CN107986808A - 一种原位混杂碳纳米管增强陶瓷基复合材料制备方法 - Google Patents

一种原位混杂碳纳米管增强陶瓷基复合材料制备方法 Download PDF

Info

Publication number
CN107986808A
CN107986808A CN201711325368.5A CN201711325368A CN107986808A CN 107986808 A CN107986808 A CN 107986808A CN 201711325368 A CN201711325368 A CN 201711325368A CN 107986808 A CN107986808 A CN 107986808A
Authority
CN
China
Prior art keywords
carbon nanotubes
hybrid
situ
reinforced ceramic
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711325368.5A
Other languages
English (en)
Inventor
方双全
秦云晴
田郭涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201711325368.5A priority Critical patent/CN107986808A/zh
Publication of CN107986808A publication Critical patent/CN107986808A/zh
Pending legal-status Critical Current

Links

Classifications

    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明涉及一种原位混杂碳纳米管增强陶瓷基复合材料制备方法。本发明由碳纳米管、Ti与Si粉末通过真空热压烧结得到碳纳米管与Ti3SiC2混杂增强Ti5Si3基复合材料,其中增强相Ti3SiC2通过原位反应得到,与未反应碳纳米管协同增强原位反应得到的基体相Ti5Si3。本发明克服了细化晶粒、合金化与复合化方法各自存在的缺陷。本发明方法简单、可行且成本低,其制备的碳纳米管与Ti3SiC2原位混杂增强Ti5Si3基复合材料,致密度高、气孔率小、界面相容性好、力学性能优异。

Description

一种原位混杂碳纳米管增强陶瓷基复合材料制备方法
技术领域
本发明涉及的是一种碳纳米管增强复合材料,特别涉及一种原位混杂碳纳米管增强陶瓷基复合材料制备方法。
背景技术
复杂六方D8m结构金属间化合物Ti5Si3具有低密度(4.38g/cm3)、高熔点(2130℃)、良好抗氧化性与高温稳定性等优异特性,是一种有潜力用于1600℃以上的高温结构材料,因而受到国际材料界的广泛关注。但Ti5Si3室温断裂韧性低,高温强度不够高的特点一直制约着其在实际领域的应用。如果发挥出Ti5Si3金属间化合物的潜在优势,使其在高温环境下表现出优异的综合性能,Ti5Si3极有希望代替镍基超合金,成为一种新型高温结构材料。
在本发明作出之前,目前对Ti5Si3金属间化合物强韧化的方法主要有细化晶粒、合金化与复合化方法。利用晶粒细化能够改变和调整微观组织结构,进行塑性第二相增韧,通过裂纹与塑性相的交互作用来增加韧性,但效果不是十分显著。合金化是在Ti5Si3中添加耐热金属元素形成固溶体来改善其性能,但这些元素在高温下不能和Ti5Si3完全化学相容,而且增大了Ti5Si3的密度;添加陶瓷颗粒、纤维或晶须等增强相制备Ti5Si3基复合材料,是目前最普遍的改善力学性能的途径。但有些增强相只起到韧化作用,对强度没有影响;而另一些在韧化的同时甚至还降低合金的强度。众所周知,添加刚性的陶瓷颗粒工艺简单,但韧化效果不明显;利用纤维增韧能有效提高基体的强度与韧性,但工艺过程复杂;晶须强韧化Ti5Si3金属间化合物效果显著,而且工艺简单,但晶须昂贵的价格限制了其在实际领域中的应用。目前对金属间化合物研究较多的是镍铝、钛铝及硅钼等,关于综合性能更优异的Ti5Si3材料的研究还比较少,基本上还停留在实验摸索阶段,全面提高Ti5Si3综合力学性能的工艺与理论还不完善,相关的理论解释也大多是唯象的,很少触及其微观机制和物理本质。所以,制备新型Ti5Si3基复合材料,研究增强相与基体之间的界面作用机理,提高Ti5Si3金属间化合物的综合力学性能,就成为使Ti5Si3金属间化合物在高温结构材料领域得到实际应用所急需解决的问题。
发明内容
本发明的目的就在于克服上述缺陷,提供一种原位混杂碳纳米管增强陶瓷基复合材料制备方法。
本发明的技术方案是:
一种原位混杂碳纳米管增强陶瓷基复合材料制备方法,其主要技术特征在于:由碳纳米管、Ti与Si粉末通过真空热压烧结得到碳纳米管与Ti3SiC2混杂增强Ti5Si3基复合材料,其中增强相Ti3SiC2通过原位反应得到,与未反应碳纳米管协同增强原位反应得到的基体相Ti5Si3
所述碳纳米管与Ti、Si粉末的混合是通过采用化学接枝与超声分散相结合,实现碳纳米管的均匀分散。
所述碳纳米管是单壁碳纳米管或多壁碳纳米管。
所述真空热压烧结工艺为:将准备好的粉体放入石墨模具中,放入真空度小于1.0×10-2真空热压炉中,以10-20℃/min的速度升温到1350-1450℃,保温2-4小时,最大压力为20-30MPa,然后以30-50℃/min的降温速率进行退火至400℃,然后随炉冷却至室温。
本发明的优点和效果在于其制备的碳纳米管与Ti3SiC2原位混杂增强Ti5Si3基复合材料,致密度高、气孔率小、界面相容性好、力学性能优异。
附图说明
图1——本发明复合材料的相组成示意图。
具体实施方式
本发明提出了新的碳纳米管“接枝”分散方法,兼顾碳纳米管和陶瓷基体的界面结合和损伤,提出了碳纳米管来增强Ti5Si3基金属间化合物的分散机制和微观结构控制方法。采用碳纳米管来增强Ti5Si3基金属间化合物,首先碳纳米管可以起到抑制Ti5Si3晶粒长大作用;其次在Ti5Si3金属间化合物基体中添加一定量的碳纳米管可以起到良好的增强增韧作用;最后控制反应条件,使原料中的碳纳米管、Si和Ti粉生成Ti3SiC2与Ti5Si3,Ti3SiC2也是一种高温陶瓷相,为三元层状化合物,微观组织呈棒状晶结构,在基体中起到类似晶须的作用,具有良好的高温抗氧化性能,密度与Ti5Si3相近,且具有较高的断裂韧性,是Ti5Si3金属间化合物一种理想的韧化剂。从而碳纳米管就与原位生成的Ti3SiC2一起,发挥协同强韧化原位生成Ti5Si3基体的作用。
利用化学方法对碳纳米管进行表面处理,再经超声处理、真空干燥,得到浸润性好、易分散的碳纳米管样品;2、利用湿化学方法处理Si、Ti粉末,使其表面带有正电荷;将处理过的碳纳米管与Si、Ti粉末混合,采用合适的表面活性剂,进行超声波分散,利用静电吸引原理,实现碳纳米管在复合粉末中的均匀紧密分散,干燥后得到碳纳米管-Si-Ti复合粉末。为了提高烧结体的致密度,首先将复合粉末冷等静压成型,然后将压坯放入石墨模具中,最后在预定的工艺制度下进行真空热压烧结,得到碳纳米管与Ti3SiC2原位混杂增强Ti5Si3基复合材料。
实施例:
5%碳纳米管与15%Ti3SiC2原位混杂增强80%Ti5Si3基复合材料的制备。按摩尔比碳纳米管/Ti3SiC2/Ti5Si3=1∶3∶16的摩尔比称量碳纳米管、Ti与Si原料粉末,然后利用十二烷基磺酸钠表面活性剂对碳纤维进行表面处理,盐酸溶液对Ti、Si粉末进行处理,然后将三种原料混合,并进行超声分散,干燥后得到烧结粉体。将制备的粉体放入石墨模具中,先进行冷等静压处理,得到烧结坯体,然后将坯体置于真空度小于等于1.0×10-2真空热压炉中,以15℃/min的速度升温到1450℃,保温3小时。最大压力为25MPa,然后以40℃/min的降温速率进行退火至400℃,再随炉冷却至室温。
通过上述工艺得到复合材料的相组成如图1所示。与纯Ti5Si3相比,复合材料的断裂韧性提高了160%,而弯曲强度提高了200%。

Claims (4)

1.一种原位混杂碳纳米管增强陶瓷基复合材料制备方法,其特征在于:由碳纳米管、Ti与Si粉末通过真空热压烧结得到碳纳米管与Ti3SiC2混杂增强Ti5Si3基复合材料,其中增强相Ti3SiC2通过原位反应得到,与未反应碳纳米管协同增强原位反应得到的基体相Ti5Si3
2.根据权利要求1所述的一种原位混杂碳纳米管增强陶瓷基复合材料制备方法,其特征在于:所述碳纳米管与Ti、Si粉末的混合是通过采用化学接枝与超声分散相结合,实现碳纳米管的均匀分散。
3.根据权利要求1所述的一种原位混杂碳纳米管增强陶瓷基复合材料制备方法,其特征在于:所述碳纳米管是单壁碳纳米管或多壁碳纳米管。
4.根据权利要求1所述的一种原位混杂碳纳米管增强陶瓷基复合材料制备方法,其特征在于:所述真空热压烧结工艺为:将准备好的粉体放入石墨模具中,放入真空度小于1.0×10-2真空热压炉中,以10-20℃/min的速度升温到1350-1450℃,保温2-4小时,最大压力为20-30MPa,然后以30-50℃/min的降温速率进行退火至400℃,然后随炉冷却至室温。
CN201711325368.5A 2017-12-08 2017-12-08 一种原位混杂碳纳米管增强陶瓷基复合材料制备方法 Pending CN107986808A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711325368.5A CN107986808A (zh) 2017-12-08 2017-12-08 一种原位混杂碳纳米管增强陶瓷基复合材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711325368.5A CN107986808A (zh) 2017-12-08 2017-12-08 一种原位混杂碳纳米管增强陶瓷基复合材料制备方法

Publications (1)

Publication Number Publication Date
CN107986808A true CN107986808A (zh) 2018-05-04

Family

ID=62037644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711325368.5A Pending CN107986808A (zh) 2017-12-08 2017-12-08 一种原位混杂碳纳米管增强陶瓷基复合材料制备方法

Country Status (1)

Country Link
CN (1) CN107986808A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113843419A (zh) * 2021-09-04 2021-12-28 安徽中科春谷激光产业技术研究院有限公司 选区激光熔化制备原位生成TiC+Ti3SiC2增强钛基复合材料的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102070340A (zh) * 2011-01-14 2011-05-25 哈尔滨工程大学 碳纳米管增强三硅化五钛基复合材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102070340A (zh) * 2011-01-14 2011-05-25 哈尔滨工程大学 碳纳米管增强三硅化五钛基复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘明: "原位合成Ti5Si3基复合材料及其性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113843419A (zh) * 2021-09-04 2021-12-28 安徽中科春谷激光产业技术研究院有限公司 选区激光熔化制备原位生成TiC+Ti3SiC2增强钛基复合材料的方法

Similar Documents

Publication Publication Date Title
Sun et al. Failure investigation of carbon nanotube/3Y-TZP nanocomposites
WO2020042950A1 (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
Song et al. Effects of SiC whiskers on the mechanical properties and microstructure of SiC ceramics by reactive sintering
Sun et al. Reinforcement of alumina matrix with multi-walled carbon nanotubes
Sun et al. Colloidal processing of carbon nanotube/alumina composites
CN102242303B (zh) 一种原位纳米TiC陶瓷颗粒增强铜基复合材料及其制备方法
Song et al. Fabrication and mechanical properties of multi-walled carbon nanotube reinforced reaction bonded silicon carbide composites
CN106007762B (zh) 具有各向异性的石墨烯增韧a12o3纳米复合陶瓷刀具材料及其制备方法
CN104975201A (zh) 纳米碳增强的铝复合材料及其制造方法
CN108950280B (zh) 一种石墨烯/碳化硅增强铝基复合材料及其制备方法
JP2002356381A (ja) SiC繊維強化型SiC複合材料の製造方法
CN109609806B (zh) 一种氧化石墨烯增强钛基复合材料及其制备方法
CN102161594A (zh) 一种SiC晶须强化的SiC陶瓷基复合材料及其制备方法
CN109928756A (zh) 一种碳化硅增强碳基复合材料及制备方法
CN109439940A (zh) 一种大气气氛下热压烧结制备颗粒增强铝基复合材料的方法
CN106904985B (zh) 一种钛-硅-碳增强型氧化铝基多相复合材料及其制备方法
Bocanegra-Bernal et al. Effect of low-content of carbon nanotubes on the fracture toughness and hardness of carbon nanotube reinforced alumina prepared by sinter, HIP and sinter+ HIP routes
WO2023029080A1 (zh) 氮化硼纳米管/纳米片-碳化硼陶瓷复合材料及其制备方法
CN108374133A (zh) 原位合成MgAlB4晶须增强铝基复合材料的方法
Li et al. Enhanced strength and toughness of silicon carbide ceramics by graphene platelet-derived laminated reinforcement
Reyes-Rojas et al. Sintering of carbon nanotube-reinforced zirconia-toughened alumina composites prepared by uniaxial pressing and cold isostatic pressing
Estili et al. Multiwalled carbon nanotubes as a unique agent to fabricate nanostructure-controlled functionally graded alumina ceramics
CN107986808A (zh) 一种原位混杂碳纳米管增强陶瓷基复合材料制备方法
Ueda et al. Fabrication and mechanical properties of high-dispersion-treated carbon nanofiber/alumina composites
CN109652679B (zh) 纳米碳管和内生纳米TiC颗粒混杂增强铝基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180504

RJ01 Rejection of invention patent application after publication