CN107991372A - 一种用于铅离子检测的方法 - Google Patents

一种用于铅离子检测的方法 Download PDF

Info

Publication number
CN107991372A
CN107991372A CN201711172900.4A CN201711172900A CN107991372A CN 107991372 A CN107991372 A CN 107991372A CN 201711172900 A CN201711172900 A CN 201711172900A CN 107991372 A CN107991372 A CN 107991372A
Authority
CN
China
Prior art keywords
pdms
potential
electrode
ion
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711172900.4A
Other languages
English (en)
Other versions
CN107991372B (zh
Inventor
孙晶
周文慧
罗刚
刘世伟
申贵俊
杨海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN201711172900.4A priority Critical patent/CN107991372B/zh
Publication of CN107991372A publication Critical patent/CN107991372A/zh
Application granted granted Critical
Publication of CN107991372B publication Critical patent/CN107991372B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明涉及电化学分析技术领域,具体涉及一种用于铅离子检测的方法。该方法以AgNWs/PDMS可塑电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极系统,将该三电极系统置于Pb2+离子待测液和支持电解质中。设置初始电位为‑0.1V,终止电位为‑1V,电位增量为0.01V,记录Pb2+的交流阻抗‑电位关系曲线,并利用Pb2+在峰电位点的阻抗值用标准曲线法进行Pb2+离子的定量分析。本发明利用PDMS良好的柔韧性并结合银纳米线良好的导电性制得一种对铅离子具有高灵敏度的电极,且该电化学分析方法操作简单、检测时间短、准确度和灵敏度高,可广泛应用于实际样品测定。

Description

一种用于铅离子检测的方法
技术领域
本发明涉及电化学分析技术领域,具体涉及一种可用于铅离子测定的新方法。
背景技术
铅通过食物链不可逆的富集在人体内,一旦超标将引起人体产生多种疾病,如贫血、记忆力减退、心情烦躁,特别是导致儿童神经发育迟缓。传统的铅离子检测方法,如分光光度法、原子吸收光谱法和原子发射光谱法,虽灵敏度高,特异性好,但存在操作流程复杂、成本高、需专业人员操作、设备庞大等问题。电化学方法设备小型、操作简单、成本低、检测速度快,是目前研究金属离子检测的热点之一。
发明内容
为弥补现有技术的不足,本发明提供一种利用交流阻抗法建立检测铅离子的新的分析方法。
为实现上述目的,本发明采用的技术方案为:
以AgNWs/PDMS可塑电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极系统,将该三电极系统置于Pb2+离子待测液和支持电解质中。然后,设置初始电位为-0.1V,终止电位为-1V,电位增量为0.01V,记录浓度范围分别为0.1~7mg/L,0.006~0.03mg/L,0.0001~0.0009mg/L的Pb2+的交流阻抗-电位关系(IMPE)曲线,并利用Pb2+在峰电位点的阻抗值用标准曲线法进行Pb2+离子的定量分析。
具体的操作步骤包括:
(1)制备AgNWs/PDMS可塑电极:在硅片表面旋涂光刻胶,制得到硅片模板;向硅片模板浇注质量比为10:1的PDMS混合溶液,抽净气泡、加热、固化、清洗,得到带有固定形状凹槽的PDMS基片;配制质量百分数为2%PVA与5%Gly的混合水溶液,将制备好的PDMS基片浸泡于PVA和Gly混合溶液中20min,再放入60℃的真空烘箱中干燥;重复浸泡、干燥步骤,将PDMS基片热固定,得到表面亲水的PDMS基片;将无水乙醇与水按9:1的体积比混合作为溶剂,配制浓度为5mg/mL的银纳米线溶液,均匀地铺展在PDMS基片表面的凹槽内,室温下放置干燥一天以上,即制备出AgNWs/PDMS可塑电极;
(2)Pb2+离子峰电位的确定:利用循环伏安法,在-1~0V的电位范围内进行扫描,记录Pb2+的峰电位为-0.55V;
(3)Pb2+离子定量分析:以AgNWs/PDMS可塑电极为工作电极,Ag/AgCl电极为参比电极,对电极为铂丝电极,组成三电极系统;将该三电极系统置于Pb2+离子待测液和支持电解质中,记录浓度范围分别为0.1~7mg/L,0.006~0.03mg/L,0.0001~0.0009mg/L的Pb2+的IMPE曲线,并利用Pb2+在峰电位点的阻抗值用标准曲线法进行Pb2+离子的定量分析。
进一步的,所述支持电解质含有0.3mol/LKNO3溶液。
本发明采用交流阻抗法,利用低频阻抗建立标准曲线,建立极化电流和待测液浓度间的函数关系曲线,可消除电解质支持液对目标分析物扩散过程产生的误差,进而可以免去电解质支持液的优化试验。本发明利用PDMS良好的柔韧性并结合银纳米线良好的导电性制得一种对铅离子具有高灵敏度的电极,且该电化学分析方法操作简单、检测时间短、准确度和灵敏度高,可广泛应用于实际样品测定。
附图说明
图1为铅离子的循环伏安曲线;
图2为不同浓度Pb2+的阻抗分析曲线及其标准曲线。其中,(a)是浓度范围0.1~7mg/L,(b)是浓度范围0.006~0.03mg/L,(c)是浓度范围0.0001~0.0009mg/Lmg/L。
具体实施方式
下面通过具体实施例详述本发明,但不限制本发明的保护范围。如无特殊说明,本发明所采用的实验方法均为常规方法,所用实验器材、材料、试剂等均可从化学公司购买。
下述实施例AgNWs/PDMS可塑电极的制备方法为:
采用光刻技术制作PDMS基片。在洁净的硅片表面旋涂光刻胶,遮蔽含有电极图形的掩膜版,最后进行曝光及显影,得到硅片模板。将硅片模板置于一次性培养皿中,浇注质量比为10:1的PDMS混合溶液;再放入真空干燥器中负压抽净PDMS混合溶液中的气泡,用时2h;取出后放入80℃的恒温烘箱中加热固化1h,并切分成12个电极基片;将做好的电极基片用胶带(购自美国3M公司)处理清除表面附着的灰尘,然后放入紫外臭氧清洗机中清洗2min,得到带有固定形状凹槽的PDMS基片。
PDMS基片表面亲水层修饰。具体步骤如下:(1)配制质量百分数为2%PVA与5%Gly的混合水溶液;(2)将制备好的PDMS基片浸泡于PVA和Gly混合溶液中20min,再放入60℃的真空烘箱中干燥2h;(3)重复步骤(2)一次;(4)将PDMS基片放入100℃的真空烘箱中热固定20min;(5)重复步骤(2)、(4)一次,得到表面亲水层修饰的PDMS基片。
电极制备。将无水乙醇与水按9:1的体积比混合作为溶剂,配制浓度为5mg/mL的银纳米线溶液,将银纳米线溶液均匀地铺展在PDMS基片表面的凹槽内,于室温下放置干燥一天以上,即制备出AgNWs/PDMS可塑电极。
实施例1浓度范围为0.1~7mg/L铅离子检测
将三电极体系置于含有0.3mol/L KNO3溶液作为支持电解质的Pb2+待测液中。首先,利用循环伏安法,在-1~0V的电位范围内进行扫描,记录Pb2+的峰电位为-0.55V,如附图1所示。然后,设置初始电位为-0.1V,终止电位为-1V,电位增量为0.01V,记录Pb2+的IMPE曲线,并利用Pb2+在峰电位点的阻抗值,采用origin软件制作标准曲线。线性回归方程为:log(Z/ohm)=0.0066c(mg/L)+1.1343,相关系数R2为0.9981,线性范围的最下限为0.0001mg/L。
实施例2浓度范围为0.006~0.03mg/L铅离子检测
将三电极体系置于含有0.3mol/LKNO3溶液作为支持电解质的Pb2+待测液中。首先,利用循环伏安法,在-1~0V的电位范围内进行扫描,记录Pb2+的峰电位为-0.55V,如附图1所示。然后,设置初始电位为-0.1V,终止电位为-1V,电位增量为0.01V,记录Pb2+的IMPE曲线,并利用Pb2+在峰电位点的阻抗值,采用origin软件制作标准曲线。
线性回归方程为:log(Z/ohm)=1.3296c(mg/L)+1.1480,相关系数R2为0.9961。
实施例3浓度范围为0.0001~0.0009mg/L铅离子检测
将三电极体系置于含有0.3mol/LKNO3溶液作为支持电解质的Pb2+待测液中。首先,利用循环伏安法,在-1~0V的电位范围内进行扫描,记录Pb2+的峰电位为-0.55V,如附图1所示。然后,设置初始电位为-0.1V,终止电位为-1V,电位增量为0.01V,记录Pb2+的IMPE曲线,并利用Pb2+在峰电位点的阻抗值,采用origin软件制作标准曲线。
线性回归方程为:log(Z/ohm)=50.3095c(mg/L)+1.2117,相关系数R2为0.9982。
应用例自来水总铅离子的测定
检测对象:大连市地区自来水
检测方法:以AgNWs/PDMS可塑电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极置于铅离子待测液中利用交流阻抗法检测自来水中Pb2+。将三电极体系置于含有0.3mol/LKNO3溶液作为支持电解质的Pb2+待测液中,在初始电位为-0.1V,终止电位为-1V,电位增量为0.01V的实验条件下,记录Pb2+的IMPE曲线。实验结果如表1所示。平行测定10次,得到的平均阻抗值为1.23,代入线性回归方程:
log(Z/ohm)=50.3095c(mg/L)+1.2117,相关系数R2为0.9982。
计算出水样中Pb2+的平均浓度为4.4×10-4mg/L。《生活饮用水卫生标准》(GB5749-2006)中规定,Pb2+的含量应≤0.01mg/L。该样品的分析结果属于合格的质量范围。10次平行测定的相对标准偏差RSD值为2.65%。加标回收率为102.74%。
表1自来水中Pb2+的测定结果
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (4)

1.一种用于铅离子检测的方法,其特征在于,以AgNWs/PDMS可塑电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极系统,将该三电极系统置于Pb2+离子待测液和支持电解质中;然后,设置初始电位为-0.1V,终止电位为-1V,电位增量为0.01V,记录浓度范围分别为0.1~7mg/L,0.006~0.03mg/L,0.0001~0.0009mg/L的Pb2+的交流阻抗-电位关系曲线,并利用Pb2+在峰电位点的阻抗值用标准曲线法进行Pb2+离子的定量分析。
2.根据权利要求1所述的方法,其特征在于,所述AgNWs/PDMS可塑电极的制备方法为:在硅片表面旋涂光刻胶,制得到硅片模板;向硅片模板浇注质量比为10:1的PDMS混合溶液,抽净气泡、加热、固化、清洗,得到带有固定形状凹槽的PDMS基片;配制质量百分数为2%PVA与5%Gly的混合水溶液,将制备好的PDMS基片浸泡于PVA和Gly混合溶液中20min,再放入60℃的真空烘箱中干燥;重复浸泡、干燥步骤,将PDMS基片热固定,得到表面亲水的PDMS基片;将无水乙醇与水按9:1的体积比混合作为溶剂,配制浓度为5mg/mL的银纳米线溶液,均匀地铺展在PDMS基片表面的凹槽内,室温下放置干燥一天以上,即制备出AgNWs/PDMS可塑电极。
3.根据权利要求1所述的方法,其特征在于,Pb2+离子峰电位的确定方法为:利用循环伏安法,在-1~0V的电位范围内进行扫描,记录Pb2+的峰电位为-0.55V。
4.根据权利要求1所述的方法,其特征在于,所述支持电解质含有0.3mol/LKNO3溶液。
CN201711172900.4A 2017-11-22 2017-11-22 一种用于铅离子检测的方法 Active CN107991372B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711172900.4A CN107991372B (zh) 2017-11-22 2017-11-22 一种用于铅离子检测的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711172900.4A CN107991372B (zh) 2017-11-22 2017-11-22 一种用于铅离子检测的方法

Publications (2)

Publication Number Publication Date
CN107991372A true CN107991372A (zh) 2018-05-04
CN107991372B CN107991372B (zh) 2020-02-18

Family

ID=62031940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711172900.4A Active CN107991372B (zh) 2017-11-22 2017-11-22 一种用于铅离子检测的方法

Country Status (1)

Country Link
CN (1) CN107991372B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109298046A (zh) * 2018-10-23 2019-02-01 大连大学 一种用于乙醇催化的电极及其应用
CN109298040A (zh) * 2018-10-23 2019-02-01 大连大学 一种应用AuNPs/AgNWs/PDMS可塑电极检测铅离子的方法
CN110927236A (zh) * 2019-12-09 2020-03-27 新疆天业(集团)有限公司 一种基于电化学传感器检测工业废水铅离子含量的方法
CN113013453A (zh) * 2019-12-19 2021-06-22 大连大学 一种构建甲醇燃料电池的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136883A (zh) * 2015-08-17 2015-12-09 西安石油大学 用于检测水中铅离子的石墨烯负载银传感器的制备方法
CN107195386A (zh) * 2017-05-19 2017-09-22 大连大学 一种透明柔性导电材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136883A (zh) * 2015-08-17 2015-12-09 西安石油大学 用于检测水中铅离子的石墨烯负载银传感器的制备方法
CN107195386A (zh) * 2017-05-19 2017-09-22 大连大学 一种透明柔性导电材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MORDECHAI BRAND ET AL.: "The Silver Electrode in Square-Wave Anodic Stripping Voltammetry. Determination of Pb2+ without Removal of Oxygen", 《ANAL. CHEM.》 *
S. PRAKASH ET AL.: "Improved sensitive detection of Pb2+ and Cd2+ in water samples at electrodeposited silver nanonuts on a glassy carbon electrode", 《ANAL. METHODS》 *
段莎莎等: "银纳米线基柔性导电材料的研究进展", 《中国材料进展》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109298046A (zh) * 2018-10-23 2019-02-01 大连大学 一种用于乙醇催化的电极及其应用
CN109298040A (zh) * 2018-10-23 2019-02-01 大连大学 一种应用AuNPs/AgNWs/PDMS可塑电极检测铅离子的方法
CN110927236A (zh) * 2019-12-09 2020-03-27 新疆天业(集团)有限公司 一种基于电化学传感器检测工业废水铅离子含量的方法
CN113013453A (zh) * 2019-12-19 2021-06-22 大连大学 一种构建甲醇燃料电池的方法
CN113013453B (zh) * 2019-12-19 2023-05-30 大连大学 一种构建甲醇燃料电池的方法

Also Published As

Publication number Publication date
CN107991372B (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
CN107843633B (zh) 一种可用于铜离子测定的柔性电极及其测定方法
CN107991372A (zh) 一种用于铅离子检测的方法
CN109298053A (zh) 一种应用AuNPs/AgNWs/PDMS可塑电极测定葡萄糖的方法
Wu et al. A novel molecularly imprinted electrochemiluminescence sensor for isoniazid detection
Larsen et al. Characterization of poly (3, 4-ethylenedioxythiophene): tosylate conductive polymer microelectrodes for transmitter detection
CN102495119A (zh) 一种多参数水质监测集成微阵列电极及制备方法
JP2003515097A5 (zh)
CN107219270B (zh) 一种新型基于还原氧化石墨烯-二硫化钨复合材料氨气气体传感器及其制备工艺
Luo et al. Voltammetric determination of ferulic acid by didodecyldimethyl-ammonium bromide/Nafion composite film-modified carbon paste electrode
CN111103340A (zh) 纳米粒子修饰的玻碳电极的制备方法及其应用
Li et al. 3-aminopropyltriethoxysilanes modified porous silicon as a voltammetric sensor for determination of silver ion
CN101881749A (zh) 一种全固态溶解氧传感器及其制备方法
CN108387624B (zh) 三维多孔碳/聚硫堇复合物修饰电极及其制备和应用
TW201816397A (zh) 平面型氨選擇性感測電極及其製法
CN108717074A (zh) 一种纳米银线/氮掺杂多壁碳纳米管复合电极制备及应用该电极测定葡萄糖的方法
CN110108773A (zh) 电化学传感器电极及其制法和应用
Hamidi et al. Fabrication of bulk-modified carbon paste electrode containing α-PW12O403− polyanion supported on modified silica gel: Preparation, electrochemistry and electrocatalysis
Zhang et al. The electrochemical behavior of p-aminophenol at a ω-mercaptopropionic acid self-assembled gold electrode
CN109254053B (zh) 一种环境雌激素电化学分析传感器的制备方法及应用
CN109298060B (zh) 一种基于ito的羧基化多壁碳纳米管修饰电极的制备及应用该电极测定尿酸的方法
Zhou et al. Sensitive electrochemical detection of caffeic acid using a carboxyl-functionalized reduced graphene oxide-modified glassy carbon electrode (ERGO-COOH/GCE)
Naeemy et al. Electrooxidation of zolpidem and its voltammetric quantification in standard and pharmaceutical formulation using pencil graphite electrode
KR101876528B1 (ko) 당화 헤모글로빈 측정용 전기화학센서 및 그 제조방법
Wei et al. Electrochemical determination of tyrosine in human serum based on glycine polymer and multi-walled carbon nanotubes modified carbon paste electrode
Palisoc et al. Morphological, thickness and electrochemical analyses of spin-coated [Ru (NH3)(6)](3+)/Nafion films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180504

Assignee: Dalian Hongde Aquatic Products Co.,Ltd.

Assignor: DALIAN University

Contract record no.: X2023980047930

Denomination of invention: A method for detecting lead ions

Granted publication date: 20200218

License type: Common License

Record date: 20231123

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180504

Assignee: Dalian darente fragrance Technology Co.,Ltd.

Assignor: DALIAN University

Contract record no.: X2023210000245

Denomination of invention: A method for detecting lead ions

Granted publication date: 20200218

License type: Common License

Record date: 20231129

EE01 Entry into force of recordation of patent licensing contract