CN107995765A - 一种等离子腔测试背景消除方法 - Google Patents

一种等离子腔测试背景消除方法 Download PDF

Info

Publication number
CN107995765A
CN107995765A CN201710980087.7A CN201710980087A CN107995765A CN 107995765 A CN107995765 A CN 107995765A CN 201710980087 A CN201710980087 A CN 201710980087A CN 107995765 A CN107995765 A CN 107995765A
Authority
CN
China
Prior art keywords
target
scattering
plasma chamber
plasma
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710980087.7A
Other languages
English (en)
Other versions
CN107995765B (zh
Inventor
何鸿飞
梁子长
岳慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Radio Equipment Research Institute
Original Assignee
Shanghai Radio Equipment Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Radio Equipment Research Institute filed Critical Shanghai Radio Equipment Research Institute
Priority to CN201710980087.7A priority Critical patent/CN107995765B/zh
Publication of CN107995765A publication Critical patent/CN107995765A/zh
Application granted granted Critical
Publication of CN107995765B publication Critical patent/CN107995765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0081Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature by electric means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种等离子腔测试背景消除方法,包含:S1,基于宽带扫频测试,分别获取密闭且充满等离子腔中放置目标和不放置目标情况下的电磁散射特性数据;S2,将等离子腔中放置目标和不放置目标情况下的电磁散射特性数据进行矢量相减,进行背景消除处理;S3,将经过背景消除处理后获得的包覆等离子体的目标幅度和相位回波信号,经二维傅里叶变换,获得多路径干扰下的二维散射图像,并提取所述的二维散射图像中强散射点位置;S4,在对应的二维散射图像中强散射点位置处放置金属小球,对之进行宽带扫频标定测试得到多组标定数据,并对二维散射图像进行标定处理,修正多路径耦合对密闭等离子体腔中目标测试的误差。

Description

一种等离子腔测试背景消除方法
技术领域
本发明涉及激波等离子散射特性测试领域,特别涉及一种等离子腔测试背景消除方法。
背景技术
当超高速目标飞行于稀薄大气层时,由于目标高超声速飞行对其头部大气压缩等作用,将进一步提高目标周围电子密度,同时将加速大气分子与电子等复合、离解反应,使稀薄大气层内超高速目标的电磁环境更为复杂,等离子体环境导致超高速目标特性发生变化、对探测雷达工作频率选择、参数设计等十分关键。
当前利用实验室内等离子体模拟系统,开展可控的等离子环境下超高速目标电磁特性模拟测量研究是一种有效实用的方法。
因电磁波的发射和接收天线处于密闭腔体外,如何精确测量获取置于充满等离子体的密闭腔体内的超高速目标的电磁散射特性是目前开展等离子环境下目标电磁散射特性模拟测试的难点之一。通过一种基于成像及多点标定方法消除等离子体腔体多路径干扰的方法,可以有效解决以上不足,为临近空间超高速流场模拟及等离子鞘包覆下目标散射特性的测量提供新的手段。
目前,发明专利“一种低温等离子体中电磁波传播特性测试装置”(专利号:CN201610652548.3)中提及采用低气压下辉光放电产生的等离子体内部无电势差的技术,使产生的等离子体稳定期延长,从而利于研究各频段电磁波在等离子体中的传播特性;发明专利“等离子体包覆材料的雷达反射特性测量装置及方法”(专利号:CN201210257142.7)中提及雷达散射截面测量机构固定在微波暗室内,大面积均匀非磁化等离子体产生单元由吸波材料包围在一个空间内,吸波材料有一个窗口,使大面积均匀非磁化等离子体产生单元的被测材料板直面雷达散射截面测量机构,它是一种能够在被测材料表面包覆等离子,并进一步实现等离子厚度可调以及消弱本体的雷达回波反射,从而满足开展等离子包覆材料的雷达反射特性实验测量的装置及方法;发明专利“一种测量脉冲放电等离子体鞘层温度的方法”(专利号:CN201210523847.9)中提及利用光谱法准确的测量出正柱区的气体温度,再利用小孔光阑阴影法,准确的测量放电后激波的波速,再用正柱区温度与激波波速计算出薄鞘层温度。
当前没有见到有关采用基于成像及多点标定方法,开展包覆等离子体超高速目标电磁散射特性测试过程中,消除等离子体腔体内背景及多路径干扰的相关专利。
发明内容
本发明的目的是提供一种利用扫频成像及多点标定方式开展包覆等离子体的超高速目标电磁散射特性测试方法,利用标定数据消除由密闭腔体带来的多路径干扰,为实现在实验室内进行等离子包覆目标的电磁散射测试背景消除提供基础,为获取等离子环境中目标电磁散射特性地面模拟测量提供手段,进而在实验室内获取等离子包覆目标的电磁散射特性数据。
为了实现以上目的,本发明是通过以下技术方案实现的:
一种等离子腔测试背景消除方法,其特点是,包含如下步骤:
S1,基于宽带扫频测试,分别获取密闭且充满等离子腔中放置目标和不放置目标情况下的电磁散射特性数据;
S2,将等离子腔中放置目标和不放置目标情况下的电磁散射特性数据进行矢量相减,进行背景消除处理;
S3,将经过背景消除处理后获得的包覆等离子体的目标幅度和相位回波信号,经二维傅里叶变换,获得多路径干扰下的二维散射图像,并提取所述的二维散射图像中强散射点位置;
S4,在对应的二维散射图像中强散射点位置处放置金属小球,对之进行宽带扫频标定测试得到多组标定数据,并对二维散射图像进行标定处理,修正多路径耦合对密闭等离子体腔中目标测试的误差。
所述的步骤S1包含:
S1.1,将被测目标置于密闭等离子腔中,待密闭腔充满等离子体后,设置目标旋转角度和每次旋转的角度步进间隔,设置电磁波起始发射频率、终止发射频率和频率增量,在设定的角度上测量采集被测目标与密闭等离子腔的宽带幅度和相位回波信号;
S1.2,将被测目标取出,待密闭腔充满等离子体后,设置旋转角度和每次旋转的角度步进间隔,设置电磁波起始发射频率、终止发射频率和频率增量,在设定的角度上测量采集密闭等离子腔的宽带幅度和相位回波信号。
所述的步骤S2具体为:
将设定角度下被测目标与密闭等离子腔的宽带幅度和相位回波信号按照公式(1)减去密闭等离子腔的宽带幅度和相位回波信号进行背景消除处理,获取包覆等离子体的目标幅度和相位回波信号
所述的步骤S3具体为:
将背景消除后获得的包覆等离子体的目标幅度和相位回波信号,依据微波逆孔径成像原理,生成二维散射图像,利用Clean迭代算法,找出目标散射图像中幅度的最大点,把该最大点作为第一个强散射点,然后从散射图像的原始采样数据中减去该强散射点产生的散射场得到新的采样数据,再从新的采样数据中找到一个新的强散射点,依次类推,直到达到预设的门限为止。
所述的步骤S4包含:
S4.1,选取雷达散射截面量级相当的金属球,分别依次置于二维散射图像的各个强散射点位置处,进行宽带扫频测试,获取金属球幅度和相位回波信号;
S4.2,在所述的二维散射图像上,每个强散射点采用对应的金属球幅度和相位回波信号并通过公式(2)进行标定修正多路径耦合对密闭等离子体腔中目标测试的误差:
式中,σT为定标后目标雷达散射截面的散射矢量;σo为定标体理论的散射矢量;为固定背景消除后的目标回波信号矢量;为固定背景消除后的定标体回波信号矢量。
在所述的步骤S4.2后还包含:
从定标后目标雷达散射截面的散射矢量中,采用基于散射图像的目标雷达散射截面重构技术,提取中心频率下随角度变化的包覆等离子的目标雷达散射截面。
本发明与现有技术相比,具有以下优点:
本发明以角度旋转宽带扫频和矢量相减为基础,消除密闭等离子腔等固定背景对电磁波的影响,获取密闭腔体内包覆等离子的目标二维电磁散射图像,研究图像中目标及多路径干扰下的强散射点分布,通过在各强散射点处分别放置金属球开展标定测试,利用标定数据消除由密闭腔体带来的多路径干扰,为实现在实验室内进行等离子包覆目标的电磁散射测试背景消除提供基础,为获取等离子环境中目标电磁散射特性地面模拟测量提供手段,进而在实验室内获取等离子包覆目标的电磁散射特性数据。
附图说明
图1为本发明一种等离子腔测试背景消除方法的流程图;
图2为本发明未固定背景消除的散射图像;
图3为本发明目标回波强散点的示意图。
具体实施方式
以下结合附图,通过详细说明一个较佳的具体实施例,对本发明做进一步阐述。
如图1所示,一种等离子腔测试背景消除方法,包含如下步骤:
S1,基于宽带扫频测试,分别获取密闭且充满等离子腔中放置目标和不放置目标情况下的电磁散射特性数据;
S2,将等离子腔中放置目标和不放置目标情况下的电磁散射特性数据进行矢量相减,进行背景消除处理;
S3,将经过背景消除处理后获得的包覆等离子体的目标幅度和相位回波信号,经二维傅里叶变换,获得多路径干扰下的二维散射图像,并提取所述的二维散射图像中强散射点位置;
S4,在对应的二维散射图像中强散射点位置处放置金属小球,对之进行宽带扫频标定测试得到多组标定数据,并对二维散射图像进行标定处理,修正多路径耦合对密闭等离子体腔中目标测试的误差。
所述的步骤S1包含:
S1.1,将被测目标置于密闭等离子腔中,待密闭腔充满等离子体后,设置目标旋转角度和每次旋转的角度步进间隔,设置电磁波起始发射频率、终止发射频率和频率增量,在设定的角度上测量采集被测目标与密闭等离子腔的宽带幅度和相位回波信号,具体的,将被测目标置于密闭等离子腔中,待密闭腔充满等离子体后,设置目标初始方位角-20度,终止方位角20度,旋转角度间隔0.5度,设置电磁波起始发射频率8GHz、终止发射频率12GHz和频率增量5MHz;启动测试程序,每旋转0.5度,测量采集被测目标与密闭等离子腔的宽带幅度和相位回波信号。
S1.2,将被测目标取出,待密闭腔充满等离子体后,设置旋转角度和每次旋转的角度步进间隔,设置电磁波起始发射频率、终止发射频率和频率增量,启动测试程序,在设定的角度上测量采集密闭等离子腔的宽带幅度和相位回波信号。
上述的步骤S2具体为:
将设定角度下被测目标与密闭等离子腔的宽带幅度和相位回波信号按照公式(1)减去密闭等离子腔的宽带幅度和相位回波信号实现对固定测试干扰的消除,然后采用软件距离门,去除测试区域外的干扰信号(如图1所示为未进行固定背景消除处理的散射图像),然后进行背景消除处理,获取包覆等离子体的目标幅度和相位回波信号
上述的步骤S3具体为:将背景消除后获得的包覆等离子体的目标幅度和相位回波信号,依据微波逆孔径成像原理,生成二维散射图像,利用Clean迭代算法,找出目标散射图像中幅度的最大点,把该最大点作为第一个强散射点,然后从散射图像的原始采样数据中减去该强散射点产生的散射场得到新的采样数据,再从新的采样数据中找到一个新的强散射点,依次类推,直到达到预设的门限为止。如图2所示标注为①的点(幅度为-41dB、X轴0.2m、Y轴-0.5m),把该最大点作为第一个强散射点,然后从散射图像的原始采样数据中减去该强散射点产生的散射场得到新的采样数据,再从新的采样数据中找到一个新的强散射点②(幅度为-44dB、X轴0.25m、Y轴0.6m),依次类推分别获得点③(幅度为-50dB、X轴-0.8m、Y轴0.65m)、④(幅度为-51dB、X轴-0.5m、Y轴0m)、⑤(幅度为-56dB、X轴1.2m、Y轴0.1m),直到达到预设的门限(-70dB)为止,如图2所示。
上述的步骤S4包含:
S4.1,选取雷达散射截面量级相当的金属球,分别依次置于二维散射图像的各个强散射点位置处,进行宽带扫频测试,获取金属球幅度和相位回波信号;即,选取直径5cm的金属球,分别依次置于①、②、③、④、⑤点位置处,各完成一次8GHz~12GHz的宽带扫频测试,获取金属球幅度和相位回波信号。
S4.2,在所述的二维散射图像上,每个强散射点采用对应的金属球幅度和相位回波信号并通过公式(2)进行标定修正多路径耦合对密闭等离子体腔中目标测试的误差:
式中,σT为定标后目标雷达散射截面的散射矢量;σo为定标体理论的散射矢量;为固定背景消除后的目标回波信号矢量;为固定背景消除后的定标体回波信号矢量,该目标雷达散射截面为二维散射图像上的像素点。
在第四步获得的包覆等离子体的目标散射图像上,①散射点区域采用第五步在①点处测量获取的金属球回波信号,依据公式(2)开展标定,②散射点区域采用第五步在②点处测量获取的金属球回波信号开展标定,③、④、⑤点采用同样方式完成标定。
在所述的步骤S4.2后还包含:
从定标后目标雷达散射截面的散射矢量中,采用基于散射图像的目标雷达散射截面重构技术,提取中心频率下随角度变化的包覆等离子的目标雷达散射截面。
综上所述,本发明一种等离子腔测试背景消除方法,利用标定数据消除由密闭腔体带来的多路径干扰,为实现在实验室内进行等离子包覆目标的电磁散射测试背景消除提供基础,为获取等离子环境中目标电磁散射特性地面模拟测量提供手段,进而在实验室内获取等离子包覆目标的电磁散射特性数据。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (6)

1.一种等离子腔测试背景消除方法,其特征在于,包含如下步骤:
S1,基于宽带扫频测试,分别获取密闭且充满等离子腔中放置目标和不放置目标情况下的电磁散射特性数据;
S2,将等离子腔中放置目标和不放置目标情况下的电磁散射特性数据进行矢量相减,进行背景消除处理;
S3,将经过背景消除处理后获得的包覆等离子体的目标幅度和相位回波信号,经二维傅里叶变换,获得多路径干扰下的二维散射图像,并提取所述的二维散射图像中强散射点位置;
S4,在对应的二维散射图像中强散射点位置处放置金属小球,对之进行宽带扫频标定测试得到多组标定数据,并对二维散射图像进行标定处理,修正多路径耦合对密闭等离子体腔中目标测试的误差。
2.如权利要求1所述的等离子腔测试背景消除方法,其特征在于,所述的步骤S1包含:
S1.1,将被测目标置于密闭等离子腔中,待密闭腔充满等离子体后,设置目标旋转角度和每次旋转的角度步进间隔,设置电磁波起始发射频率、终止发射频率和频率增量,在设定的角度上测量采集被测目标与密闭等离子腔的宽带幅度和相位回波信号;
S1.2,将被测目标取出,待密闭腔充满等离子体后,设置旋转角度和每次旋转的角度步进间隔,设置电磁波起始发射频率、终止发射频率和频率增量,在设定的角度上测量采集密闭等离子腔的宽带幅度和相位回波信号。
3.如权利要求1所述的等离子腔测试背景消除方法,其特征在于,所述的步骤S2具体为:
将设定角度下被测目标与密闭等离子腔的宽带幅度和相位回波信号按照公式(1)减去密闭等离子腔的宽带幅度和相位回波信号进行背景消除处理,获取包覆等离子体的目标幅度和相位回波信号
<mrow> <msub> <mover> <mi>V</mi> <mo>~</mo> </mover> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>V</mi> <mo>~</mo> </mover> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>V</mi> <mo>~</mo> </mover> <mi>B</mi> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
4.如权利要求3所述的等离子腔测试背景消除方法,其特征在于,所述的步骤S3具体为:
将背景消除后获得的包覆等离子体的目标幅度和相位回波信号,依据微波逆孔径成像原理,生成二维散射图像,利用Clean迭代算法,找出目标散射图像中幅度的最大点,把该最大点作为第一个强散射点,然后从散射图像的原始采样数据中减去该强散射点产生的散射场得到新的采样数据,再从新的采样数据中找到一个新的强散射点,依次类推,直到达到预设的门限为止。
5.如权利要求4所述的等离子腔测试背景消除方法,其特征在于,所述的步骤S4包含:
S4.1,选取雷达散射截面量级相当的金属球,分别依次置于二维散射图像的各个强散射点位置处,进行宽带扫频测试,获取金属球幅度和相位回波信号;
S4.2,在所述的二维散射图像上,每个强散射点采用对应的金属球幅度和相位回波信号并通过公式(2)进行标定修正多路径耦合对密闭等离子体腔中目标测试的误差:
<mrow> <msub> <mi>&amp;sigma;</mi> <mi>T</mi> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <mfrac> <msub> <mover> <mi>V</mi> <mo>~</mo> </mover> <mi>T</mi> </msub> <msub> <mover> <mi>V</mi> <mo>~</mo> </mover> <mi>o</mi> </msub> </mfrac> <mo>&amp;rsqb;</mo> <msub> <mi>&amp;sigma;</mi> <mi>o</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
式中,σT为定标后目标雷达散射截面的散射矢量;σo为定标体理论的散射矢量;为固定背景消除后的目标回波信号矢量;为固定背景消除后的定标体回波信号矢量。
6.如权利要求5所述的等离子腔测试背景消除方法,其特征在于,在所述的步骤S4.2后还包含:
从定标后目标雷达散射截面的散射矢量中,采用基于散射图像的目标雷达散射截面重构技术,提取中心频率下随角度变化的包覆等离子的目标雷达散射截面。
CN201710980087.7A 2017-10-19 2017-10-19 一种等离子腔测试背景消除方法 Active CN107995765B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710980087.7A CN107995765B (zh) 2017-10-19 2017-10-19 一种等离子腔测试背景消除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710980087.7A CN107995765B (zh) 2017-10-19 2017-10-19 一种等离子腔测试背景消除方法

Publications (2)

Publication Number Publication Date
CN107995765A true CN107995765A (zh) 2018-05-04
CN107995765B CN107995765B (zh) 2020-09-04

Family

ID=62028668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710980087.7A Active CN107995765B (zh) 2017-10-19 2017-10-19 一种等离子腔测试背景消除方法

Country Status (1)

Country Link
CN (1) CN107995765B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554367A (zh) * 2018-06-04 2019-12-10 重庆测威科技有限公司 一种基于压缩感知的目标散射特性测量干扰去除方法
CN110768733A (zh) * 2019-11-26 2020-02-07 武汉虹信通信技术有限责任公司 集成滤波器的大规模阵列天线的测试方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314773A (ja) * 1999-05-07 2000-11-14 Kokusai Kogyo Co Ltd 短波海洋レーダ観測装置
US20020158804A1 (en) * 2001-03-15 2002-10-31 Agence Spatiale Europeenne (An Inter-Governmental Organization) Method and system for time domain antenna holography
CN102200508A (zh) * 2011-03-23 2011-09-28 南京信息工程大学 消除背景光和热噪声对大气消光系数测量精度影响的方法
CN102253376A (zh) * 2011-04-14 2011-11-23 西北工业大学 一种基于二维微波成像的低散射共形天线rcs测试方法
CN102809577A (zh) * 2012-07-24 2012-12-05 西安电子科技大学 等离子体包覆材料的雷达反射特性测量装置及方法
CN103336273A (zh) * 2013-05-24 2013-10-02 中国电子科技集团公司第四十一研究所 一种基于波谱域补偿的探头耦合消除方法
CN104199026A (zh) * 2014-08-28 2014-12-10 中国科学院电子学研究所 基于线迹扫描二维近场成像的反向散射截面测量方法
CN105068053A (zh) * 2015-07-27 2015-11-18 北京环境特性研究所 一种从雷达散射截面测量数据中提取背景信号的方法
CN106443611A (zh) * 2015-11-11 2017-02-22 北京航空航天大学 一种弱散射目标的rcs测量方法
CN107153179A (zh) * 2017-05-26 2017-09-12 中国电子科技集团公司第四十研究所 一种雷达目标rcs与散射中心同步测试方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314773A (ja) * 1999-05-07 2000-11-14 Kokusai Kogyo Co Ltd 短波海洋レーダ観測装置
US20020158804A1 (en) * 2001-03-15 2002-10-31 Agence Spatiale Europeenne (An Inter-Governmental Organization) Method and system for time domain antenna holography
CN102200508A (zh) * 2011-03-23 2011-09-28 南京信息工程大学 消除背景光和热噪声对大气消光系数测量精度影响的方法
CN102253376A (zh) * 2011-04-14 2011-11-23 西北工业大学 一种基于二维微波成像的低散射共形天线rcs测试方法
CN102809577A (zh) * 2012-07-24 2012-12-05 西安电子科技大学 等离子体包覆材料的雷达反射特性测量装置及方法
CN103336273A (zh) * 2013-05-24 2013-10-02 中国电子科技集团公司第四十一研究所 一种基于波谱域补偿的探头耦合消除方法
CN104199026A (zh) * 2014-08-28 2014-12-10 中国科学院电子学研究所 基于线迹扫描二维近场成像的反向散射截面测量方法
CN105068053A (zh) * 2015-07-27 2015-11-18 北京环境特性研究所 一种从雷达散射截面测量数据中提取背景信号的方法
CN106443611A (zh) * 2015-11-11 2017-02-22 北京航空航天大学 一种弱散射目标的rcs测量方法
CN107153179A (zh) * 2017-05-26 2017-09-12 中国电子科技集团公司第四十研究所 一种雷达目标rcs与散射中心同步测试方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554367A (zh) * 2018-06-04 2019-12-10 重庆测威科技有限公司 一种基于压缩感知的目标散射特性测量干扰去除方法
CN110554367B (zh) * 2018-06-04 2023-06-06 重庆测威科技有限公司 一种基于压缩感知的目标散射特性测量干扰去除方法
CN110768733A (zh) * 2019-11-26 2020-02-07 武汉虹信通信技术有限责任公司 集成滤波器的大规模阵列天线的测试方法及装置
CN110768733B (zh) * 2019-11-26 2021-12-14 武汉虹信科技发展有限责任公司 集成滤波器的大规模阵列天线的测试方法及装置

Also Published As

Publication number Publication date
CN107995765B (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
Trintinalia et al. Joint time-frequency ISAR using adaptive processing
CN107942330A (zh) 一种基于等离子体近场测试的雷达散射特征数据提取方法及系统
CN106556783A (zh) 一种变电站内基于特高频相控阵原理的局部放电测向方法
CN106291502B (zh) 目标rcs测量中背景提取与抵消的最大概率时域处理方法
Hu et al. Insect flight speed estimation analysis based on a full-polarization radar
CN109932719A (zh) 基于sar成像的rcs高精度测量方法
Gradoni et al. Absorbing cross section in reverberation chamber: Experimental and numerical results
CN105467222B (zh) 基于单基地测量的地表介质参数反演方法
Ding et al. An analysis of radar detection on a plasma sheath covered reentry target
Tulgar et al. Improved pencil back-projection method with image segmentation for far-field/near-field SAR imaging and RCS extraction
CN107995765A (zh) 一种等离子腔测试背景消除方法
CN109884606B (zh) 基于单天线雷达散射截面rcs测量装置及性能分析方法
Noh et al. Measurement method for monostatic radar cross section of a scaled aircraft model in non-anechoic environment
Jarvis et al. UHF-band radar cross section measurements with single-antenna reflection coefficient results
CN110414182A (zh) 引入天线方向图的探地雷达frtm算法
Neitz et al. 3-D monostatic RCS determination from multistatic near-field measurements by plane-wave field synthesis
Knapp et al. Accurate determination of radiation patterns from near-field measurements in highly reflective environments
Jarvis Calibration and clutter cancellation techniques for accurate wideband radar cross section measurements
Gifuni et al. Estimate of the probability density function of the quality factor of mode tuned, source stirred and mode stirred reverberation chambers
Noh et al. RCS feature extraction using discretized point scatterer with compressive sensing
Lu et al. Through-wall imaging: Application of subspace-based optimization method
Cordill et al. Shielding effectiveness of composite and aluminum aircraft, model and measurement comparison
Bellez et al. Full polarimetric bistatic radar imaging experiments on sets of dielectric cylinders above a conductive circular plate
Ma et al. Multifrequency method for measuring properties of shock tube produced plasma
CN105182329A (zh) 一种小双站角复合反射特性时域测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant