF(s,q)C,则:
由式(2)和(3)可知
在小干扰情况下系统的功率摇摆方程ΔPa=ΔPm-ΔPe=pMΔΩ,关系图如图1所示,ΔPm、ΔPe分别为发电机机械功率和电磁功率增量,ΔPa为功率增量,ΔΩ为转速增量,p为拉普拉斯算子,若考虑p≡λ,则可定义
系统多运行方式的正态假定下,特征根的统计特性可用相应的均值、方差描述,并可由概率特性计算确定。
对某一特征值λk=αk+jβk而言,若其实部的均值和标准差分别是则αk分布在范围内的概率为0.99993,并可近似认为完全分布在该区域内,如图2所示。因此,为了保证λk的稳定性,该区域应完全位于复平面的左半平面,也可用区间上届α'k或标准化均值描述为:
α'k可以认为是扩展的阻尼系数。当满足式(6)时,认为特征值λk是多运行方式下鲁棒稳定的;否则,不稳定。
类似于上式中的α'k扩展阻尼比系数可以由ξk的均值和标准方差求得。所有阻尼比样本都不应小于可接受的门槛值ξc,也就是阻尼比的概率密度曲线应分布在‘ξ=ξc’的右侧,如图3所示,即:
第k个特征值实部和阻尼比对第m个PSS增益Gm的灵敏度指标如下式。
以上灵敏度指标反映了不同机电模式与发电机的相关程度。其值越大,表明所对应的发电机组与模式越相关。
表1特征根实部和阻尼比对不同输入信号的概率灵敏度指标
针对图4所示WSCC3机9节点系统,表1给出了概率灵敏度指标,图5给出了特征值的概率分布。由此可见,发电机G1对模式1比较敏感,发电机G3对模式2比较敏感。后续风电落点方案将考虑到此因素。
Step2:风电两种配置方案
风电并网势必会影响电力系统小干扰稳定性,为进一步分析风电并网对系统低频振荡特性带来的影响,主要研究可按照如图6所示两种配置方案:“增加”和“替换”,分析风电并网前后对系统阻尼特性的影响。“增加”风电机组,即ΔPw+jΔQw≠0,ΔPg+jΔQg≠0,其影响系统机电振荡模式的原因主要是:1)风电接入改变了系统结构和系统潮流;2)增加的风电机组和同步机组的相互作用。“替换”风电机组ΔPw+jΔQw≠0,ΔPg+jΔQg=0,其影响系统机电振荡模式的原因主要是:1)原SG2与SG1的相互作用消失;2)新增风电机组DFIG与SG2的动态交互作用。
Step3:采用特征根分析和动态时域仿真方法,基于概率灵敏度指标,分别计算在拟选并网点“增加”和“替换”风电机组情况下系统的低频振荡特性,从系统小干扰稳定角度分析风电落点优化配置方案。
结合Step1与Step2的分析,在概率灵敏度确定的安装点上“增加”风电机组可得表2所示的机电模式,并同时考虑系统是否加装电力系统稳定器(PSS)的影响。
表2系统在不同工况下的机电振荡模式
图7给出了随DFIG出力增加系统阻尼比变化轨迹,图8给出了不同工况下发电机G3的功角曲线,其中曲线1表示无DFIG并网,曲线2表示DFIG出力10MW,曲线3表示DFIG出力60MW。
当“替换”同步发电机组时也可得到不同工况下互联系统低频特性特性,如表3所示。
表3DFIG替换同步机时部分特征根
从结果可以看出,DFIG的“增加”比“替换”更有利于系统稳定性,根据灵敏度指标,关联度越大的发电机组接入DFIG时对系统的冲击越大,在风电场规划时可根据此指标来优化风电落点方案。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种基于概率灵敏度指标的风电落点配置方法,其特征在于,步骤如下:S1,根据电力系统状态矩阵留数和电力系统多运行方式,构造电力系统的概率灵敏度指标;
S2,基于两质量模块轴系模型,构建完整双馈风电机组DFIG的模型:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <msub> <mi>x</mi> <mi>s</mi> </msub> <mo>&amp;prime;</mo> </msup> </mrow> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> </mfrac> <mfrac> <mrow> <msub> <mi>di</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>s</mi> </msub> <mo>-</mo> <msubsup> <mi>x</mi> <mi>s</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mrow> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <msubsup> <mi>T</mi> <mn>0</mn> <mo>&amp;prime;</mo> </msubsup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>X</mi> <mi>s</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>s</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>v</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>r</mi> </msub> </mrow> <mo>)</mo> </mrow> <msubsup> <mi>e</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <msubsup> <mi>T</mi> <mn>0</mn> <mo>&amp;prime;</mo> </msubsup> </mrow> </mfrac> <msubsup> <mi>e</mi> <mrow> <mi>q</mi> <mi>s</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <mfrac> <msub> <mi>L</mi> <mi>m</mi> </msub> <msub> <mi>L</mi> <mi>r</mi> </msub> </mfrac> <msub> <mi>v</mi> <mrow> <mi>d</mi> <mi>r</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <msub> <mi>x</mi> <mi>s</mi> </msub> <mo>&amp;prime;</mo> </msup> </mrow> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> </mfrac> <mfrac> <mrow> <msub> <mi>di</mi> <mrow> <mi>q</mi> <mi>s</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>s</mi> </msub> <mo>-</mo> <msubsup> <mi>x</mi> <mi>s</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mrow> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <msubsup> <mi>T</mi> <mn>0</mn> <mo>&amp;prime;</mo> </msubsup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>s</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>x</mi> <mi>s</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>i</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>v</mi> <mrow> <mi>q</mi> <mi>s</mi> </mrow> </msub> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>r</mi> </msub> </mrow> <mo>)</mo> </mrow> <msubsup> <mi>e</mi> <mrow> <mi>q</mi> <mi>s</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <msubsup> <mi>T</mi> <mn>0</mn> <mo>&amp;prime;</mo> </msubsup> </mrow> </mfrac> <msubsup> <mi>e</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <mfrac> <msub> <mi>L</mi> <mi>m</mi> </msub> <msub> <mi>L</mi> <mi>r</mi> </msub> </mfrac> <msub> <mi>v</mi> <mrow> <mi>q</mi> <mi>r</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msubsup> <mi>de</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>s</mi> <mi>r</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <msubsup> <mi>e</mi> <mrow> <mi>q</mi> <mi>s</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <mfrac> <msub> <mi>L</mi> <mi>m</mi> </msub> <msub> <mi>L</mi> <mi>r</mi> </msub> </mfrac> <msub> <mi>v</mi> <mrow> <mi>q</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <msubsup> <mi>T</mi> <mn>0</mn> <mo>&amp;prime;</mo> </msubsup> </mfrac> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msubsup> <mi>e</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mi>s</mi> </msub> <mo>-</mo> <msubsup> <mi>x</mi> <mi>s</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mrow> <mi>q</mi> <mi>s</mi> </mrow> </msub> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msubsup> <mi>de</mi> <mrow> <mi>q</mi> <mi>s</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>s</mi> <mi>r</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <msubsup> <mi>e</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mi>s</mi> </msub> <mfrac> <msub> <mi>L</mi> <mi>m</mi> </msub> <msub> <mi>L</mi> <mi>r</mi> </msub> </mfrac> <msub> <mi>v</mi> <mrow> <mi>d</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <msubsup> <mi>T</mi> <mn>0</mn> <mo>&amp;prime;</mo> </msubsup> </mfrac> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msubsup> <mi>e</mi> <mrow> <mi>q</mi> <mi>s</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mi>s</mi> </msub> <mo>-</mo> <msubsup> <mi>x</mi> <mi>s</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mrow> <mi>d</mi> <mi>s</mi> </mrow> </msub> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
式中:Ls为定子自感;Lr为转子自感;Lm为定转子互感;rs为定子电阻;rr为转子电阻;xs为定子电抗;xs'为定子暂态电抗;eds'是暂态电势的d轴分量;eqs'是暂态电势的q轴分量;T0'是转子时间常数;ids是定子电流的d轴分量;iqs是定子电流的q轴分量;ωs是发电机同步转速;sr是转子转差率;vds是定子电压的d轴分量;vqs是定子电压的q轴分量;vdr是转子电压的d轴分量;vqr是转子电压的q轴分量;
S3,根据步骤S1的概率灵敏度指标,获得电力系统中风电落点的参考点;
选择电力系统中灵敏度指标值大的发电机组作为风电落点的参考点;
S4,根据步骤S3,给定风电的配置方案;
所述配置方案为两种,一种是在电力系统参考点增加风电,一种是在电力系统参考点替换原发电机组;
S5,基于概率灵敏度指标,采用特征根分析和动态时域仿真方法,分别研究两种配置方案下电力系统的低频振荡特性,并选择电力系统小干扰稳定性高的配置方案。
2.根据权利要求1所述的基于概率灵敏度指标的风电落点配置方法,其特征在于:在步骤S1中,具体步骤为,S1.1,根据电力系统的系统状态矩阵方程,计算电力系统的留数矩阵:
<mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;lambda;</mi> <mi>k</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>q</mi> </mrow> </mfrac> <mo>=</mo> <msubsup> <mi>W</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>A</mi> <mi>c</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>q</mi> </mrow> </mfrac> <msub> <mi>U</mi> <mi>k</mi> </msub> <mo>=</mo> <msubsup> <mi>W</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>F</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;lambda;</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>q</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>q</mi> </mrow> </mfrac> <msub> <mi>CU</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
其中,λk为电力系统第k个模式的特征值;q为控制器参数;Wk为电力系统第k个模式的左特征向量;Uk为电力系统第k个模式的右特征向量;F(λk,q)为控制器传递函数;C为输出状态矩阵;
S1.2,考虑电力系统多运行方式,得出电力系统的特征值实部和阻尼比对第m个发电机的概率灵敏度指标:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>PSI</mi> <mrow> <msubsup> <mi>&amp;alpha;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>S</mi> <mrow> <msubsup> <mi>&amp;alpha;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>&amp;alpha;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>G</mi> <mi>m</mi> </msub> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <msub> <mi>G</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;OverBar;</mo> </mover> <mi>k</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>G</mi> <mi>m</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mn>4</mn> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;sigma;</mi> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>G</mi> <mi>m</mi> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>PSI</mi> <mrow> <msubsup> <mi>&amp;xi;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>S</mi> <mrow> <msubsup> <mi>&amp;xi;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>&amp;xi;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>G</mi> <mi>m</mi> </msub> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <msub> <mi>G</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mover> <mi>&amp;xi;</mi> <mo>&amp;OverBar;</mo> </mover> <mi>k</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>G</mi> <mi>m</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mn>4</mn> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;sigma;</mi> <msub> <mi>&amp;xi;</mi> <mi>k</mi> </msub> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>G</mi> <mi>m</mi> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
其中,αk'为扩展实部;为第m个控制器参数对αk'的灵敏度;ξk'为扩展阻尼比;为第m个控制器参数对ξk'的灵敏度;为实部均值;为阻尼比均值;为实部标准差;为阻尼比标准差;Gm为控制器增益参数。
3.根据权利要求2所述的基于概率灵敏度指标的风电落点配置方法,其特征在于:在步骤S1.1中,具体步骤为,S1.1.1,获取电力系统的状态矩阵:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>X</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mi>X</mi> <mo>+</mo> <mi>B</mi> <mi>Z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>Y</mi> <mo>=</mo> <mi>C</mi> <mi>X</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
其中,X为微分方程组中描述系统动态特性的状态变量;Y为代数方程组中系统的输入向量;A为系统状态矩阵;B为中间状态矩阵;C为输出状态矩阵;Z为系统中间状态变量;
S1.1.2,根据步骤S1.1.1,得到电力系统的第k个模式对应的留数矩阵:
<mrow> <msub> <mi>R</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>CU</mi> <mi>k</mi> </msub> <msubsup> <mi>W</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mi>B</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
其中,Wk为电力系统第k个模式的左特征向量;Uk为电力系统第k个模式的右特征向量;且WkUk=1;
S1.1.3,考虑电力系统闭环控制器,得到电力系统的留数矩阵:
<mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;lambda;</mi> <mi>k</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>q</mi> </mrow> </mfrac> <mo>=</mo> <msubsup> <mi>W</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>A</mi> <mi>c</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>q</mi> </mrow> </mfrac> <msub> <mi>U</mi> <mi>k</mi> </msub> <mo>=</mo> <msubsup> <mi>W</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>F</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;lambda;</mi> <mi>k</mi> </msub> <mo>,</mo> <mi>q</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>q</mi> </mrow> </mfrac> <msub> <mi>CU</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
其中,λk为电力系统第k个模式的特征值;q为控制器参数;Wk为电力系统第k个模式的左特征向量;Uk为电力系统第k个模式的右特征向量;F(λk,q)为控制器传递函数;C为输出状态矩阵。
4.根据权利要求1所述的基于概率灵敏度指标的风电落点配置方法,其特征在于:在步骤S3中,所述电力系统的传递函数为:
<mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>K</mi> <mrow> <mi>P</mi> <mi>S</mi> <mi>S</mi> </mrow> </msub> <mfrac> <mrow> <msub> <mi>sT</mi> <mi>w</mi> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>sT</mi> <mi>w</mi> </msub> </mrow> </mfrac> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>sT</mi> <mn>1</mn> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>sT</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>sT</mi> <mn>3</mn> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>sT</mi> <mn>4</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
式中:KPSS为电力系统稳定器PSS增益;T1、T2、T3和T4为超前-滞后时间常数;Tw为隔直环节的时间常数。
CN201711284985.5A 2017-12-07 2017-12-07 一种基于概率灵敏度指标的风电落点配置方法 Active CN108011393B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711284985.5A CN108011393B (zh) 2017-12-07 2017-12-07 一种基于概率灵敏度指标的风电落点配置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711284985.5A CN108011393B (zh) 2017-12-07 2017-12-07 一种基于概率灵敏度指标的风电落点配置方法

Publications (2)

Publication Number Publication Date
CN108011393A true CN108011393A (zh) 2018-05-08
CN108011393B CN108011393B (zh) 2019-02-22

Family

ID=62057143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711284985.5A Active CN108011393B (zh) 2017-12-07 2017-12-07 一种基于概率灵敏度指标的风电落点配置方法

Country Status (1)

Country Link
CN (1) CN108011393B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110032802A (zh) * 2019-04-15 2019-07-19 中国民航大学 基于dq变换的飞机供电系统灵敏度分析计算方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270481A (ja) * 1999-03-15 2000-09-29 Meidensha Corp 電力系統の安定度解析方法
CN105117983A (zh) * 2015-08-31 2015-12-02 国家电网公司 考虑负荷及新能源随机性的upfc安装位置优化方法
CN106849057A (zh) * 2016-12-30 2017-06-13 西安理工大学 基于现代内点法和灵敏度分析法的分布式风电源优化方法
CN107394799A (zh) * 2017-07-22 2017-11-24 福州大学 基于部分左特征结构配置的电力系统优化阻尼控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270481A (ja) * 1999-03-15 2000-09-29 Meidensha Corp 電力系統の安定度解析方法
CN105117983A (zh) * 2015-08-31 2015-12-02 国家电网公司 考虑负荷及新能源随机性的upfc安装位置优化方法
CN106849057A (zh) * 2016-12-30 2017-06-13 西安理工大学 基于现代内点法和灵敏度分析法的分布式风电源优化方法
CN107394799A (zh) * 2017-07-22 2017-11-24 福州大学 基于部分左特征结构配置的电力系统优化阻尼控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
边晓燕等: ""多运行方式下概率特征灵敏度分析与PSS鲁棒设计"", 《电力系统保护与控制》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110032802A (zh) * 2019-04-15 2019-07-19 中国民航大学 基于dq变换的飞机供电系统灵敏度分析计算方法
CN110032802B (zh) * 2019-04-15 2023-05-26 中国民航大学 基于dq变换的飞机供电系统灵敏度分析计算方法

Also Published As

Publication number Publication date
CN108011393B (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
CN106059422B (zh) 一种用于双馈风电场次同步振荡抑制的模糊控制方法
CN110454328A (zh) 一种无风速传感器下的风力发电系统功率追踪方法
CN105703382A (zh) 一种风电场次同步振荡抑制方法和系统
CN108011364A (zh) 一种分析dfig动力学特性与电力系统动态交互影响的方法
CN111384730B (zh) 一种风机虚拟惯量控制参数的确定方法
Shao et al. An equivalent model for sub-synchronous oscillation analysis in direct-drive wind farms with VSC-HVDC systems
CN105762816B (zh) 一种抑制次同步相互作用的方法
CN105678033A (zh) 一种适用于电磁暂态仿真的风电场等值建模方法
Sun et al. Modelling and analysis of frequency-responsive wind turbine involved in power system ultra-low frequency oscillation
Liang et al. The modeling and numerical simulations of wind turbine generation system with free vortex method and simulink
Gao et al. A fast high-precision model of the doubly-fed pumped storage unit
CN114759618A (zh) 基于动态能量确定双馈风电并网系统稳定性的方法及系统
CN111049178A (zh) 一种直驱永磁风电机组经vsc-hvdc并网稳定控制分析方法
Tan et al. Multi-time scale model reduction strategy of variable-speed pumped storage unit grid-connected system for small-signal oscillation stability analysis
Xu et al. Sub-synchronous frequency domain-equivalent modeling for wind farms based on rotor equivalent resistance characteristics
Yan et al. Analysis of subsynchronous oscillation of direct drive PMSG based wind farm under low operating condition
CN109713661A (zh) 风电场接入对多机系统故障极限切除时间影响的分析方法
CN103956767B (zh) 一种考虑尾流效应的风电场并网稳定性分析方法
Dida et al. Fuzzy logic control of grid connected DFIG system using back-to-back converters
CN108011393A (zh) 一种基于概率灵敏度指标的风电落点配置方法
Altimania Modeling of doubly-fed induction generators connected to distribution system based on eMEGASim® real-time digital simulator
CN104037806B (zh) 一种基于风力发电机组基本模型的电力系统潮流计算方法
CN110309625A (zh) 一种双馈风电并网系统的能量稳定域确定方法及系统
CN115455687A (zh) 基于虚拟同步型风力发电机组的风电场动态聚合建模方法
CN114938021A (zh) 一种考虑机间交互的直驱风电场参数调整方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant