CN107979910A - Active control method for surface potential of dielectric material in high vacuum environment - Google Patents
Active control method for surface potential of dielectric material in high vacuum environment Download PDFInfo
- Publication number
- CN107979910A CN107979910A CN201711228450.6A CN201711228450A CN107979910A CN 107979910 A CN107979910 A CN 107979910A CN 201711228450 A CN201711228450 A CN 201711228450A CN 107979910 A CN107979910 A CN 107979910A
- Authority
- CN
- China
- Prior art keywords
- plasma
- microwave
- source body
- gas
- dielectric material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 239000003989 dielectric material Substances 0.000 title claims abstract description 30
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 36
- 239000010959 steel Substances 0.000 claims abstract description 36
- 230000005540 biological transmission Effects 0.000 claims abstract description 26
- 230000008569 process Effects 0.000 claims abstract description 22
- 230000005611 electricity Effects 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 57
- 150000002500 ions Chemical class 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 12
- 238000010494 dissociation reaction Methods 0.000 claims description 6
- 230000005593 dissociations Effects 0.000 claims description 6
- 230000015556 catabolic process Effects 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 229910052743 krypton Inorganic materials 0.000 claims description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052754 neon Inorganic materials 0.000 claims description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 229910052704 radon Inorganic materials 0.000 claims description 2
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052724 xenon Inorganic materials 0.000 claims description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims 2
- 230000019643 circumnutation Effects 0.000 claims 1
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- 230000008676 import Effects 0.000 claims 1
- 238000000338 in vitro Methods 0.000 claims 1
- 238000003032 molecular docking Methods 0.000 claims 1
- 230000010287 polarization Effects 0.000 claims 1
- 230000000644 propagated effect Effects 0.000 claims 1
- 238000003379 elimination reaction Methods 0.000 abstract description 9
- 230000001105 regulatory effect Effects 0.000 abstract description 9
- 230000001276 controlling effect Effects 0.000 abstract description 6
- 230000009471 action Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 238000004088 simulation Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 5
- 238000010884 ion-beam technique Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000002679 ablation Methods 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000011553 magnetic fluid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/52—Protection, safety or emergency devices; Survival aids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
- H05H1/461—Microwave discharges
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Critical Care (AREA)
- Emergency Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Plasma Technology (AREA)
Abstract
本发明公开了一种高真空环境下介质材料表面电位主动控制的方法,消电过程是在高真空环境下进行,放电过程包括使用微波电源对磁控管供电产生2.45GHz电磁波,电磁波以TEM模式通过同轴波导馈送,并通过微波传输系统馈入微波同轴天线,微波同轴天线下端位于等离子体源体的等离子体室内,微波同轴天线在等离子体室内完成放电,并借助于等离子体源体在真空室内完成消电过程;在高真空环境下,通过微波同轴天线在等离子体室内击穿工作气体,形成等离子体,位于等离子体室内的环形永磁钢用于产生强度为0.0875特斯拉磁场,在磁场作用下形成高密度的电子回旋共振等离子体,通过等离子体调节板扩散至待处理工件环境,实现介质表面电荷的主动调节。
The invention discloses a method for actively controlling the surface potential of a dielectric material in a high-vacuum environment. The discharge process is carried out in a high-vacuum environment. The discharge process includes using a microwave power supply to supply power to a magnetron to generate 2.45GHz electromagnetic waves. The electromagnetic waves are in TEM mode. It is fed through the coaxial waveguide and fed into the microwave coaxial antenna through the microwave transmission system. The lower end of the microwave coaxial antenna is located in the plasma chamber of the plasma source body. The body completes the electricity elimination process in the vacuum chamber; in a high vacuum environment, the microwave coaxial antenna breaks down the working gas in the plasma chamber to form plasma, and the ring-shaped permanent magnet steel located in the plasma chamber is used to generate 0.0875 Tess The magnetic field is pulled, and a high-density electron cyclotron resonance plasma is formed under the action of the magnetic field, which diffuses into the environment of the workpiece to be processed through the plasma regulating plate, and realizes the active adjustment of the surface charge of the medium.
Description
技术领域technical field
本发明属于等离子体与材料相作用科学研究领域,具体涉及一种高真空环境下介质材料表面电位主动控制方法。The invention belongs to the field of scientific research on the interaction between plasma and materials, and in particular relates to an active control method for the surface potential of a dielectric material in a high-vacuum environment.
背景技术Background technique
航天器在轨运行期间,其表面受空间等离子体、高能电子、太阳辐射、空间带电尘埃等环境的影响,可能发生静电荷积累和泄漏的现象。这种充放电过程可能造成航天器材料的击穿、材料表面性能下降,使太阳电池、电子器件和光学敏感器性能下降或出现损伤;同时这种充放电过程产生的强电磁脉冲会严重干扰航天器内部仪器系统,产生异常、故障、失灵甚至导致航天器报废等,将严重影响重大空间任务的执行。因此,对航天器表面电位进行有效控制对于保障我国航天器在轨安全稳定运行具有非常重要的意义。During the operation of the spacecraft in orbit, its surface is affected by space plasma, high-energy electrons, solar radiation, space charged dust and other environments, and electrostatic charge accumulation and leakage may occur. This charging and discharging process may cause the breakdown of spacecraft materials, the degradation of material surface properties, and the performance degradation or damage of solar cells, electronic devices, and optical sensors; at the same time, the strong electromagnetic pulses generated by this charging and discharging process will seriously interfere with spaceflight. Abnormalities, failures, failures, and even scrapping of the spacecraft will seriously affect the execution of major space missions. Therefore, effective control of the surface potential of spacecraft is of great significance to ensure the safe and stable operation of my country's spacecraft in orbit.
空间的恶劣环境复杂多变(如超低温、极低真空、高能电子离子辐照等),常规可用的地面除静电的方式(如加湿空气、电晕放电等)将无法使用。目前存在的介质表面电位控制方法主要分被动式控制和主动式控制两种,相比较前者主动式控制更为灵活有效和彻底。通常发射的荷电粒子束流主要有三种:电子束、离子束和等离子体束,其中电子束和离子束均为单一电性的粒子流。国际空间站(ISS)使用发射电子的空心阴极组件,通过其发射的电子束流为空间站与空间等离子体环境之间提供一种低阻抗通路,降低并控制空间站表面电位,这种空心阴极组件电子发射能力强,但离子较少,功耗较大,中和不彻底。欧空局提出了一种离子源主动控制方法,使用液态金属蒸发、离化并被加速极的电压加速喷出形成离子束,但这种离子源的结构较为复杂,且只能中和负电位,不能中和正电位,同时会带来不利的材料污染等。因为空间环境的恶劣多变以及飞行器位置时常发生变化,飞行器表面介质材料的电位幅值与极性可能随时间发生变化,如果飞行器表面向阳,且空间等离子体密度和能量很低时,飞行器表面可能带较低的正电位;而如果飞行器表面背阳,且空间等离子体的密度和能量高时,卫星表面可能带很高的负电位。因此使用低能的等离子体束将比电子束和离子束的电位主动控制方式更加的有效,将可以对介质表面的电位进行有效调控。俄罗斯和平号空间站使用一种脉冲等离子体源实现空间中和介质材料表面电荷,具有结构简单、中和效率高、工作稳定等特点,但该脉冲等离子体源通过高温电弧烧蚀工质表面材料分解并离化产生等离子体,能耗高且消耗固材。The harsh environment of the space is complex and changeable (such as ultra-low temperature, extremely low vacuum, high-energy electron ion irradiation, etc.), and the commonly available ground static removal methods (such as humidified air, corona discharge, etc.) will not be used. The current control methods for the surface potential of the medium are mainly divided into passive control and active control. Compared with the former active control, it is more flexible, effective and thorough. There are mainly three types of charged particle beams that are usually emitted: electron beams, ion beams, and plasma beams, wherein both electron beams and ion beams are single-electricity particle streams. The International Space Station (ISS) uses a hollow cathode assembly that emits electrons. The electron beam emitted by it provides a low-impedance path between the space station and the space plasma environment, reducing and controlling the surface potential of the space station. This hollow cathode assembly emits electrons Strong ability, but less ions, higher power consumption, and incomplete neutralization. The European Space Agency has proposed an active control method for the ion source, which uses liquid metal to evaporate, ionize, and be accelerated by the voltage of the accelerator to form an ion beam. However, the structure of this ion source is relatively complicated, and it can only neutralize the negative potential. , can not neutralize the positive potential, and will bring unfavorable material pollution and so on. Due to the harsh and changeable space environment and the frequent changes in the position of the aircraft, the potential amplitude and polarity of the dielectric material on the surface of the aircraft may change with time. If the surface of the aircraft faces the sun, and the space plasma density and energy are very low, the With a lower positive potential; and if the surface of the aircraft is backlit and the density and energy of the space plasma are high, the surface of the satellite may carry a high negative potential. Therefore, the use of low-energy plasma beams will be more effective than the active control of the potential of electron beams and ion beams, and will be able to effectively regulate the potential of the surface of the medium. The Russian Mir space station uses a pulsed plasma source to neutralize the surface charge of the dielectric material in space. It has the characteristics of simple structure, high neutralization efficiency, and stable operation. However, the pulsed plasma source decomposes the surface material of the working medium by high-temperature arc ablation Combined ionization produces plasma, which consumes high energy and consumes solid materials.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种高真空环境下介质材料表面电位主动控制方法,在10-4Pa以下的高真空环境下,将2.45GHz微波以TEM模式通过同轴波导馈入到位于真空室内的等离子源体,并通过微波同轴天线在等离子体室内击穿工作气体,形成等离子体,位于等离子体室内的环形永磁钢用于产生强度为0.0875特斯拉磁场,在磁场作用下形成高密度的电子回旋共振等离子体,所形成的等离子体包含电子和离子通过等离子体调节板扩散至待处理工件环境,实现介质表面电荷的主动调节。The technical problem to be solved by the present invention is to provide a method for actively controlling the surface potential of dielectric materials in a high vacuum environment. In a high vacuum environment below 10 -4 Pa, 2.45 GHz microwaves are fed into the The plasma source body in the vacuum chamber breaks down the working gas in the plasma chamber through the microwave coaxial antenna to form plasma. The ring-shaped permanent magnet steel located in the plasma chamber is used to generate a magnetic field with a strength of 0.0875 Tesla. Under the action of the magnetic field A high-density electron cyclotron resonance plasma is formed, and the formed plasma contains electrons and ions that diffuse through the plasma regulating plate to the environment of the workpiece to be processed, so as to realize the active adjustment of the surface charge of the medium.
为解决上述技术问题,本发明采用的技术方案是:一种高真空环境下介质材料表面电位主动控制的方法,所述方法包括放电过程和消电过程;In order to solve the above-mentioned technical problems, the technical solution adopted in the present invention is: a method for actively controlling the surface potential of a dielectric material in a high vacuum environment, the method includes a discharge process and a power elimination process;
所述放电过程具体如下:The discharge process is specifically as follows:
通过微波电源系统对微波系统供电产生2.45GHz电磁波,电磁波以TEM模式通过同轴波导馈送,并通过微波传输系统馈入微波同轴天线,微波同轴天线下端位于等离子体源体的等离子体室内,等离子体源体位于真空度为10-4Pa以下的真空室内,微波同轴天线在等离子体室内完成放电过程,并借助于等离子体源体在真空室内完成消电过程;The microwave system is powered by the microwave power supply system to generate 2.45GHz electromagnetic waves. The electromagnetic waves are fed through the coaxial waveguide in TEM mode and fed into the microwave coaxial antenna through the microwave transmission system. The lower end of the microwave coaxial antenna is located in the plasma chamber of the plasma source body. The plasma source body is located in a vacuum chamber with a vacuum degree below 10 -4 Pa, the microwave coaxial antenna completes the discharge process in the plasma chamber, and completes the discharge process in the vacuum chamber with the help of the plasma source body;
所述消电过程具体如下:Described power elimination process is specifically as follows:
通过微波同轴天线在等离子体室内放电,并击穿工作气体形成等离子体,工作气体利用供气系统通过胶管和供气管送入等离子体室内,等离子体体源体内设置环形磁钢,环形磁钢在等离子体放电区形成强度为0.0875特斯拉的磁场位型,等离子体在垂直磁场的平面上受洛伦兹力作用而做回旋运动,在磁场强度为0.0875特斯拉的位置,电子回旋频率和沿磁场传播的右旋圆极化微波频率都等于2.45GHz,电子共振吸收微波的能量大于气体粒子的电离能、分子离解能后产生碰撞电离、分子离解和粒子激活,等离子体放电并获得活性反应粒子,形成电子回旋共振等离子体,通过等离子体中所包含的电子和离子与介质板上的正电荷以及电子相中和。The microwave coaxial antenna discharges in the plasma chamber, and breaks down the working gas to form plasma. The working gas is sent into the plasma chamber through the gas supply system through the rubber hose and the gas supply pipe. The plasma source is equipped with a ring magnet, and the ring magnet A magnetic field pattern with a strength of 0.0875 Tesla is formed in the plasma discharge area, and the plasma is subjected to Lorentz force on the plane of the vertical magnetic field to perform cyclotron motion. At the position where the magnetic field strength is 0.0875 Tesla, the electron cyclotron frequency The frequency of the right-handed circularly polarized microwave propagating along the magnetic field is equal to 2.45 GHz. The energy absorbed by the electron resonance is greater than the ionization energy of the gas particles and the molecular dissociation energy. The reaction particles form electron cyclotron resonance plasma, which is neutralized by the electrons and ions contained in the plasma and the positive charges and electrons on the dielectric plate.
作为优选的实施方案,所述消电过程在10-4Pa以下的真空环境下进行。As a preferred embodiment, the electricity elimination process is carried out in a vacuum environment below 10 −4 Pa.
作为优选的实施方案,所述供气系统包括气体储存系统和用于控制进入等离子体室内气体的气压和流量的气体控制系统,所述气体储存系统的气体通过进气管通入等离子体源体的等离子体室,所述真空系统包括真空室,所述真空室内装有用于测试介质材料表面电位的电位计和待控制表面电位的介质材料及介质材料放置平台,真空室其真空度在10-4Pa以下;所述等离子体源体其产生的等离子体导入真空室内,并作用于待控制表面电位的介质材料表面。As a preferred embodiment, the gas supply system includes a gas storage system and a gas control system for controlling the pressure and flow of gas entering the plasma chamber, and the gas of the gas storage system is passed into the plasma source body through an inlet pipe. The plasma chamber, the vacuum system includes a vacuum chamber, the vacuum chamber is equipped with a potentiometer for testing the surface potential of the dielectric material, a dielectric material and a dielectric material placement platform to be controlled, and the vacuum degree of the vacuum chamber is 10 -4 Below Pa; the plasma generated by the plasma source is introduced into the vacuum chamber and acts on the surface of the dielectric material whose surface potential is to be controlled.
作为优选的实施方案,所述等离子体源体包括进气管、同轴微波天线、环形永磁钢、磁钢固定套筒以及等离子体调节板,所述磁钢固定套筒为下端开放的筒状结构,微波同轴天线和进气管从磁钢固定套筒的封闭端插入其内腔,所述环形永磁钢固定安装在磁钢固定套筒内侧,且围绕在微波同轴天线外侧,所述等离体调节板固定安装在磁钢固定套筒的开放端,所述环形永磁钢、磁钢固定套筒、等离子体调节板与微波同轴天线构成等离子体室。As a preferred embodiment, the plasma source body includes an air inlet pipe, a coaxial microwave antenna, an annular permanent magnet, a magnetic steel fixing sleeve and a plasma regulating plate, and the magnetic steel fixing sleeve is a cylindrical shape with an open lower end Structure, the microwave coaxial antenna and the air intake pipe are inserted into the inner cavity of the magnetic steel fixing sleeve from the closed end, the ring-shaped permanent magnetic steel is fixedly installed inside the magnetic steel fixing sleeve and surrounds the microwave coaxial antenna outside, the The plasma adjusting plate is fixedly installed on the open end of the magnetic steel fixing sleeve, and the annular permanent magnet, the magnetic steel fixing sleeve, the plasma adjusting plate and the microwave coaxial antenna form a plasma chamber.
作为优选的实施方案,所述进气管用于将工作气体通入等离子体室内,微波通过微波同轴天线馈入等离子体室,环状永磁钢用于在等离子体室内产生0.0875特斯拉磁场。As a preferred embodiment, the gas inlet pipe is used to pass the working gas into the plasma chamber, the microwave is fed into the plasma chamber through the microwave coaxial antenna, and the ring-shaped permanent magnet steel is used to generate a 0.0875 Tesla magnetic field in the plasma chamber .
作为优选的实施方案,所述等离子体源体借助于密封贯穿真空室的遥操作杆设于真空室内,等离子体源体借助于固定环和等离子体源体外壳安装在遥操作杆端部,所述等离子体源体外壳借助于固定环和遥操作杆连接,所述等离子源体安装在等离子体源体外壳下端,所述遥操作杆其背离等离子体源体的一侧端部与电位计固定安装。As a preferred embodiment, the plasma source body is arranged in the vacuum chamber by means of a remote control rod sealed and penetrated through the vacuum chamber, and the plasma source body is installed at the end of the remote control rod by means of a fixing ring and a plasma source body shell, so The shell of the plasma source body is connected with the remote control rod by means of a fixing ring, the plasma source body is installed at the lower end of the shell of the plasma source body, and the end of the remote control rod facing away from the plasma source body is fixed to the potentiometer Install.
作为优选的实施方案,所述微波电源系统包括微波电源和磁控管,微波通过微波传输系统耦合进入等离子体源体,所述微波传输系统包括同轴波导、调配器、定向耦合器、空气负载、检波器、同轴电缆和同轴微波天线,所述微波同轴波导通过同轴插头与隔离器连接,隔离器通过同轴波导管与定向耦合器连接,检波器空气负载安装在定向耦合器上,定向耦合器通过同轴电缆与用于调节微波传输线路的阻抗匹配的三销钉调配器连接,三销钉调配器通过密封同轴连接端与真空室对接,三销钉调配器其输出端通过同轴电缆连接等离子体源体的微波同轴天线,并通过微波同轴天线在等离子体室内击穿工作气体形成等离子体,等离子体通过等离子体调节板漂移扩散至真空室,且作用于待控制表面电位的介质材料表面。As a preferred embodiment, the microwave power supply system includes a microwave power supply and a magnetron, and microwaves are coupled into the plasma source body through a microwave transmission system, and the microwave transmission system includes a coaxial waveguide, an adjuster, a directional coupler, an air load , a detector, a coaxial cable and a coaxial microwave antenna, the microwave coaxial waveguide is connected to the isolator through a coaxial plug, the isolator is connected to the directional coupler through the coaxial waveguide, and the air load of the detector is installed on the directional coupler Above, the directional coupler is connected to the three-pin adapter used to adjust the impedance matching of the microwave transmission line through the coaxial cable. The axial cable is connected to the microwave coaxial antenna of the plasma source body, and through the microwave coaxial antenna, the working gas is broken down in the plasma chamber to form plasma. The plasma drifts and diffuses into the vacuum chamber through the plasma regulating plate, and acts on the surface to be controlled. potential of the dielectric material surface.
作为优选的实施方案,所述的气体储存系统其工作气体为惰性气体、活性气体或混合气体;所述的气体储存系统其工作气体通过压力容器携带或压缩机从外部空间压缩取得。As a preferred embodiment, the working gas of the gas storage system is inert gas, reactive gas or mixed gas; the working gas of the gas storage system is carried by a pressure vessel or compressed by a compressor from the external space.
作为优选的实施方案,所述惰性气体为氦、氖、氩、氪、氙、氡中的一种,所述活性气体或混合气体为氮气、氧气、空气、氢气中的一种。As a preferred embodiment, the inert gas is one of helium, neon, argon, krypton, xenon, and radon, and the active gas or mixed gas is one of nitrogen, oxygen, air, and hydrogen.
作为优选的实施方案,所述微波系统包括用于产生2.45GHz微波的微波发生器和微波传输系统,所述微波发生器由微波电源和磁控管构成;所述微波发生器其产生的微波通过微波传输系统传输至等离子体源体的等离子体室内;所述的微波发生器为连续工作模式或脉冲工作模式;所述脉冲工作模式下其脉宽、占空比、工作持续时间可调。As a preferred embodiment, the microwave system includes a microwave generator and a microwave transmission system for generating 2.45GHz microwaves, the microwave generator is composed of a microwave power supply and a magnetron; the microwave produced by the microwave generator passes through The microwave transmission system is transmitted to the plasma chamber of the plasma source body; the microwave generator is in a continuous working mode or a pulse working mode; in the pulse working mode, its pulse width, duty cycle, and working duration are adjustable.
采用上述技术方案所产生的有益效果在于:采用ECR等离子体对介质材料表面电荷进行消除,避免了使用单一束源(离子束或电子束)对介质材料表面电荷的极性选择;采用环形永磁钢产生所需要磁场大小及位型,避免了使用线圈和电源系统以及可能需要的水冷系统,大大降低了等离子体源体的尺寸和重量,利于需要限制重量的特殊环境使用;使用高柔韧性的同轴波导传输线有效提高了等离子体源体的大空间尺度可操作性;ECR等离子体可以在极低气压下稳定放电并工作;通过使用等离子体调节板可以有效调节等离子体密度、等离子体电子温度等参数,进而有效调控钳位电压;所使用的等离子体源体温度低,不存在熔融材料,无污染、寿命长,表面电位控制更加稳定可控。The beneficial effects of adopting the above technical scheme are: the use of ECR plasma to eliminate the surface charge of the dielectric material avoids the use of a single beam source (ion beam or electron beam) to select the polarity of the surface charge of the dielectric material; the use of ring permanent magnets The size and position of the magnetic field required for steel generation avoids the use of coils and power systems as well as possible water cooling systems, greatly reducing the size and weight of the plasma source body, which is beneficial to use in special environments that need to limit weight; use high flexibility The coaxial waveguide transmission line effectively improves the large-scale operability of the plasma source; the ECR plasma can discharge and work stably under extremely low pressure; the plasma density and plasma electron temperature can be effectively adjusted by using the plasma regulating plate And other parameters, and then effectively regulate the clamping voltage; the temperature of the plasma source used is low, there is no molten material, no pollution, long life, and the surface potential control is more stable and controllable.
附图说明Description of drawings
图1是本发明的结构框图。Fig. 1 is a structural block diagram of the present invention.
图2是微波产生及传输系统的局部示意图。Fig. 2 is a partial schematic diagram of the microwave generation and transmission system.
图3是微波产生及传输系统的局部示意图。Fig. 3 is a partial schematic diagram of the microwave generation and transmission system.
图4是等离子体作用于样品台表面样品示意图。Fig. 4 is a schematic diagram of the plasma acting on the sample on the surface of the sample stage.
图5微波ECR等离子体源体结构示意图。Fig. 5 Schematic diagram of the structure of the microwave ECR plasma source.
图6微波ECR放电示意图。Figure 6 Schematic diagram of microwave ECR discharge.
图7环状永磁铁的磁场幅值及分布图。Fig. 7 The magnetic field amplitude and distribution diagram of the annular permanent magnet.
图8永磁微波ECR等离子体密度仿真结果图。Fig. 8 Simulation results of permanent magnet microwave ECR plasma density.
图9饱和离子流及等离子体密度随微波电流变化图。Fig. 9: Saturated ion current and plasma density variation with microwave current.
图10介质板表面正负电位消电时间演化仿真图。Fig. 10 Simulation diagram of the evolution time evolution of positive and negative potentials on the surface of the dielectric plate.
在附图中:1、磁控管;2、第一段同轴波导;3、隔离器;4、第二段同轴波导;5、定向耦合器;6、检波器;9、密封同轴连接端;10、遥操作杆;11、空气负载;12、柔性同轴电缆线;13、三销钉调配器;14、橡胶管;15、真空室;16、电位计;17、固定环;18、等离子体源体外壳;19、等离子体源体;20、样品;21、进气管;22、微波同轴天线; 24、环形永磁钢;25、磁钢固定套筒; 27、等离子体室;28、等离子体调节板;29、调节孔。In the attached drawings: 1. Magnetron; 2. The first coaxial waveguide; 3. Isolator; 4. The second coaxial waveguide; 5. Directional coupler; 6. Geophone; 9. Sealed coaxial Connecting end; 10, remote control lever; 11, air load; 12, flexible coaxial cable; 13, three-pin adjuster; 14, rubber tube; 15, vacuum chamber; 16, potentiometer; 17, fixing ring; 18 1. Shell of plasma source body; 19. Plasma source body; 20. Sample; 21. Intake pipe; 22. Microwave coaxial antenna; 24. Annular permanent magnet steel; 25. Magnetic steel fixing sleeve; 27. Plasma chamber ; 28, the plasma adjustment plate; 29, the adjustment hole.
具体实施方式Detailed ways
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention are clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。In the following description, a lot of specific details are set forth in order to fully understand the present invention, but the present invention can also be implemented in other ways different from those described here, and those skilled in the art can do it without departing from the meaning of the present invention. By analogy, the present invention is therefore not limited to the specific examples disclosed below.
本发明公开了一种高真空环境下介质材料表面电位主动控制的方法,包括等离子体放电过程和等离子体消电过程,等离子体放电过程是通过使用微波电源对磁控管供电产生2.45GHz电磁波,电磁波以TEM模式通过同轴波导馈入到等离子体室内,传输经过调配器、环行器和负载,调配器的主要作用是调节微波传输线路的阻抗匹配,环行器的主要作用是使电磁波单向传输,使反射部分的微波传输至负载端口,负载端口所安装的负载将反射回来的电磁波全部吸收,电磁波在经过调配器、环行器和波导后通过微波天线馈入到等离子体放电区,击穿工作气体形成等离子体,在等离子体腔体内的环状永磁钢的主要作用是在等离子体放电区形成强度为0.0875特斯拉的磁场位型,电子在垂直磁场的平面上受洛伦兹力作用而做回旋运动,在磁场强度为0.0875特斯拉的位置,电子回旋频率和沿磁场传播的右旋圆极化微波频率都等于2.45GHz,电子共振吸收微波的能量大于气体粒子的电离能、分子离解能后产生碰撞电离、分子离解和粒子激活,等离子体放电并获得活性反应粒子,形成电子回旋共振等离子体;等离子体消电过程是通过等离子体中所包含的电子和离子与介质板上的正电荷以及电子相中和。The invention discloses a method for actively controlling the surface potential of a dielectric material in a high-vacuum environment, including a plasma discharge process and a plasma discharge process. The plasma discharge process generates 2.45 GHz electromagnetic waves by using a microwave power supply to supply power to a magnetron. The electromagnetic wave is fed into the plasma chamber through the coaxial waveguide in the TEM mode, and the transmission passes through the adapter, the circulator and the load. The main function of the adapter is to adjust the impedance matching of the microwave transmission line, and the main function of the circulator is to make the electromagnetic wave one-way transmission , so that the reflected part of the microwave is transmitted to the load port, and the load installed on the load port absorbs all the reflected electromagnetic waves. After passing through the adapter, circulator and waveguide, the electromagnetic wave is fed into the plasma discharge area through the microwave antenna, and the breakdown work The gas forms plasma, and the main function of the ring-shaped permanent magnet steel in the plasma chamber is to form a magnetic field pattern with a strength of 0.0875 Tesla in the plasma discharge area. When doing cyclotron motion, at the position where the magnetic field strength is 0.0875 Tesla, the cyclotron frequency of electrons and the frequency of right-handed circularly polarized microwaves propagating along the magnetic field are both equal to 2.45GHz. After energy, impact ionization, molecular dissociation and particle activation are generated, and plasma discharges and obtains active reaction particles to form electron cyclotron resonance plasma; Charge and electron phase neutralization.
如图1所示,供气系统包括气体储存系统和气体控制系统,气体储存系统的气体通过胶管通入等离子体源体的等离子体室27,气体控制系统用于控制进入等离子体室27内的气体压力和流量,等离子体源体产生的等离子体导入真空度为10-4Pa以下的真空室15内,并作用于待控制表面电位的材料表面。As shown in Figure 1, the gas supply system includes a gas storage system and a gas control system, the gas of the gas storage system passes into the plasma chamber 27 of the plasma source body through rubber hoses, and the gas control system is used to control the gas entering the plasma chamber 27. Gas pressure and flow rate, the plasma generated by the plasma source is introduced into the vacuum chamber 15 with a vacuum degree below 10 -4 Pa, and acts on the surface of the material whose surface potential is to be controlled.
参见附图4-5,所述等离子体源体19包括进气管21、微波同轴天线22、环形永磁钢24、磁钢固定套筒25以及等离子体调节板28,所述磁钢固定套筒25为下端开放的筒状结构,微波同轴天线22和进气管21从磁钢固定套筒25的封闭端插入其内腔,所述环形永磁钢24固定安装在磁钢固定套筒25内侧、且围绕在微波同轴天线22外侧,环形永磁钢24内环与微波同轴天线22构成等离子体室27,所述磁钢固定套筒25下端固定安装等离体调节板,微波通过同轴天线22馈入等离子体室内,在环状永磁钢24所产生的0.0875特斯拉磁场处使电子发生回旋共振加速,使其在高真空下稳定放电。通过环形永磁铁的使用和紧凑的微波天线结构设计,所述及的等离子体源体19长4cm,直径约2.5cm,重量1kg,放电功耗20W~100W。Referring to accompanying drawings 4-5, the plasma source body 19 includes an air inlet pipe 21, a microwave coaxial antenna 22, an annular permanent magnet 24, a magnetic steel fixing sleeve 25 and a plasma regulating plate 28, and the magnetic steel fixing sleeve The cylinder 25 is a cylindrical structure with an open lower end. The microwave coaxial antenna 22 and the air intake pipe 21 are inserted into the inner cavity of the magnetic steel fixing sleeve 25 from the closed end. The annular permanent magnetic steel 24 is fixedly installed on the magnetic steel fixing sleeve 25 Inside, and around the outside of the microwave coaxial antenna 22, the inner ring of the annular permanent magnet steel 24 and the microwave coaxial antenna 22 form a plasma chamber 27, and the lower end of the magnetic steel fixing sleeve 25 is fixedly installed with a plasma regulating plate, and the microwave passes through The coaxial antenna 22 is fed into the plasma chamber, and the electrons are accelerated by cyclotron resonance at the 0.0875 Tesla magnetic field generated by the annular permanent magnet steel 24, so that they are stably discharged in a high vacuum. Through the use of ring-shaped permanent magnets and the design of a compact microwave antenna structure, the plasma source body 19 mentioned above has a length of 4 cm, a diameter of about 2.5 cm, a weight of 1 kg, and a discharge power consumption of 20W-100W.
参见附图5,所述进气管21用于将工作气体通入等离子体室27内,微波通过微波同轴天线22馈入等离子体室27,环状永磁钢用于在等离子体室27内产生0.0875特斯拉磁场。Referring to accompanying drawing 5, described inlet pipe 21 is used for passing in the plasma chamber 27 of working gas, and microwave is fed into plasma chamber 27 through microwave coaxial antenna 22, and annular permanent magnet steel is used in plasma chamber 27 Produces a 0.0875 Tesla magnetic field.
参见附图4,所述等离子体源体借助于密封贯穿真空室15的遥操作杆10设于真空室15内,等离子体源体借助于固定环17和等离子体源体外壳18安装在遥操作杆10端部,等离子体源体外壳18借助于固定环17和遥操作杆10连接,等离子源体安装在等离子体源体外壳18下端,遥操作杆10端部另外一侧固定安装电位计16,等离子体源体外壳18用以固定等离子体源体19,并通过固定环17固定于遥操作杆10上,固定环17同时在等离子体源体19另外一侧固定电位计16,用以监测样品20表面电位,等离子体源体19在通入微波时产生等离子体扩散至样品20表面,通过等离子体中所包含的电子、离子与样品表面附着的正电荷、负电荷等发生中和反应,消除样品表面电荷量,降低其表面电位。Referring to accompanying drawing 4, described plasma source body is arranged in the vacuum chamber 15 by means of the remote operation lever 10 that seals through vacuum chamber 15, and plasma source body is installed in remote operation by means of fixing ring 17 and plasma source body shell 18. At the end of the rod 10, the plasma source shell 18 is connected with the remote control rod 10 by means of a fixing ring 17. The plasma source body is installed at the lower end of the plasma source body shell 18, and the other side of the remote control rod 10 end is fixed with a potentiometer 16 , the plasma source body shell 18 is used to fix the plasma source body 19, and is fixed on the remote control lever 10 through the fixing ring 17, and the fixing ring 17 fixes the potentiometer 16 on the other side of the plasma source body 19 at the same time for monitoring The surface potential of the sample 20, when the plasma source 19 is fed with microwaves, plasma is generated and diffused to the surface of the sample 20, and the electrons and ions contained in the plasma react with the positive and negative charges attached to the sample surface, Eliminate the surface charge of the sample and reduce its surface potential.
参见附图1-2,所述微波电源系统包括微波电源和磁控管1,微波通过微波传输系统耦合进入等离子体源体,微波传输系统包括同轴波导、调配器、定向耦合器5、空气负载11、检波器6、柔性同轴波导管和微波同轴天线22,所述微波同轴波导通过同轴插头与隔离器3连接,隔离器3通过同轴波导管与定向耦合器5连接,定向耦合器5上安装检波器6和安装空气负载11,定向耦合器5通过柔性同轴电缆12与三销钉调配器13连接,三销钉调配器13用于调节微波传输线路的阻抗匹配,三销钉调配器13通过密封同轴连接端9与真空室15对接,三销钉调配器13输出端通过射频同轴电缆连接等离子体源体的微波同轴天线22,通过微波同轴天线22在等离子体室27内击穿工作气体形成等离子体,等离子体通过等离子体调节板28漂移扩散至介质板表面。Referring to accompanying drawings 1-2, the microwave power supply system includes a microwave power supply and a magnetron 1, microwaves are coupled into the plasma source body through a microwave transmission system, and the microwave transmission system includes a coaxial waveguide, an adjuster, a directional coupler 5, an air The load 11, the detector 6, the flexible coaxial waveguide and the microwave coaxial antenna 22, the microwave coaxial waveguide is connected to the isolator 3 through the coaxial plug, and the isolator 3 is connected to the directional coupler 5 through the coaxial waveguide, A geophone 6 and an air load 11 are installed on the directional coupler 5, and the directional coupler 5 is connected to a three-pin adapter 13 through a flexible coaxial cable 12, and the three-pin adapter 13 is used to adjust the impedance matching of the microwave transmission line, and the three-pin The adjuster 13 is docked with the vacuum chamber 15 through the sealed coaxial connection end 9, and the output end of the three-pin adjuster 13 is connected to the microwave coaxial antenna 22 of the plasma source body through the radio frequency coaxial cable, and the microwave coaxial antenna 22 is connected to the plasma chamber. 27 breaks down the working gas to form plasma, and the plasma drifts and diffuses to the surface of the dielectric plate through the plasma regulating plate 28 .
具体的,与磁控管1相连接的第一段同轴波导2,同轴波导2通过同轴插头与隔离器3连接,隔离器3通过第二段同轴波导4连接,然后第二段同轴波导4与定向耦合器5连接,定向耦合器5上安装检波器6以实时检测正方向传输的微波功率,定向耦合器5上安装空气负载11以吸收反射微波,保护磁控管1不被反射微波击毁,定向耦合器5通过柔性同轴电缆12与三销钉调配器13连接,三销钉调配器13主要用于调节微波传输线路的阻抗以满足最大效率的输出,三销钉调配器13通过密封同轴连接端9与消电模拟系统的真空室15连接,密封同轴线连接端9主要用于将微波传输进入真空室同时保证真空室的真空度,真空室15本底真空至10-4Pa以下,真空室15内的遥操作杆10用于固定等离子体源体外壳18并对其位置进行调整,遥操作杆10竖直部分通过磁流体密封以保证真空室15的真空度,同时允许遥操作杆10的旋转操作。Specifically, the first coaxial waveguide 2 connected to the magnetron 1, the coaxial waveguide 2 is connected to the isolator 3 through the coaxial plug, the isolator 3 is connected through the second coaxial waveguide 4, and then the second coaxial waveguide The coaxial waveguide 4 is connected with the directional coupler 5, and the wave detector 6 is installed on the directional coupler 5 to detect the microwave power transmitted in the positive direction in real time, and the air load 11 is installed on the directional coupler 5 to absorb the reflected microwave, so as to protect the magnetron 1 from Destroyed by reflected microwaves, the directional coupler 5 is connected to the three-pin adapter 13 through the flexible coaxial cable 12. The three-pin adapter 13 is mainly used to adjust the impedance of the microwave transmission line to meet the output of the maximum efficiency. The three-pin adapter 13 passes The sealed coaxial connection end 9 is connected to the vacuum chamber 15 of the power dissipation simulation system. The sealed coaxial connection end 9 is mainly used to transmit microwaves into the vacuum chamber while ensuring the vacuum degree of the vacuum chamber. The vacuum chamber 15 has a background vacuum of 10 - Below 4 Pa, the remote control rod 10 in the vacuum chamber 15 is used to fix the plasma source shell 18 and adjust its position. The vertical part of the remote control rod 10 is sealed by magnetic fluid to ensure the vacuum degree of the vacuum chamber 15. Rotation operation of the remote control lever 10 is permitted.
图6给出基于上述结构的等离子体放电示意图。Fig. 6 shows a schematic diagram of plasma discharge based on the above structure.
图7给出了上述结构述及的环状永磁体在空间产生的磁场大小与位型的模拟结果。Fig. 7 shows the simulation results of the magnitude and position of the magnetic field generated in space by the annular permanent magnet mentioned in the above structure.
图8给出了上述结构等离子体源体19产生的等离子体密度大小与分布模拟结果。FIG. 8 shows the simulation results of the plasma density and distribution generated by the plasma source body 19 with the above structure.
图9给出了使用单探针测量获得的饱和离子流和等离子体密度分析实验结果,气体流量及对应的工作气压分别为0.1sccm、0.15sccm、0.2sccm和2.6mPa、2.8mPa、3.0mPa,随微波电流从22mA增加至37mA,等离子体密度从1013m-3增加至6×1013m-3(取电子温度为1.25eV)。Figure 9 shows the experimental results of saturated ion flow and plasma density analysis obtained by single-probe measurement. The gas flow and corresponding working pressure are 0.1sccm, 0.15sccm, 0.2sccm and 2.6mPa, 2.8mPa, 3.0mPa, respectively. As the microwave current increases from 22mA to 37mA, the plasma density increases from 10 13 m -3 to 6×10 13 m -3 (taking the electron temperature as 1.25eV).
图10给出了在介质样品表面附着电荷面密度分别为正负28.5μC/m2时介质板表面电位时间演化模拟结果,可以看出基于上述结构的微波ECR等离子体源可以有效、快速消除介质板表面的正负电荷,对介质板表面的正电荷(6500V)的消除时间约1毫秒,而对介质板表面的负电荷(负6500V)消除时间约0.25秒。Figure 10 shows the simulation results of the time evolution of the surface potential of the dielectric plate when the surface density of the attached charge on the surface of the dielectric sample is plus or minus 28.5 μC/ m2 . It can be seen that the microwave ECR plasma source based on the above structure can effectively and quickly eliminate the dielectric The positive and negative charges on the surface of the plate, the elimination time of the positive charge (6500V) on the surface of the medium plate is about 1 millisecond, and the elimination time of the negative charge (negative 6500V) on the surface of the medium plate is about 0.25 seconds.
本发明的工作原理是:The working principle of the present invention is:
本发明所涉及的控制方法可分为两个过程,其一是放电过程,其二是消电过程;等离子体放电过程是通过使用微波电源对磁控管供电产生2.45GHz微波,该电磁波以TEM模式通过同轴波导(矩形波导管)馈入到等离子体室内,传输经过调配器(矩形波导三销钉或四销钉,同轴线三销钉等)和环行器、负载(水负载或空气负载)等。调配器的主要作用是调节微波传输线路(包括传输线和微波天线等)的阻抗匹配以达到微波最佳输入的目的;环行器的主要作用是使电磁波单向传输,使反射部分的微波不会返回至环行器入口,而是传输至负载端口,负载端口所安装的负载(水负载或空气负载)则会将反射回来的电磁波全部吸收,进而保护了电磁波发生端。电磁波在经过三销钉调配器、环行器、波导(矩形波导或同轴线波导)后通过微波天线馈入到等离子体放电区,击穿工作气体形成等离子体。在等离子体室内的环状永磁钢的主要作用是在等离子体放电区形成强度为0.0875特斯拉的磁场位型,电子在垂直磁场的平面上受洛伦兹力作用而做回旋运动。在磁场强度为0.0875特斯拉的位置,电子回旋频率和沿磁场传播的右旋圆极化微波频率都等于2.45GHz,电子在微波电场中将被不断同步、加速而获得能量,当电子共振吸收微波的能量大于气体粒子的电离能、分子离解能或某一状态的激发能,那么将产生碰撞电离、分子离解和粒子激活,从而实现等离子体放电和获得活性反应粒子,形成高密度的电子回旋共振(ECR)等离子体。因为电子可以在磁场作用下不断从微波电磁场中共振获得能量,有效增加了电子的有效碰撞截面,增大了碰撞电离的几率,所以高密度ECR等离子体可以在极低的气压下(10-4Pa以下)稳定产生。等离子体消电过程的工作原理是通过等离子体中所包含的电子、离子与介质板上的正电荷、电子相中和,从而达到消电的目的。在ECR等离子体产生后所形成的等离子体束经过等离子体调节板扩散至待处理工件环境,当材料表面携带正电荷时,等离子体中的电子将在材料表面正电荷所产生的向外方向电场所加速,在达到材料表面时与其表面所携带正电荷中和;当材料表面携带负电荷时,等离子体中的正离子将在材料表面负电荷所产生的向内方向电场所加速,在正离子达到材料表面时与表面所携带负电荷中和。通过这两个过程,等离子体将可以实现对介质材料表面正或负电荷进行有效消除。The control method involved in the present invention can be divided into two processes, one is a discharge process, and the other is a power elimination process; the plasma discharge process is to generate 2.45GHz microwaves by using a microwave power supply to supply power to a magnetron. The mode is fed into the plasma chamber through the coaxial waveguide (rectangular waveguide), and the transmission passes through the adjuster (rectangular waveguide three-pin or four-pin, coaxial three-pin, etc.), circulator, load (water load or air load), etc. . The main function of the adjuster is to adjust the impedance matching of microwave transmission lines (including transmission lines and microwave antennas, etc.) to achieve the purpose of optimal microwave input; the main function of the circulator is to make electromagnetic waves transmit in one direction, so that the microwaves in the reflected part will not return The load (water load or air load) installed on the load port will absorb all the reflected electromagnetic waves, thereby protecting the electromagnetic wave generating end. After passing through the three-pin adjuster, circulator, and waveguide (rectangular waveguide or coaxial waveguide), the electromagnetic wave is fed into the plasma discharge area through the microwave antenna, and breaks down the working gas to form plasma. The main function of the ring-shaped permanent magnet steel in the plasma chamber is to form a magnetic field pattern with a strength of 0.0875 Tesla in the plasma discharge area, and the electrons are subjected to the Lorentz force on the plane of the vertical magnetic field to perform cyclotron motion. At the position where the magnetic field strength is 0.0875 Tesla, the electron cyclotron frequency and the right-handed circularly polarized microwave frequency propagating along the magnetic field are both equal to 2.45 GHz, and the electrons will be continuously synchronized and accelerated in the microwave electric field to obtain energy. The energy of the microwave is greater than the ionization energy of the gas particles, the molecular dissociation energy or the excitation energy of a certain state, then it will produce impact ionization, molecular dissociation and particle activation, so as to realize plasma discharge and obtain active reaction particles, forming a high-density electron cyclone Resonant (ECR) plasma. Because electrons can continuously obtain energy from microwave electromagnetic field resonance under the action of a magnetic field, which effectively increases the effective collision cross section of electrons and increases the probability of impact ionization, so high-density ECR plasma can be produced under extremely low pressure (10 -4 Below Pa) is produced stably. The working principle of the plasma electricity elimination process is to achieve the purpose of electricity elimination by neutralizing the electrons and ions contained in the plasma with the positive charges and electrons on the dielectric plate. After the ECR plasma is generated, the plasma beam formed is diffused to the environment of the workpiece to be treated through the plasma regulating plate. When the surface of the material carries positive charges, the electrons in the plasma will be charged in the outward direction generated by the positive charges on the surface of the material. The field accelerates and neutralizes the positive charge carried on the surface when it reaches the surface of the material; when the surface of the material carries a negative charge, the positive ions in the plasma will accelerate in the inward direction of the electric field generated by the negative charge on the surface of the material, and the positive ions will When it reaches the surface of the material, it neutralizes the negative charge carried by the surface. Through these two processes, the plasma will be able to effectively eliminate the positive or negative charges on the surface of the dielectric material.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711228450.6A CN107979910B (en) | 2017-11-29 | 2017-11-29 | A method for active control of surface potential of dielectric materials in high vacuum environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711228450.6A CN107979910B (en) | 2017-11-29 | 2017-11-29 | A method for active control of surface potential of dielectric materials in high vacuum environment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107979910A true CN107979910A (en) | 2018-05-01 |
CN107979910B CN107979910B (en) | 2020-06-05 |
Family
ID=62008639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711228450.6A Expired - Fee Related CN107979910B (en) | 2017-11-29 | 2017-11-29 | A method for active control of surface potential of dielectric materials in high vacuum environment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107979910B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108566717A (en) * | 2018-06-29 | 2018-09-21 | 合肥中科离子医学技术装备有限公司 | Plasma producing apparatus is encouraged using microwave vertical injection |
CN108633158A (en) * | 2018-05-25 | 2018-10-09 | 中国科学院合肥物质科学研究院 | A kind of portable normal pressure microwave plasma torch generation device and method |
CN109509969A (en) * | 2018-12-11 | 2019-03-22 | 上海健康医学院 | It is a kind of for exciting the microwave aerial assembly of variable negative permittivity environment |
CN111465163A (en) * | 2020-05-11 | 2020-07-28 | 北京卫星环境工程研究所 | Plasma contactor based on satellite-borne radio frequency discharge |
CN114564897A (en) * | 2022-01-18 | 2022-05-31 | 西安理工大学 | Simulation method of corona resistance characteristics of epoxy resin composites after plasma modification |
CN114980466A (en) * | 2022-04-02 | 2022-08-30 | 哈尔滨工业大学 | Method for realizing electromagnetic wave focusing based on non-uniform plasma structure |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2440264Y (en) * | 1999-12-31 | 2001-07-25 | 中国科学院近代物理研究所 | Single-electric-charge state ECR ion source |
CN101453821A (en) * | 2007-12-04 | 2009-06-10 | 北京卫星环境工程研究所 | Wide range plasma density regulating apparatus |
US20110036951A1 (en) * | 2009-08-13 | 2011-02-17 | Moorer Daniel F | Hybrid electrostatic space tug |
CN102774511A (en) * | 2012-08-03 | 2012-11-14 | 北京卫星环境工程研究所 | Spacecraft potential active control device based on helicon wave plasma and application thereof |
JP2013214583A (en) * | 2012-04-02 | 2013-10-17 | Hitachi High-Technologies Corp | Plasma processing apparatus and plasma processing method |
CN103786904A (en) * | 2013-12-17 | 2014-05-14 | 兰州空间技术物理研究所 | Spacecraft structural potential active control system and control method |
CN104260905A (en) * | 2014-09-05 | 2015-01-07 | 兰州空间技术物理研究所 | Method for actively controlling surface electric potential of spacecraft |
CN104363691A (en) * | 2014-10-24 | 2015-02-18 | 兰州空间技术物理研究所 | Parameter-adjustable microwave plasma generation device |
CN105460238A (en) * | 2014-09-05 | 2016-04-06 | 兰州空间技术物理研究所 | Spacecraft surface potential active control system |
CN106128931A (en) * | 2011-09-07 | 2016-11-16 | 朗姆研究公司 | The pulsed plasma room of double-chamber structure |
CN106697338A (en) * | 2015-07-15 | 2017-05-24 | 北京卫星环境工程研究所 | Spacecraft potential active control method based on neutral gas release |
-
2017
- 2017-11-29 CN CN201711228450.6A patent/CN107979910B/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2440264Y (en) * | 1999-12-31 | 2001-07-25 | 中国科学院近代物理研究所 | Single-electric-charge state ECR ion source |
CN101453821A (en) * | 2007-12-04 | 2009-06-10 | 北京卫星环境工程研究所 | Wide range plasma density regulating apparatus |
US20110036951A1 (en) * | 2009-08-13 | 2011-02-17 | Moorer Daniel F | Hybrid electrostatic space tug |
CN106128931A (en) * | 2011-09-07 | 2016-11-16 | 朗姆研究公司 | The pulsed plasma room of double-chamber structure |
JP2013214583A (en) * | 2012-04-02 | 2013-10-17 | Hitachi High-Technologies Corp | Plasma processing apparatus and plasma processing method |
CN102774511A (en) * | 2012-08-03 | 2012-11-14 | 北京卫星环境工程研究所 | Spacecraft potential active control device based on helicon wave plasma and application thereof |
CN103786904A (en) * | 2013-12-17 | 2014-05-14 | 兰州空间技术物理研究所 | Spacecraft structural potential active control system and control method |
CN104260905A (en) * | 2014-09-05 | 2015-01-07 | 兰州空间技术物理研究所 | Method for actively controlling surface electric potential of spacecraft |
CN105460238A (en) * | 2014-09-05 | 2016-04-06 | 兰州空间技术物理研究所 | Spacecraft surface potential active control system |
CN104363691A (en) * | 2014-10-24 | 2015-02-18 | 兰州空间技术物理研究所 | Parameter-adjustable microwave plasma generation device |
CN106697338A (en) * | 2015-07-15 | 2017-05-24 | 北京卫星环境工程研究所 | Spacecraft potential active control method based on neutral gas release |
Non-Patent Citations (6)
Title |
---|
代银松等: "航天器带电及其表面电位主动控制技术发展现状", 《军械工程学院学报》 * |
吴汉基等: "航天器表面电位的主动控制", 《中国航天》 * |
左潇等: "微波电子回旋共振等离子体化学气相沉积法制备多晶硅薄膜", 《核聚变与等离子体物理》 * |
田立成等: "航天器表面充电仿真计算和电位主动控制技术", 《航天器环境工程》 * |
蒋锴等: "大型低轨道载人航天器电位主动控制", 《航空学报》 * |
鲁文涛等: "脉冲等离子体源控制航天器表面充电电位的研究", 《航天器工程》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108633158A (en) * | 2018-05-25 | 2018-10-09 | 中国科学院合肥物质科学研究院 | A kind of portable normal pressure microwave plasma torch generation device and method |
CN108566717A (en) * | 2018-06-29 | 2018-09-21 | 合肥中科离子医学技术装备有限公司 | Plasma producing apparatus is encouraged using microwave vertical injection |
CN109509969A (en) * | 2018-12-11 | 2019-03-22 | 上海健康医学院 | It is a kind of for exciting the microwave aerial assembly of variable negative permittivity environment |
CN109509969B (en) * | 2018-12-11 | 2024-02-27 | 上海健康医学院 | Microwave antenna device for exciting variable negative dielectric constant environment |
CN111465163A (en) * | 2020-05-11 | 2020-07-28 | 北京卫星环境工程研究所 | Plasma contactor based on satellite-borne radio frequency discharge |
CN114564897A (en) * | 2022-01-18 | 2022-05-31 | 西安理工大学 | Simulation method of corona resistance characteristics of epoxy resin composites after plasma modification |
CN114980466A (en) * | 2022-04-02 | 2022-08-30 | 哈尔滨工业大学 | Method for realizing electromagnetic wave focusing based on non-uniform plasma structure |
Also Published As
Publication number | Publication date |
---|---|
CN107979910B (en) | 2020-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107979910A (en) | Active control method for surface potential of dielectric material in high vacuum environment | |
RU2610162C2 (en) | Plasma engine and method of generating actuating plasma traction | |
US9145874B2 (en) | Apparatus, systems and methods for establishing plasma and using plasma in a rotating magnetic field | |
CN107734826B (en) | Active control system for dielectric material surface potential in high vacuum environment | |
CN110469474B (en) | Radio frequency plasma source for microsatellite | |
CN110145446B (en) | Pulse electrically-excited micro-cow propulsion device | |
Leach et al. | Experimental demonstration of a high-efficiency relativistic magnetron with diffraction output with spherical cathode endcap | |
Jarrige et al. | Performance comparison of an ECR plasma thruster using argon and xenon as propellant gas | |
CN102774511A (en) | Spacecraft potential active control device based on helicon wave plasma and application thereof | |
Bennett et al. | Characterisation of a microwave induced plasma torch for glass surface modification | |
CN106793441A (en) | A kind of resolving power is the semielliptical type radio frequency-ion microthruster of micro-ox level | |
Chen | RF production of high density plasmas for accelerators | |
CN110139459B (en) | High-density spherical plasma generating device based on rotating magnetic field | |
EP2973639A1 (en) | Compact high-voltage plasma source for neutron generation | |
Trezzolani et al. | Low power radio-frequency plasma thruster development and testing | |
Toki et al. | Preliminary investigation of helicon plasma source for electric propulsion applications | |
CN102116732B (en) | Large-irradiation-area atomic oxygen beam simulation system | |
CN208317091U (en) | Active control system for surface potential of dielectric material in high vacuum environment | |
Miller et al. | Cyclotron resonance thruster design techniques. | |
Chen | Radiofrequency plasma sources for semiconductor processing | |
CN113133174B (en) | Helicon wave-ion cyclotron resonance coupling discharge system | |
CN106231772B (en) | Dynamic plasma generating device based on modulated radio frequency | |
CN115263702A (en) | Spiral wave plasma wave-particle energy regulating and controlling device | |
CN112133165A (en) | Linear plasma experimental device | |
Dey et al. | Microwave-plasma interaction in a miniature plasma ion thruster |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200605 |