CN108010115A - 用于cbct成像的多平面重建方法、装置、设备及存储介质 - Google Patents

用于cbct成像的多平面重建方法、装置、设备及存储介质 Download PDF

Info

Publication number
CN108010115A
CN108010115A CN201711052020.3A CN201711052020A CN108010115A CN 108010115 A CN108010115 A CN 108010115A CN 201711052020 A CN201711052020 A CN 201711052020A CN 108010115 A CN108010115 A CN 108010115A
Authority
CN
China
Prior art keywords
image
observed
dimensional data
dimensional
texture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711052020.3A
Other languages
English (en)
Other versions
CN108010115B (zh
Inventor
李凌
陈鸣闽
李志成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN201711052020.3A priority Critical patent/CN108010115B/zh
Publication of CN108010115A publication Critical patent/CN108010115A/zh
Application granted granted Critical
Publication of CN108010115B publication Critical patent/CN108010115B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/08Volume rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/04Texture mapping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2215/00Indexing scheme for image rendering
    • G06T2215/06Curved planar reformation of 3D line structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明适用计算机技术领域,提供了一种用于CBCT成像的多平面重建的方法、装置、设备及存储介质,该方法包括:对锥形束CT成像扫描系统扫描到的透视图像进行三维重建,获得投照体的三维体数据,构建三维体数据的一维纹理和三维纹理,计算待观测点处的轴向位图像、矢状位图像、冠状位图像以及斜位图像在三维纹理上的纹理坐标,计算待观测曲面图像在三维纹理上的纹理坐标,根据轴向位图像、矢状位图像、冠状位图像、斜位图像、待观测曲面图像的纹理坐标,绘制轴向位图像、矢状位图像、冠状位图像、斜位图像、待观测曲面图像并输出,从而通过绘制不同姿态二维图像,有效地提高了多平面重建的立体感和整体性。

Description

用于CBCT成像的多平面重建方法、装置、设备及存储介质
技术领域
本发明属于计算机技术领域,尤其涉及一种用于CBCT成像的多平面重建方法、装置、设备及存储介质。
背景技术
CBCT(Cone beam CT,锥形束CT)成像技术起源于西门子医疗系统集团近年来推出的DynaCT技术,其原理是利用锥形束X射线围绕投照体做环形透视扫描,对扫描后的数据进行计算机重建生成三维体数据。在CBCT扫描重建获得三维体数据后,通常通过多平面重建方式对三维体数据进行显示。
多平面重建是一种三维体数据的显示方式,是在轴向位图像上按需要任意画线,绘制该画线平面的三维重建图像,绘制的三维重建图像包括轴向位图像、冠状位图像、矢状位图像以及任意角度斜位图像。目前,通过多平面重建可以较好地显示患者组织器官内复杂的解剖关系,有利于病灶的准确定位,能够清楚测量骨碎片的大小、位移情况,并且提供骨折周围软组织肿胀、积血等信息,然而,多平面重建的不足之处是缺乏立体感和整体性。
发明内容
本发明的目的在于提供一种用于CBCT成像的多平面重建方法、装置、设备及存储介质,旨在解决现有技术中用于CBCT成像的多平面重建缺乏立体感和整体性的问题。
一方面,本发明提供了一种用于CBCT成像的多平面重建方法,所述方法包括下述步骤:
接收通过锥形束CT成像扫描系统扫描到的投照体的透视图像,对所述透视图像进行三维重建,获得所述投照体的三维体数据;
构建所述三维体数据的一维纹理,根据所述三维体数据的一维纹理和预设的颜色映射方式,构建所述三维体数据的三维纹理;
根据用户输入的所述三维体数据上待观测点的位置信息,计算所述待观测点处的轴向位图像、矢状位图像、冠状位图像以及斜位图像在所述三维体数据的三维纹理上的纹理坐标;
根据所述用户输入的待观测曲面图像与所述三维体数据的交线,计算所述待观测曲面图像在所述三维体数据的三维纹理上的纹理坐标;
根据所述轴向位图像、矢状位图像、冠状位图像以及斜位图像的纹理坐标,绘制所述轴向位图像、矢状位图像、冠状位图像以及斜位图像并输出,根据所述待观测曲面图像的纹理坐标绘制所述待观测曲面图像并输出。
另一方面,本发明提供了一种用于CBCT成像的多平面重建装置,所述装置包括:
三维重建单元,用于接收通过锥形束CT成像扫描系统扫描到的投照体的透视图像,对所述透视图像进行三维重建,获得所述投照体的三维体数据;
纹理构建单元,用于构建所述三维体数据的一维纹理,根据所述三维体数据的一维纹理和预设的颜色映射方式,构建所述三维体数据的三维纹理;
第一坐标计算单元,用于根据用户输入的所述三维体数据上待观测点的位置信息,计算所述待观测点处的轴向位图像、矢状位图像、冠状位图像以及斜位图像在所述三维体数据的三维纹理上的纹理坐标;
第二坐标计算单元,用于根据所述用户输入的待观测曲面图像与所述三维体数据的交线,计算所述待观测曲面图像在所述三维体数据的三维纹理上的纹理坐标;以及
绘制输出单元,用于根据所述轴向位图像、矢状位图像、冠状位图像以及斜位图像的纹理坐标,绘制所述轴向位图像、矢状位图像、冠状位图像以及斜位图像并输出,根据所述待观测曲面图像的纹理坐标绘制所述待观测曲面图像并输出。
另一方面,本发明还提供了一种医疗设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述一种用于CBCT成像的多平面重建方法所述的步骤。
另一方面,本发明还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述一种用于CBCT成像的多平面重建方法所述的步骤。
本发明通过CBCT扫描系统扫描投照体并对扫描的透视图像进行三维重建,获得投照体的三维体数据,构建三维体数据的一维纹理,并根据预设的颜色映射方式构建三维体数据的三维纹理,接着,计算待观测点处的轴向位图像、矢状位图像、冠状位图像以及斜位图像在三维纹理上的纹理坐标,计算待观测曲面图像的纹理坐标,绘制轴向位图像、矢状位图像、冠状位图像、斜位图像、待观测曲面图像,从而有效地提高了多平面重建的立体感和整体性。
附图说明
图1是本发明实施例一提供的用于CBCT成像的多平面重建方法的实现流程图;
图2是本发明实施例一提供的用于CBCT成像的多平面重建方法中颜色映射方式的S型映射曲线示例图;
图3是本发明实施例一提供的用于CBCT成像的多平面重建方法中绘制的轴向位图像、矢状位图像、冠状位图像、斜位图像以及待观测曲面图像的示例图;
图4是本发明实施例二提供的用于CBCT成像的多平面重建装置的结构示意图;
图5是本发明实施例二提供的用于CBCT成像的多平面重建装置的优选结构示意图;以及
图6是本发明实施例三提供的医疗设备的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行详细描述:
实施例一:
图1示出了本发明实施例一提供的用于CBCT成像的多平面重建方法的实现流程,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
在步骤S101中,接收通过锥形束CT成像扫描系统扫描到的投照体的透视图像,对透视图像进行三维重建,获得投照体的三维体数据。
本发明实施例适用于锥形束CT(CBCT)成像的多平面重建。通过CBCT成像扫描系统扫描投照体,获得投照体不同角度的透视图像,根据透视图像进行三维重建,获得投照体的三维体数据。其中,三维体数据即体数据,投照体为患者的组织器官。
作为示例地,可按照扫描时的位置和角度信息对这些透视图像进行规则化处理,得到三维体数据。
在步骤S102中,构建三维体数据的一维纹理,根据三维体数据的一维纹理和预设的颜色映射方式,构建三维体数据的三维纹理。
在本发明实施例中,优选地,使用OpenGL中的多重纹理、着色器,相应地为三维体数据构建一维纹理和三维纹理,以提高多平面重建的绘制速度和显示速度。
进一步优选地,可通过OpenGL中的多重纹理将预设的颜色查找表设置为三维体数据的一维纹理,再由OpenGL中的着色器利用GPU计算三维体数据的三维纹理所对应的一维纹理索引值,根据一维纹理索引值从颜色查找表中查找三维纹理RGBA颜色中的RGB分量,同时将三维体数据设置三维纹理RGBA颜色中的Alpha分量,通过OpenGL中的多重纹理和三维纹理对应RGBA颜色,构建三维纹理,以提高多平面重建的绘制速度和显示速度。
优选地,颜色查找表为12阶4096灰阶的颜色查找表,颜色映射方式为S型映射算法,从而使得多平面重建中图像细节显示更加连续,改善图像边缘锯齿化现象。作为示例地,颜色映射方式的公式可为:
其中,index为三维纹理对应的一维纹理索引值,一维纹理索引值的数值范围在(0,1)内,k为预设参数,GrayFloat为三维体数据,windowLevel为预设的窗位,windowWidth为预设的窗宽。
例如,图2为12位4096灰阶S型映射曲线图,图2的横坐标为三维体数据,纵坐标为三维纹理对应的一维纹理索引值,窗位为500,窗宽为1000。
在步骤S103中,根据用户输入的三维体数据上待观测点的位置信息,计算待观测点处的轴向位图像、矢状位图像、冠状位图像以及斜位图像在三维体数据的三维纹理上的纹理坐标。
在本发明实施例中,当用户需要观察三维体数据某处的轴向位图像、矢状位图像、冠状位图像以及斜位图像时,用户可输入该点(即待观测点)的位置信息,其中,待观测点的位置信息可包括待观测点在三维体数据中的三维坐标和斜位图像的法向量。当接收到用户输入的三维体数据上待观测点的位置信息时,可根据待观测点在三维体数据中的三维坐标,计算待观测点处的轴向位图像、矢状位图像、冠状位图像在三维体数据的三维纹理上的纹理坐标,可根据待观测点在三维体数据中的三维坐标和斜位图像的法向量,计算斜位图像在三维体数据的三维纹理上的纹理坐标。
例如,在根据待观测点在三维体数据中的三维坐标(x0,y0,z0),计算待观测点处的轴向位图像、矢状位图像、冠状位图像的纹理坐标时,轴向位图像的纹理坐标为:
其中,iDepth为三维体数据的分辨率中的深度值;
矢状位图像的纹理坐标为:
其中,iWidth为三维体数据的分辨率中的宽度值;
冠状位图像的纹理坐标为:
其中,iHeight为三维体数据的分辨率中的高度值。
在步骤S104中,根据用户输入的待观测曲面图像与三维体数据的交线,计算待观测曲面图像在三维体数据的三维纹理上的纹理坐标。
在本发明实施例中,当用户需要观察三维体数据中的某个曲面图像时,可通过选定三维体数据中对应的某个区域,输入自身想要观测的待观测曲面图像。在计算待观测曲面图像在三维体数据的三维纹理上的纹理坐标时,首先,确定待观测曲面图像与三维体数据的交线,在该交线上按照预设方式(例如随机或者等距离)获一系列的离散点{Pi=(xi,yi,zi)|i=1,2,......,N},N为Pi的数量,通过预设的最小二乘法将这些离散点进行拟合扩散,得到扩散后的离散点{Qj=(xj,yj,zj)|j=1,2,......,M,M>>N},M为Qj的数量,通过这些扩散后的离散点将待观测曲面图像分解为M-1个平面,并计算这些平面在三维体数据的三维纹理上的纹理坐标,这些纹理坐标即待观测曲面图像的纹理坐标。
作为示例地,在通过这些扩散后的离散点将待观测曲面图像分解为M-1个平面,并计算这些平面在三维体数据的三维纹理上的纹理坐标时,当Qj位于轴向位图像所在平面时,Qj所在平面的纹理坐标为:
当Qj位于矢状位图像所在平面时,Qj所在平面的纹理坐标为:
当Qj位于冠状位图像所在平面时,Qj所在平面的纹理坐标为:
在步骤S105中,根据轴向位图像、矢状位图像、冠状位图像以及斜位图像的纹理坐标,绘制轴向位图像、矢状位图像、冠状位图像以及斜位图像并输出,根据待观测曲面图像的纹理坐标绘制待观测曲面图像并输出。
在本发明实施例中,在确定待观测点处轴向位图像、矢状位图像、冠状位图像、斜位图像的纹理坐标后,根据这些纹理坐标绘制轴向位图像、矢状位图像、冠状位图像以及斜位图像并输出,在将待观测曲面图像分解为M-1个平面,并确定M-1个平面的纹理坐标后,绘制这M-1个平面可得到完整的曲面图像。
作为实例地,图3为绘制得到的轴向位图像、矢状位图像、冠状位图像、斜位图像以及待观测曲面图像的示例图。
在本发明实施例中,重建CBCT成像扫描系统扫描到的投照体的三维体数据,通过OpenGL中的多重纹理和着色器,构建三维体数据的一维纹理和三维纹理,计算待观测点的轴向位图像、矢状位图像、冠状位图像以及斜位图像在三维纹理上的纹理坐标,计算待观测曲面图像在三维纹理上的纹理坐标,从而通过OpenGL有效地提高了多平面重建的绘制速度和显示速度,通过绘制轴向位图像、矢状位图像、冠状位图像、斜位图像和待观测曲面图像,有效地提高了多平面重建的立体感和整体性。
实施例二:
图4示出了本发明实施例二提供的用于CBCT成像的多平面重建装置的结构,为了便于说明,仅示出了与本发明实施例相关的部分,其中包括:
三维重建单元41,用于接收通过锥形束CT成像扫描系统扫描到的投照体的透视图像,对透视图像进行三维重建,获得投照体的三维体数据。
在本发明实施例中,通过CBCT成像扫描系统扫描投照体,获得投照体不同角度的透视图像,根据透视图像进行三维重建,获得投照体的三维体数据。
纹理构建单元42,用于构建三维体数据的一维纹理,根据三维体数据的一维纹理和预设的颜色映射方式,构建三维体数据的三维纹理。
在本发明实施例中,优选地,使用OpenGL中的多重纹理、着色器,相应地为三维体数据构建一维纹理和三维纹理,以提高多平面重建的绘制速度和显示速度。
进一步优选地,可通过OpenGL中的多重纹理将预设的颜色查找表设置为三维体数据的一维纹理,再由OpenGL中的着色器利用GPU计算三维体数据的三维纹理所对应的一维纹理索引值,根据一维纹理索引值从颜色查找表中查找三维纹理RGBA颜色中的RGB分量,同时将三维体数据设置三维纹理RGBA颜色中的Alpha分量,通过OpenGL中的多重纹理和三维纹理对应RGBA颜色,构建三维纹理,以提高多平面重建的绘制速度和显示速度。
优选地,颜色查找表为12阶4096灰阶的颜色查找表,颜色映射方式为S型映射算法,从而使得多平面重建中图像细节显示更加连续,改善图像边缘锯齿化现象。作为示例地,颜色映射方式的公式可为:
其中,index为三维纹理对应的一维纹理索引值,一维纹理索引值的数值范围在(0,1)内,k为预设参数,GrayFloat为三维体数据,windowLevel为预设的窗位,windowWidth为预设的窗宽。
第一坐标计算单元43,用于根据用户输入的三维体数据上待观测点的位置信息,计算待观测点处的轴向位图像、矢状位图像、冠状位图像以及斜位图像在三维体数据的三维纹理上的纹理坐标。
在本发明实施例中,当用户需要观察三维体数据某处的轴向位图像、矢状位图像、冠状位图像以及斜位图像时,用户可输入该点(即待观测点)的位置信息,其中,待观测点的位置信息可包括待观测点在三维体数据中的三维坐标和斜位图像的法向量。当接收到用户输入的三维体数据上待观测点的位置信息时,可根据待观测点在三维体数据中的三维坐标,计算待观测点处的轴向位图像、矢状位图像、冠状位图像在三维体数据的三维纹理上的纹理坐标,可根据待观测点在三维体数据中的三维坐标和斜位图像的法向量,计算斜位图像在三维体数据的三维纹理上的纹理坐标。
例如,在根据待观测点在三维体数据中的三维坐标(x0,y0,z0),计算待观测点处的轴向位图像、矢状位图像、冠状位图像的纹理坐标时,轴向位图像的纹理坐标为:
其中,iDepth为三维体数据的分辨率中的深度值;
矢状位图像的纹理坐标为:
其中,iWidth为三维体数据的分辨率中的宽度值;
冠状位图像的纹理坐标为:
其中,iHeight为三维体数据的分辨率中的高度值。
第二坐标计算单元44,用于根据用户输入的待观测曲面图像与三维体数据的交线,计算待观测曲面图像在三维体数据的三维纹理上的纹理坐标。
在本发明实施例中,当用户需要观察三维体数据中的某个曲面图像时,可通过选定三维体数据中对应的某个区域,输入自身想要观测的待观测曲面图像。在计算待观测曲面图像在三维体数据的三维纹理上的纹理坐标时,首先,确定待观测曲面图像与三维体数据的交线,在该交线上按照预设方式获一系列的离散点{Pi=(xi,yi,zi)|i=1,2,......,N},N为Pi的数量,可通过预设的最小二乘法将这些离散点进行拟合扩散,得到扩散后的离散点{Qj=(xj,yj,zj)|j=1,2,......,M,M>>N},M为Qj的数量,通过这些扩散后的离散点将待观测曲面图像分解为M-1个平面,并计算这些平面在三维体数据的三维纹理上的纹理坐标,这些纹理坐标即待观测曲面图像的纹理坐标。
作为示例地,在通过这些扩散后的离散点将待观测曲面图像分解为M-1个平面,并计算这些平面在三维体数据的三维纹理上的纹理坐标时,当Qj位于轴向位图像所在平面时,Qj所在平面的纹理坐标为:
当Qj位于矢状位图像所在平面时,Qj所在平面的纹理坐标为:
当Qj位于冠状位图像所在平面时,Qj所在平面的纹理坐标为:
绘制输出单元45,用于根据轴向位图像、矢状位图像、冠状位图像以及斜位图像的纹理坐标,绘制轴向位图像、矢状位图像、冠状位图像以及斜位图像并输出,根据待观测曲面图像的纹理坐标绘制待观测曲面图像并输出。
在本发明实施例中,在确定待观测点处轴向位图像、矢状位图像、冠状位图像、斜位图像的纹理坐标后,根据这些纹理坐标绘制轴向位图像、矢状位图像、冠状位图像以及斜位图像并输出,在将待观测曲面图像分解为M-1个平面,并确定M-1个平面的纹理坐标后,绘制这M-1个平面可得到完整的曲面图像
优选地,如图5所示,纹理构建单元42包括
一维纹理构建单元521,用于通过OpenGL中的多重纹理,将预设的颜色查找表设置为三维体数据的一维纹理;以及
三维纹理构建单元522,用于根据三维体数据的一维纹理和颜色映射方式,通过OpenGL中的多重纹理和着色器构建三维体数据的三维纹理。
优选地,第二坐标计算单元44包括交线确定单元541、离散点扩散单元542和分解计算单元543,其中:
交线确定单元541,用于接收用户输入的所述待观测曲面图像与三维体数据的交线;
离散点扩散单元542,用于获取交线上的离散点,通过预设的最小二乘法对交线上的离散点进行拟合扩散;以及
分解计算单元543,用于根据拟合扩散后的离散点,将待观测曲面图像分解为预设数量个平面,计算预设数量个平面在三维体数据的三维纹理上的纹理坐标。
在本发明实施例中,重建CBCT成像扫描系统扫描到的投照体的三维体数据,通过OpenGL中的多重纹理和着色器,构建三维体数据的一维纹理和三维纹理,计算待观测点的轴向位图像、矢状位图像、冠状位图像以及斜位图像在三维纹理上的纹理坐标,计算待观测曲面图像在三维纹理上的纹理坐标,从而通过OpenGL有效地提高了多平面重建的绘制速度和显示速度,通过绘制轴向位图像、矢状位图像、冠状位图像、斜位图像和待观测曲面图像,有效地提高了多平面重建的立体感和整体性。
在本发明实施例中,用于CBCT成像的多平面重建装置的各单元可由相应的硬件或软件单元实现,各单元可以为独立的软、硬件单元,也可以集成为一个软、硬件单元,在此不用以限制本发明。
实施例三:
图6示出了本发明实施例三提供的医疗设备的结构,为了便于说明,仅示出了与本发明实施例相关的部分。
本发明实施例的医疗设备6包括处理器60、存储器61以及存储在存储器61中并可在处理器60上运行的计算机程序62。该处理器60执行计算机程序62时实现上述方法实施例中的步骤,例如图1所示的步骤S101至S105。或者,处理器60执行计算机程序62时实现上述装置实施例中各单元的功能,例如图4所示单元41至45的功能。
在本发明实施例中,重建CBCT扫描系统扫描的投照体三维体数据,通过OpenGL中的多重纹理和着色器构建三维体数据的一维纹理和三维纹理,计算待观测点处的轴向位图像、矢状位图像、冠状位图像以及斜位图像在三维纹理上的纹理坐标,计算待观测曲面图像的纹理坐标,根据这些纹理坐标绘制轴向位图像、矢状位图像、冠状位图像、斜位图像、待观测曲面图像,从而有效地提高了不同姿态二维图像的绘制和显示速度,有效地提高了多平面重建的立体感和整体性。
实施例四:
在本发明实施例中,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现上述方法实施例中的步骤,例如,图1所示的步骤S101至S105。或者,该计算机程序被处理器执行时实现上述装置实施例中各单元的功能,例如图4所示单元41至45的功能。
在本发明实施例中,重建CBCT扫描系统扫描的投照体三维体数据,通过OpenGL中的多重纹理和着色器构建三维体数据的一维纹理和三维纹理,计算待观测点处的轴向位图像、矢状位图像、冠状位图像以及斜位图像在三维纹理上的纹理坐标,计算待观测曲面图像的纹理坐标,根据这些纹理坐标绘制轴向位图像、矢状位图像、冠状位图像、斜位图像、待观测曲面图像,从而有效地提高了不同姿态二维图像的绘制和显示速度,有效地提高了多平面重建的立体感和整体性。
本发明实施例的计算机可读存储介质可以包括能够携带计算机程序代码的任何实体或装置、记录介质,例如,ROM/RAM、磁盘、光盘、闪存等存储器。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种用于CBCT成像的多平面重建方法,其特征在于,所述方法包括下述步骤:
接收通过锥形束CT成像扫描系统扫描到的投照体的透视图像,对所述透视图像进行三维重建,获得所述投照体的三维体数据;
构建所述三维体数据的一维纹理,根据所述三维体数据的一维纹理和预设的颜色映射方式,构建所述三维体数据的三维纹理;
根据用户输入的所述三维体数据上待观测点的位置信息,计算所述待观测点的轴向位图像、矢状位图像、冠状位图像以及斜位图像在所述三维体数据的三维纹理上的纹理坐标;
根据所述用户输入的待观测曲面图像与所述三维体数据的交线,计算所述待观测曲面图像在所述三维体数据的三维纹理上的纹理坐标;
根据所述轴向位图像、矢状位图像、冠状位图像以及斜位图像的纹理坐标,绘制所述轴向位图像、矢状位图像、冠状位图像以及斜位图像并输出,根据所述待观测曲面图像的纹理坐标绘制所述待观测曲面图像并输出。
2.如权利要求1所述的方法,构建所述三维体数据的一维纹理,根据所述三维体数据的一维纹理和预设的颜色映射方式,构建所述三维体数据的三维纹理的步骤,包括:
通过OpenGL中的多重纹理,将预设的颜色查找表设置为所述三维体数据的一维纹理,所述颜色查找表为12位4096灰阶的颜色查找表;
根据所述三维体数据的一维纹理和所述颜色映射方式,通过所述OpenGL中的多重纹理和着色器构建所述三维体数据的三维纹理,所述颜色映射方式为预设的S型映射算法。
3.如权利要求1所述的方法,其特征在于,根据用户输入的所述三维体数据上待观测点的位置信息,计算所述待观测点处的轴向位图像、矢状位图像、冠状位图像以及斜位图像在所述三维体数据的三维纹理上的纹理坐标的步骤,包括:
接收所述用户输入的所述三维体数据上所述待观测点的位置信息,所述位置信息包括所述待观测点在所述三维体数据中的三维坐标和所述斜位图像的平面法向量;
根据所述待观测点的三维坐标,计算所述待观测点处的轴向位图像、矢状位图像、冠状位图像的纹理坐标;
根据所述待观测点的三维坐标和所述斜位图像的平面法向量,构建所述斜位图像的平面方程;
根据所述斜位图像的平面方程,计算所述斜位图像所在平面与所述三维体数据的交点的纹理坐标。
4.如权利要求1所述的方法,其特征在于,根据所述用户输入的待观测曲面图像与所述三维体数据的交线,计算所述待观测曲面图像在所述三维体数据的三维纹理上的纹理坐标的步骤,包括:
接收所述用户输入的所述待观测曲面图像,确定所述待观测曲面图像与所述三维体数据的所述交线;
获取所述交线上的离散点,通过预设的最小二乘法对所述交线上的离散点进行拟合扩散;
根据所述拟合扩散后的所述离散点,将所述待观测曲面图像分解为预设数量个平面,计算所述预设数量个平面在所述三维体数据的三维纹理上的纹理坐标。
5.如权利要求4所述的方法,其特征在于,根据所述待观测曲面图像的纹理坐标绘制所述待观测曲面图像并输出的步骤,包括:
根据所述预设数量个平面在所述三维体数据的三维纹理上的纹理坐标,绘制所述待观测曲面图像并输出。
6.一种用于CBCT成像的多平面重建装置,其特征在于,所述装置包括:
三维重建单元,用于接收通过锥形束CT成像扫描系统扫描到的投照体的透视图像,对所述透视图像进行三维重建,获得所述投照体的三维体数据;
纹理构建单元,用于构建所述三维体数据的一维纹理,根据所述三维体数据的一维纹理和预设的颜色映射方式,构建所述三维体数据的三维纹理;
第一坐标计算单元,用于根据用户输入的所述三维体数据上待观测点的位置信息,计算所述待观测点处的轴向位图像、矢状位图像、冠状位图像以及斜位图像在所述三维体数据的三维纹理上的纹理坐标;
第二坐标计算单元,用于根据所述用户输入的待观测曲面图像与所述三维体数据的交线,计算所述待观测曲面图像在所述三维体数据的三维纹理上的纹理坐标;以及
绘制输出单元,用于根据所述轴向位图像、矢状位图像、冠状位图像以及斜位图像的纹理坐标,绘制所述轴向位图像、矢状位图像、冠状位图像以及斜位图像并输出,根据所述待观测曲面图像的纹理坐标绘制所述待观测曲面图像并输出。
7.如权利要求6所述的装置,其特征在于,所述纹理构建单元还包括:
一维纹理构建单元,用于通过OpenGL中的多重纹理,将预设的颜色查找表设置为所述三维体数据的一维纹理,所述颜色查找表为12位4096灰阶的颜色查找表;以及
三维纹理构建单元,用于根据所述三维体数据的一维纹理和所述颜色映射方式,通过所述OpenGL中的多重纹理和着色器构建所述三维体数据的三维纹理,所述颜色映射方式为预设的S型映射算法。
8.如权利要求6所述的装置,其特征在于,所述第二坐标计算单元包括:
交线确定单元,用于接收所述用户输入的所述待观测曲面图像,确定所述待观测曲面图像与所述三维体数据的所述交线;
离散点扩散单元,用于获取所述交线上的离散点,通过预设的最小二乘法对所述交线上的离散点进行拟合扩散;以及
分解计算单元,用于根据所述拟合扩散后的所述离散点,将所述待观测曲面图像分解为预设数量个平面,计算所述预设数量个平面在所述三维体数据的三维纹理上的纹理坐标。
9.一种医疗设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至5任一项所述方法的步骤。
10.一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至5任一项所述方法的步骤。
CN201711052020.3A 2017-10-30 2017-10-30 用于cbct成像的多平面重建方法、装置、设备及存储介质 Active CN108010115B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711052020.3A CN108010115B (zh) 2017-10-30 2017-10-30 用于cbct成像的多平面重建方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711052020.3A CN108010115B (zh) 2017-10-30 2017-10-30 用于cbct成像的多平面重建方法、装置、设备及存储介质

Publications (2)

Publication Number Publication Date
CN108010115A true CN108010115A (zh) 2018-05-08
CN108010115B CN108010115B (zh) 2021-02-26

Family

ID=62051177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711052020.3A Active CN108010115B (zh) 2017-10-30 2017-10-30 用于cbct成像的多平面重建方法、装置、设备及存储介质

Country Status (1)

Country Link
CN (1) CN108010115B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764072B (zh) * 2021-05-13 2023-04-18 腾讯科技(深圳)有限公司 医疗影像的重建方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104038A1 (en) * 2004-04-21 2005-11-03 Philips Intellectual Property & Standards Gmbh Cone beam ct apparatus using truncated projections and a previously acquired 3d ct image
CN101540062A (zh) * 2009-02-10 2009-09-23 朱一宁 使用可视化几何柱体对计算机三维体数据进行交互实时浏览处理方法
CN102626347A (zh) * 2012-04-26 2012-08-08 上海优益基医疗器械有限公司 基于cbct数据的口腔种植定位导向模板的制作方法
CN102908142A (zh) * 2011-08-04 2013-02-06 上海联影医疗科技有限公司 磁共振成像中三维图形化片层定位方法及磁共振成像系统
CN104574263A (zh) * 2015-01-28 2015-04-29 湖北科技学院 一种基于gpu的快速三维超声重建和显示方法
CN104574295A (zh) * 2014-12-16 2015-04-29 南京信息工程大学 自适应阈值图像去噪算法
CN104616344A (zh) * 2013-11-05 2015-05-13 镇江华扬信息科技有限公司 纹理映射体绘制的3d java 实现的方法
US9387347B2 (en) * 2010-02-24 2016-07-12 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104038A1 (en) * 2004-04-21 2005-11-03 Philips Intellectual Property & Standards Gmbh Cone beam ct apparatus using truncated projections and a previously acquired 3d ct image
CN100573588C (zh) * 2004-04-21 2009-12-23 皇家飞利浦电子股份有限公司 使用截短的投影和在先采集的3d ct图像的锥形束ct设备
CN101540062A (zh) * 2009-02-10 2009-09-23 朱一宁 使用可视化几何柱体对计算机三维体数据进行交互实时浏览处理方法
US9387347B2 (en) * 2010-02-24 2016-07-12 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
CN102908142A (zh) * 2011-08-04 2013-02-06 上海联影医疗科技有限公司 磁共振成像中三维图形化片层定位方法及磁共振成像系统
CN102626347A (zh) * 2012-04-26 2012-08-08 上海优益基医疗器械有限公司 基于cbct数据的口腔种植定位导向模板的制作方法
CN104616344A (zh) * 2013-11-05 2015-05-13 镇江华扬信息科技有限公司 纹理映射体绘制的3d java 实现的方法
CN104574295A (zh) * 2014-12-16 2015-04-29 南京信息工程大学 自适应阈值图像去噪算法
CN104574263A (zh) * 2015-01-28 2015-04-29 湖北科技学院 一种基于gpu的快速三维超声重建和显示方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI ZHICHENG等: "Iterative image-domain ring artifact removal in cone-beam CT", 《PHYSICS IN MEDICINE & BIOLOGY》 *
何晓乾等: "基于纹理映射的医学图像三维重建", 《电子科技大学学报》 *
卢开文: "医学影像三维重建系统的研究与实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764072B (zh) * 2021-05-13 2023-04-18 腾讯科技(深圳)有限公司 医疗影像的重建方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN108010115B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
US11620773B2 (en) Apparatus and method for visualizing digital breast tomosynthesis and other volumetric images
JP4310773B2 (ja) Pet腫瘍画像に関する半自動セグメント分割アルゴリズム
JP4965433B2 (ja) トランケートされた投影と事前に取得した3次元ct画像を用いる円錐ビームct装置
JP5639739B2 (ja) 複数のビューのボリューム・レンダリングのための方法及びシステム
JP4335817B2 (ja) 関心領域指定方法、関心領域指定プログラム、関心領域指定装置
KR102548577B1 (ko) 디지털 3d 영상을 형성하는 고정된 x선 디텍터 어레이와 고정된 x선 이미터 어레이를 갖춘 의료영상장치
US4989142A (en) Three-dimensional images obtained from tomographic slices with gantry tilt
EP3613019B1 (en) System and method for combining 3d images in color
CN106725570A (zh) 成像方法及系统
US11816764B2 (en) Partial volume correction in multi-modality emission tomography
US10332305B2 (en) Cinematic rendering of unfolded 3D volumes
CN107095691A (zh) 一种pet成像方法及系统
US20040047449A1 (en) Multi-row detector X-ray CT apparatus
Scheipers et al. 3-D ultrasound volume reconstruction using the direct frame interpolation method
CN109146987B (zh) 一种基于gpu的快速锥束计算机断层成像重建方法
US8447082B2 (en) Medical image displaying apparatus, medical image displaying method, and medical image displaying program
EP2483866A1 (en) Medical image analysis system using n-way belief propagation for anatomical images subject to deformation and related methods
US8933926B2 (en) Image processing apparatus, method, and program
CN105678711B (zh) 一种基于图像分割的衰减校正方法
CN110490857A (zh) 图像处理方法、装置、电子设备和存储介质
WO2011041473A1 (en) Medical image analysis system for anatomical images subject to deformation and related methods
US9996929B2 (en) Visualization of deformations using color overlays
CN101802877B (zh) 路径近似绘制
CN100583161C (zh) 用于显示以立体数据组成像的对象的方法
CN108010115A (zh) 用于cbct成像的多平面重建方法、装置、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant