CN108009355A - A kind of darkroom spheric array Compact Range dead zone characteristic spectrum analysis method - Google Patents

A kind of darkroom spheric array Compact Range dead zone characteristic spectrum analysis method Download PDF

Info

Publication number
CN108009355A
CN108009355A CN201711247327.9A CN201711247327A CN108009355A CN 108009355 A CN108009355 A CN 108009355A CN 201711247327 A CN201711247327 A CN 201711247327A CN 108009355 A CN108009355 A CN 108009355A
Authority
CN
China
Prior art keywords
mrow
mtd
mtr
dead zone
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711247327.9A
Other languages
Chinese (zh)
Other versions
CN108009355B (en
Inventor
苏杨
尹光
耿波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Changfeng Space Electronics Technology Co Ltd
Original Assignee
Nanjing Changfeng Space Electronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Changfeng Space Electronics Technology Co Ltd filed Critical Nanjing Changfeng Space Electronics Technology Co Ltd
Priority to CN201711247327.9A priority Critical patent/CN108009355B/en
Publication of CN108009355A publication Critical patent/CN108009355A/en
Application granted granted Critical
Publication of CN108009355B publication Critical patent/CN108009355B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

The invention discloses a kind of darkroom spheric array Compact Range dead zone characteristic spectrum analysis method, including, according to frequency range and Compact Range size, design feed antenna, reflecting surface and spheric array model;The model of design is imported into Electromagnetic Modeling software, extracts the electric field distribution of dead zone quarry sampling point;It is distributed according to the electric field of dead zone quarry sampling point, calculates dead zone rink corner Spectral structure;According to the spectrum analysis diffraction field distribution of dead zone rink corner.The present invention can directly generate dead zone field data due to Electromagnetic Modeling software, it is not necessary to consider the field distribution of bore face and free space network receptance function, can analyze influence of the spheric array to Compact Range.

Description

A kind of darkroom spheric array Compact Range dead zone characteristic spectrum analysis method
Technical field
The present invention relates to a kind of darkroom spheric array Compact Range dead zone characteristic spectrum analysis method, belong to Compact Range design field.
Background technology
In reflecting surface Compact Range (Compact Range:It is interior in a limited space to simulate far-field radiation, scattering strip in microwave dark room The electromagnetic field that part obtains) in design process, in order to obtain stable dead zone (dead zone:In microwave dark room, mesh to be analyzed It is necessary to have the characteristics of electric field phase, amplitude stabilization for position where marking) it is distributed, it is necessary to reflector shape and exposure field point Cloth optimizes, still, since there are a variety of diffraction field components, non-uniform standing wave point can be formed in space in dead zone Cloth, in frequency shift, spatial domain field distribution changes correspondingly.When carrying out Compact Range optimization design, in order to investigate the quality of design, Conventional method is integrated, work to compare the change that dead zone obtains standing wave peak value or root mean square on multiple frequency points in full frequency band Work amount is larger.And due to this one kind index only reflect a variety of diffraction field components and deposit resultant field change, do not set up with The direct relation of certain a kind of diffraction field, therefore be inconvenient to analyze the mechanism of diffraction field generation.
At present, it can be used for analyzing the diffraction field feature of Compact Range according to the bore near field angular-spectrum analysis method of convolution method, Since bore near field or far field can be expressed as the convolution of bore occasion spatial network respective function, it is near bore can be exported Space (is considered as wave filter, is put at space any point by the angular spectrum in field and far field for aperture field angular spectrum and network receptance function Put a shock pulse, then receive obtained electric field space is more any other, shock pulse and reception obtain electric field it Between function, be exactly network receptance function) product of angular spectrum, so as to calculate the angular spectrum in bore near field and far field.Wherein, root first Aperture field angular spectrum is obtained according to Aperture field distribution, its angular spectrum asked further according to free space network receptance function, finally by aperture field Angular spectrum is multiplied with free space network receptance function angular spectrum, obtains final result.
But the feed of the generation aperture field of this method, it is ripple antenna or square horn antenna in Practical Project, by The influence undesirable to its directional diagram, bore face (bore face:The bore section of reflector antenna) distribution of obtained electric field with Ideal distribution differs farther out, especially when occurring spheric array (spheric array in Compact Range:One metal for being disposed with mutiple antennas Sphere, for the plane wave of the simulation generation any direction in microwave dark room) when large-scale diffraction field produces the situation of structure.Cause This, the aperture field provided according to ideal mathematics model differs farther out with actual distribution.
Secondly, when producing structure when large-scale diffraction field there are spheric array in Compact Range, can not try to achieve one has had The spatial network receptance function of standby mathematic(al) representation, therefore conventional method can not provide the characteristic angle of spatial network receptance function Spectrum.Therefore, the method that dead zone characteristic angle Spectral structure is tried to achieve by convolution method is infeasible.
The content of the invention
In order to solve the above technical problem, the present invention provides a kind of darkroom spheric array Compact Range dead zone characteristic spectrum analysis side Method.
In order to achieve the above object, the technical solution adopted in the present invention is:
A kind of darkroom spheric array Compact Range dead zone characteristic spectrum analysis method, including,
According to frequency range and Compact Range size, design feed antenna, reflecting surface and spheric array model;
The model of design is imported into Electromagnetic Modeling software, extracts the electric field distribution of dead zone quarry sampling point;
It is distributed according to the electric field of dead zone quarry sampling point, calculates dead zone rink corner Spectral structure;
According to the spectrum analysis diffraction field distribution of dead zone rink corner.
According to frequency range and Compact Range size, design feed antenna, reflecting surface and spheric array model in CAD software.
Model is imported into FEKO, excitation types are set, extracts the electric field distribution of dead zone quarry sampling point.
The excitation types of setting are waveguide excitation, and sampled point is smaller than 1/3 operation wavelength.
FEKO exports .out files, and the electric field distribution of dead zone quarry sampling point is extracted from this document.
Dead zone rink corner Spectral structure is calculated using FFT and IFFT, formula is,
Wherein, M and N is respectively dead zone field in the quantity of x and y directions sampled point, kxFor the x durection components of wave number, kyFor ripple Several y durection components, g are dead zone electric field component, G be dead zone rink corner spectral component, FFT and IFFT for Fast Fourier Transform with Inverse transformation, p and q are the element numbers of Two-dimensional FFT, and Δ x, Δ y are the spacing of sampled point in the x and y direction, x0、y0It is in dead zone The heart is with respect to origin.
kxAnd kyRelation with angular spectrum incidence angle is,
kx=k0sin(θ)cos(φ)
ky=k0sin(θ)sin(φ)
Wherein, k0For the wave number in free space, θ, φ are the angle component of spherical coordinate system.
The beneficial effect that the present invention is reached:1st, the present invention due to Electromagnetic Modeling software (using Computational electromagnetics algorithm into The software of row Electromagnetic Simulation) dead zone field data can be directly generated, it is not necessary to consider the field distribution of bore face and free space network Receptance function;2nd, the present invention can analyze influence of the spheric array to Compact Range;3rd, the present invention accelerates angular spectrum using fast Flourier Analysis.
Brief description of the drawings
Fig. 1 is the flow chart of the present invention;
Fig. 2 is feed antenna schematic diagram;
Fig. 3 is spheric array Compact Range front view;
Fig. 4 is spheric array Compact Range side view;
Fig. 5 is spheric array Compact Range top view;
Fig. 6 is angular spectrum schematic diagram.
Embodiment
The invention will be further described below in conjunction with the accompanying drawings.Following embodiments are only used for clearly illustrating the present invention Technical solution, and be not intended to limit the protection scope of the present invention and limit the scope of the invention.
As shown in Figure 1, a kind of darkroom spheric array Compact Range dead zone characteristic spectrum analysis method, comprises the following steps:
Step 1, in CAD software, according to frequency range and Compact Range size, design feed antenna, reflecting surface and spheric array mould Type, as shown in Figure 2-5, wherein spheric array shows to simplify, and is replaced using ideal spherical face.
Step 2, the model of design is imported into Electromagnetic Modeling software, excitation types is set, extract dead zone quarry sampling point Electric field is distributed.
The excitation types of setting are waveguide excitation, and sampled point is smaller than 1/3 operation wavelength, and existing Electromagnetic Modeling is soft Part has CST, HFSS, FEKO etc., can be used, and here using FEKO, FEKO export .out files, are read using programming software Enter the .out files that FEKO is generated, the electric field distribution of dead zone quarry sampling point is extracted from this document.
Step 3, it is distributed according to the electric field of dead zone quarry sampling point, calculates dead zone rink corner Spectral structure.
In order to accelerate angular-spectrum analysis, dead zone rink corner Spectral structure is calculated used here as FFT and IFFT, specific formula is as follows:
Wherein, M and N is respectively dead zone field in the quantity of x and y directions sampled point, kxFor the x durection components of wave number, kyFor ripple Several y durection components, g for dead zone electric field component (g (x, y), g (M, 1:N the g implications in) are dead zone electric field component), G For dead zone rink corner spectral component, FFT and IFFT are Fast Fourier Transform and inverse transformation, p and the element numbers that q is Two-dimensional FFT, Δ X, Δ y is the spacing of sampled point in the x and y direction, x0、y0It is dead zone center with respect to origin.
Step 4, according to the spectrum analysis diffraction field distribution of dead zone rink corner.
kxAnd kyRelation with angular spectrum incidence angle is,
kx=k0sin(θ)cos(φ)
ky=k0sin(θ)sin(φ)
Wherein, k0For the wave number in free space, θ, φ are the angle component of spherical coordinate system., can be with after wave number is obtained The electric field component on different directions is obtained according to formulas Extraction.The dead zone rink corner spectrum of reflecting surface is only installed and reflecting surface is installed at the same time It is as shown in Figure 6 with the dead zone rink corner spectrum of spheric array, it is seen then that, can be in dead zone after mounting spherical battle array under 10GHz working frequencies The diffraction field component of 70 degree to 90 degree arrival bearings is produced, while by the secondary reflection of reflecting surface, arrival bearing can be spent -30 New diffraction field component is produced, its amplitude is respectively less than 10dB.
The above method can be straight due to Electromagnetic Modeling software (software that Electromagnetic Simulation is carried out using Computational electromagnetics algorithm) Deliver a child into dead zone field data, it is not necessary to consider the field distribution of bore face and free space network receptance function, spheric array can be analyzed Influence to Compact Range.
The above is only the preferred embodiment of the present invention, it is noted that for the ordinary skill people of the art For member, without departing from the technical principles of the invention, some improvement and deformation can also be made, these are improved and deformation Also it should be regarded as protection scope of the present invention.

Claims (7)

  1. A kind of 1. darkroom spheric array Compact Range dead zone characteristic spectrum analysis method, it is characterised in that:Including,
    According to frequency range and Compact Range size, design feed antenna, reflecting surface and spheric array model;
    The model of design is imported into Electromagnetic Modeling software, extracts the electric field distribution of dead zone quarry sampling point;
    It is distributed according to the electric field of dead zone quarry sampling point, calculates dead zone rink corner Spectral structure;
    According to the spectrum analysis diffraction field distribution of dead zone rink corner.
  2. A kind of 2. darkroom spheric array Compact Range dead zone characteristic spectrum analysis method according to claim 1, it is characterised in that: According to frequency range and Compact Range size, design feed antenna, reflecting surface and spheric array model in CAD software.
  3. A kind of 3. darkroom spheric array Compact Range dead zone characteristic spectrum analysis method according to claim 1, it is characterised in that:Will Model imports FEKO, sets excitation types, extracts the electric field distribution of dead zone quarry sampling point.
  4. A kind of 4. darkroom spheric array Compact Range dead zone characteristic spectrum analysis method according to claim 3, it is characterised in that:If The excitation types put are waveguide excitation, and sampled point is smaller than 1/3 operation wavelength.
  5. A kind of 5. darkroom spheric array Compact Range dead zone characteristic spectrum analysis method according to claim 3, it is characterised in that: FEKO exports .out files, and the electric field distribution of dead zone quarry sampling point is extracted from this document.
  6. A kind of 6. darkroom spheric array Compact Range dead zone characteristic spectrum analysis method according to claim 1, it is characterised in that:Make Dead zone rink corner Spectral structure is calculated with FFT and IFFT, formula is,
    <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>,</mo> <mi>q</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>&amp;infin;</mi> </mrow> <mi>&amp;infin;</mi> </msubsup> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>&amp;infin;</mi> </mrow> <mi>&amp;infin;</mi> </msubsup> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mi>x</mi> <mo>+</mo> <msub> <mi>k</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>y</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <msub> <mi>k</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <msub> <mi>k</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> <mi>&amp;Delta;</mi> <mi>x</mi> <mi>&amp;Delta;</mi> <mi>y</mi> <mo>&amp;times;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>M</mi> <mi>N</mi> <mo>&amp;times;</mo> <mi>I</mi> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>{</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>I</mi> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>:</mo> <mi>N</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>I</mi> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>:</mo> <mi>N</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>I</mi> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>M</mi> <mo>,</mo> <mn>1</mn> <mo>:</mo> <mi>N</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>}</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>k</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>M</mi> <mi>&amp;Delta;</mi> <mi>x</mi> </mrow> </mfrac> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mi>k</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mi>&amp;Delta;</mi> <mi>y</mi> </mrow> </mfrac> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>M</mi> <mo>&amp;times;</mo> <mi>I</mi> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>{</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>:</mo> <mi>N</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>:</mo> <mi>N</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>M</mi> <mo>,</mo> <mn>1</mn> <mo>:</mo> <mi>N</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>}</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>k</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>M</mi> <mi>&amp;Delta;</mi> <mi>x</mi> </mrow> </mfrac> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mi>k</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mi>&amp;Delta;</mi> <mi>y</mi> </mrow> </mfrac> <mo>&amp;le;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>N</mi> <mo>&amp;times;</mo> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>{</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>I</mi> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>:</mo> <mi>N</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>I</mi> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>:</mo> <mi>N</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>I</mi> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>M</mi> <mo>,</mo> <mn>1</mn> <mo>:</mo> <mi>N</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>}</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>k</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>M</mi> <mi>&amp;Delta;</mi> <mi>x</mi> </mrow> </mfrac> <mo>&amp;le;</mo> <mn>0</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mi>k</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mi>&amp;Delta;</mi> <mi>y</mi> </mrow> </mfrac> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>{</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>:</mo> <mi>N</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>:</mo> <mi>N</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>F</mi> <mi>F</mi> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>M</mi> <mo>,</mo> <mn>1</mn> <mo>:</mo> <mi>N</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>}</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>k</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>M</mi> <mi>&amp;Delta;</mi> <mi>x</mi> </mrow> </mfrac> <mo>&amp;le;</mo> <mn>0</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mi>k</mi> <mi>y</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mi>&amp;Delta;</mi> <mi>y</mi> </mrow> </mfrac> <mo>&amp;le;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced>
    Wherein, M and N is respectively dead zone field in the quantity of x and y directions sampled point, kxFor the x durection components of wave number, kyFor wave number Y durection components, g are dead zone electric field component, and G is dead zone rink corner spectral component, and FFT and IFFT are Fast Fourier Transform and inversion Change, p and q are the element numbers of Two-dimensional FFT, and Δ x, Δ y are the spacing of sampled point in the x and y direction, x0、y0It is dead zone center phase To origin.
  7. A kind of 7. darkroom spheric array Compact Range dead zone characteristic spectrum analysis method according to claim 6, it is characterised in that:kx And kyRelation with angular spectrum incidence angle is,
    kx=k0sin(θ)cos(φ)
    ky=k0sin(θ)sin(φ)
    Wherein, k0For the wave number in free space, θ, φ are the angle component of spherical coordinate system.
CN201711247327.9A 2017-12-01 2017-12-01 Darkroom spherical array compact field quiet zone characteristic spectrum analysis method Active CN108009355B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711247327.9A CN108009355B (en) 2017-12-01 2017-12-01 Darkroom spherical array compact field quiet zone characteristic spectrum analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711247327.9A CN108009355B (en) 2017-12-01 2017-12-01 Darkroom spherical array compact field quiet zone characteristic spectrum analysis method

Publications (2)

Publication Number Publication Date
CN108009355A true CN108009355A (en) 2018-05-08
CN108009355B CN108009355B (en) 2021-05-25

Family

ID=62055825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711247327.9A Active CN108009355B (en) 2017-12-01 2017-12-01 Darkroom spherical array compact field quiet zone characteristic spectrum analysis method

Country Status (1)

Country Link
CN (1) CN108009355B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109471057A (en) * 2019-01-04 2019-03-15 北京环境特性研究所 A kind of method and apparatus detecting Compact Range reflecting surface performance
CN112399792A (en) * 2020-12-07 2021-02-23 北京航天长征飞行器研究所 Multi-source electromagnetic wave beam crosstalk inhibition method and device and computer storage medium
CN112946373A (en) * 2021-02-01 2021-06-11 北京邮电大学 Phase-free measuring method and device based on compact range system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198227A (en) * 2013-04-18 2013-07-10 南京理工大学 Electromagnetic scattering analyzing method for superspeed flight targets
US20130222814A1 (en) * 2005-01-12 2013-08-29 John Farah Lensless imaging with reduced aperture
CN104535858A (en) * 2014-12-18 2015-04-22 北京无线电计量测试研究所 Compact field antenna measurement synchronization reflection point region determination method
CN104992064A (en) * 2015-07-09 2015-10-21 西安电子科技大学 Partitioning parallel computing method for backward radar echoes of multi-scale electrically large-region rough sea surface
CN107086377A (en) * 2017-04-21 2017-08-22 北京航空航天大学 The suction wave reflection battle array control device of feed mirror image beam in a kind of Compact Range darkroom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130222814A1 (en) * 2005-01-12 2013-08-29 John Farah Lensless imaging with reduced aperture
CN103198227A (en) * 2013-04-18 2013-07-10 南京理工大学 Electromagnetic scattering analyzing method for superspeed flight targets
CN104535858A (en) * 2014-12-18 2015-04-22 北京无线电计量测试研究所 Compact field antenna measurement synchronization reflection point region determination method
CN104992064A (en) * 2015-07-09 2015-10-21 西安电子科技大学 Partitioning parallel computing method for backward radar echoes of multi-scale electrically large-region rough sea surface
CN107086377A (en) * 2017-04-21 2017-08-22 北京航空航天大学 The suction wave reflection battle array control device of feed mirror image beam in a kind of Compact Range darkroom

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAINING YANG 等: "An improved near-field imaging algorithm based on Stolt migration for single borehole radar with widely separated transceiver", 《2015 IEEE RADAR CONFERENCE (RADARCON)》 *
陆万利: "高斯光束传播性质的数值模拟研究", 《高师理科学刊》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109471057A (en) * 2019-01-04 2019-03-15 北京环境特性研究所 A kind of method and apparatus detecting Compact Range reflecting surface performance
CN112399792A (en) * 2020-12-07 2021-02-23 北京航天长征飞行器研究所 Multi-source electromagnetic wave beam crosstalk inhibition method and device and computer storage medium
CN112399792B (en) * 2020-12-07 2024-02-13 北京航天长征飞行器研究所 Multi-source electromagnetic wave beam crosstalk suppression method and device and computer storage medium
CN112946373A (en) * 2021-02-01 2021-06-11 北京邮电大学 Phase-free measuring method and device based on compact range system
CN112946373B (en) * 2021-02-01 2024-02-09 北京邮电大学 Compact range system-based non-phase measurement method and device

Also Published As

Publication number Publication date
CN108009355B (en) 2021-05-25

Similar Documents

Publication Publication Date Title
Bucci et al. Plane-wave generators: Design guidelines, achievable performances and effective synthesis
CN106650104B (en) Consider that the non-frequency in broadband of mutual coupling effect is thinned out array synthetic method
CN102799782B (en) Electrical performance prediction method for metal truss-type antenna cover in consideration of scattering and transmission
CN108009355A (en) A kind of darkroom spheric array Compact Range dead zone characteristic spectrum analysis method
CN106469850B (en) A kind of Thickness Design Method of antenna house
Jin et al. Particle swarm optimization for antenna designs in engineering electromagnetics
CN106654566A (en) Method for rapidly designing thickness of aircraft radome
CN112989680A (en) FVFD far-field integration boundary condition calculation method for reducing grid usage
CN104484537A (en) Electromechanical integrated optimization method for sectional dimensions of ribs of metal truss type antenna housing
CN107333290A (en) A kind of antenna for base station unit for electrical property parameters monitoring method
CN113221370B (en) FSS radome modeling method based on conical surface projection
CN104915326A (en) Domain decomposition order stepping time domain integration method based on equivalence principle
Erez et al. Electromagnetic scattering analysis using a model of dipoles located in complex space
Campos et al. Software for project and analysis of frequency selective surfaces
CN110717243B (en) Linear constraint-based broadband directional diagram synthesis method
Tang et al. Modelling of two‐dimensional scattering centre of wind turbine based on Feko
CN104077431A (en) Dipole array-based mutual coupling simulation method
Marrocco et al. Simultaneous time-frequency modeling of ultra-wideband antennas by two-dimensional hermite processing
Costa et al. Efficient 3D EM simulation of antennas mounted on electrically large bodies
CN117610323B (en) Complex curved surface conformal array scattered field determination method based on vector field change
Kovitz et al. Novelties of spectral domain analysis in antenna characterizations: Concept, formulation, and applications
Marrocco Modal near-field to far-field transformation for FDTD modelling of aperture antennas
Panayappan et al. A singularity free MoM-type of formulation using the dipole-moment-based approach
Li 5 Analysis and Modeling of Quasi-periodic Structures
Arya et al. Numerically efficient technique for metamaterial modeling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant