CN107978512A - 可集成高密度氮氧化硅材料的制备方法及其产品和应用 - Google Patents

可集成高密度氮氧化硅材料的制备方法及其产品和应用 Download PDF

Info

Publication number
CN107978512A
CN107978512A CN201711168680.8A CN201711168680A CN107978512A CN 107978512 A CN107978512 A CN 107978512A CN 201711168680 A CN201711168680 A CN 201711168680A CN 107978512 A CN107978512 A CN 107978512A
Authority
CN
China
Prior art keywords
preparation
silicon
nitride material
high density
silicon oxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711168680.8A
Other languages
English (en)
Other versions
CN107978512B (zh
Inventor
张杨波
王志宽
黄磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 24 Research Institute
Original Assignee
China Electric Technology Group Chongqing Acoustic Photoelectric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Electric Technology Group Chongqing Acoustic Photoelectric Co Ltd filed Critical China Electric Technology Group Chongqing Acoustic Photoelectric Co Ltd
Priority to CN201711168680.8A priority Critical patent/CN107978512B/zh
Publication of CN107978512A publication Critical patent/CN107978512A/zh
Application granted granted Critical
Publication of CN107978512B publication Critical patent/CN107978512B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及一种可集成高密度氮氧化硅材料的制备方法及其产品和应用,该方法通过先在有源区硅衬底上注入氮离子,然后进行高温氧化制备氮氧化硅,制得的氮氧化硅介质所形成的MOS电容,击穿电压大于80V、电容密度大于0.39fF/μm2;同时该介质工艺还可用于高可靠抗辐照MOS晶体管栅介质的制作,获得良好的效果。

Description

可集成高密度氮氧化硅材料的制备方法及其产品和应用
技术领域
本发明属于半导体技术领域,涉及可集成高密度氮氧化硅材料的制备方法,还涉及由该方法制得的产品和应用。
背景技术
二氧化硅和氮化硅是集成电路制造工艺中极其重要的介质,它们是用于制作MOS电容介质、MOS晶体管栅介质最常见的介质材料。由于二氧化硅可以采用热氧工艺生长,通过调整工艺条件可以获得较低的界面态密度和薄膜应力,因此在微米及亚微米半导体工艺中被大量使用;氮化硅的相对介电常数为7.8,是二氧化硅介质相对介电常数的2倍,可用于制作高密度电容,然而氮化硅中硅悬挂键会随着氮含量的增加而增加,会导致氮化硅薄膜产生很高的拉应力,在氮化硅/硅界面形成高密度的悬挂键和界面态。在高压双极工艺中,为了结合两者的优点,实现低的界面态密度和高的电容密度,通常采用二氧化硅与氮化硅的复合介质材料来制作MOS电容的介质。尽管如此,仍然存在二氧化硅与氮化硅应力不匹配而引起的复合介质应力大的问题,从而在二氧化硅/硅界面产生悬挂键,成为电荷俘获中心。氮氧化硅(SiON)兼具二氧化硅和氮化硅的双重优点,是两者的中间相,因而其电学及光学性能介于两者之间,可以通过改变氮、氧含量调整其折射率、介电常数和界面态密度。
氮氧化硅薄膜是一种良好的介质材料,具有优异的力学性能、热力学性能、化学稳定性及耐原子氧特性;氮氧化硅电学及光学性能介于二氧化硅和氮化硅之间,可通过改变化学组成,调整其折光指数(1.46(SiO2)~2.3(SiN1.3))及介电常数(3.9(SiO2)~7.8(SiN1.3));另外氮氧化硅还可以有效地抑制硼、氧、钠等杂质元素的扩散。这一系列优良特性吸引研究者们围绕氮氧化硅薄膜的制备及应用进行大量研究。
制备氮氧化硅薄膜的核心是其应用的领域,不同的应用领域其制备方法的各有不同。例如专利号“200310108409.7”中国专利提出了一种制备氮氧化硅薄膜的方法,但是其应用主要是考虑形成一种稳定的氮氧化硅薄膜作为光刻时的抗反射层,未考虑应用于高密度MOS电容的应用需求。
例如像《半导体学报》中赵永军等人《PECVD SiNx薄膜应力的研究》一文所描述的情况一样:在通常情况下降低薄膜的应力,还可以采取低频和高频的射频功率源交替使用的方法,低频功率源一般生成压应力结构的薄膜,高频功率源一般生产张应力结构的薄膜,两种应力结构所带来的应力相互抵消,形成低但是这种方法由于受限于设备功率源的耦合和匹配装置,重复性很难实现。
因此在本领域探究一种可集成高密度氮氧化硅材料制备方法是非常重要的。
发明内容
有鉴于此,本发明的目的之一在于提供一种可集成高密度氮氧化硅的制备方法,通过采用氮离子注入、氮硅氧化的方式制作氮氧化硅介质;本发明的目的之二在于提供由上述方法得到一种可集成于双极工艺的高密度氮氧化硅介质;本发明的目的之三在于提供氮氧化硅材料在制备MOS电容中的应用,制得的电容,击穿电压大于80V、电容密度大于0.39fF/μm2;该介质工艺还可用于高可靠抗辐照MOS晶体管栅介质。
为达到上述目的,本发明提供如下技术方案:
1、一种可集成高密度氮氧化硅材料的制备方法,包括如下步骤:
a.MOS电容有源区制备;
b.对有源区硅衬底进行氮离子注入;
c.对硅衬底进行清洗;
d.对所述硅衬底进行氮硅高温氧化。
本发明中,所述MOS电容有源区制备方法如下:将已完成MOS电容下极板制备的硅片采用光刻出MOS电容上极板窗口区域,再用二氧化硅腐蚀液腐蚀SiO2至SiO2层腐蚀干净为止,然后用硫酸与双氧水的混合液,在100-140℃温度下清洗去除光刻胶,最后采用厚氧化层屏蔽。
优选的,所述二氧化硅腐蚀液为双氧水与氢氟酸的混合物液,双氧水:氢氟酸=2:1(v/v)。
本发明步骤b为:在氮氧化硅介质区域注入氮离子,注入能量为5~25KeV,注入剂量为1.0×1013~1.0×1014/cm2
本发明步骤c中,所述清洗包括除光刻胶清洗和入炉前清洗,所述清洗条件为采用硫酸与双氧水的混合液,在100-140℃高温下清洗。
优选的,所述混合液中硫酸与双氧水=4:1(v/v)。
本发明,步骤d中,所述氮硅高温氧化是在温度为850℃~1000℃条件下处理12~52min。
优选的,步骤a之后还包括坚膜工艺,具体是在温度为120℃条件下坚膜30分钟。
2、由所述制备方法制得的氮氧化硅材料。
3、所述氮氧化硅材料在制备MOS电容或MOS晶体管栅介质中的应用。
本发明中,氢氟酸是指质量分数为40%的氢氟酸,硫酸为质量分数为98%的浓硫酸。
本发明针对高压双极工艺兼容的高密度MOS电容应用需求,在高掺杂的电容下极板区域采用氮离子注入,并采用高温氮硅氧化,成功开发了一种使用氮离子注入并氧化生长SiON介质的工艺。与其他氮氧化硅制备方法相比,本发明的优点在于:
1)本发明方法能够实现与双极工艺的完全兼容,且操作简单,无需额外增加设备;在离子注入后,通过普通的高温炉管就能实现氮氧化硅介质的制备。
2)本发明方法所制备的氮氧化硅薄膜可通过氮离子注入剂量和氮硅氧化条件的调整,实现对薄膜介电常数等参数的精确控制,可以满足各种不同产品的差异化需求。
3)本发明方法所制备的氮氧化硅介质可用于高可靠抗辐照MOS晶体管栅介质的制作。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明MOS电容有源区制备示意图;
图2为本发明图1的片子进行有源区氮离子注入后的剖面示意图;
图3为本发明图2的片子进行氮硅高温氧化后的剖面示意图。
图1-3中,1为硅衬底,2为注入时的掩蔽SiO2层,3为MOS电容下极板,4为氮注入后形成的氮元素层,5为注入的氮离子束,6为最终形成的氮氧化硅介质,7为光刻胶。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
本发明的具体实施方式不仅限于以下描述,可根据本发明技术构思的原则,获得其它类似的技术解决方案。下面结合附图对本发明方法加以进一步说明。
实施例1
可集成高密度氮氧化硅材料的制备方法,包括如下步骤:
a.MOS电容有源区制备;包括准备已完成MOS电容下极板制备的硅片,在硅片上光刻出MOS电容上极板窗口区域;用二氧化硅腐蚀液(双氧水:氢氟酸=2:1,v/v),在常温下腐蚀SiO2层,腐蚀时间为3分30秒,腐蚀干净SiO2层为止,腐蚀后采用硫酸与双氧水的混合液,在100-140℃高温下清洗去除光刻胶,最后采用厚氧化层屏蔽(图1);
b.在温度为120℃条件下坚膜30分钟;
c.对有源区硅衬底进行氮离子注入,具体为注入能量为5~25KeV,注入剂量为1.0×1013~1.0×1014/cm2(图2);
d.对硅衬底进行清洗;先采用硫酸与双氧水的混合液(硫酸:双氧水=4:1,v/v),在130℃下清洗硅片,去除光刻胶;再采用硫酸与双氧水的混合液(硫酸:双氧水=4:1,v/v),在130℃下进行入炉前清洗;
e.对所述硅衬底进行氮硅高温氧化,具体是在高温氧化炉管中进行高温湿氧氧化工艺,氧化温度是850℃~1000℃,氧化气氛是湿氧,氧化时间是12分钟~52分钟;
最终,形成氮氧化硅介质薄膜,如图3所示。
本发明步骤(b)中坚膜工艺,如果采用厚氧化层屏蔽没有光刻胶也可不进行该步骤;
本发明方法中本发明方法中的氧化、注入、光刻、SiO2的腐蚀、去胶、清洗、退火等均为本领域技术人员常规工艺技术,也不是本发明方法的主题,在此不再详述。
将本发明制得的氮氧化硅介质薄膜制成MOS电容,结果显示击穿电压大于80V、电容密度大于0.39fF/μm2;表明本发明方法制得的氮氧化硅介质薄膜可以用于MOS电容的制备,并且该介质工艺还可用于高可靠抗辐照MOS晶体管栅介质。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (10)

1.一种可集成高密度氮氧化硅材料的制备方法,其特征在于,包括如下步骤:
a.MOS电容有源区制备;
b.对有源区硅衬底进行氮离子注入;
c.对硅衬底进行清洗;
d.对所述硅衬底进行氮硅高温氧化。
2.根据权利要求1所述可集成高密度氮氧化硅材料的制备方法,其特征在于:所述MOS电容有源区制备方法如下:将已完成MOS电容下极板制备的硅片采用光刻出MOS电容上极板窗口区域,再用二氧化硅腐蚀液腐蚀SiO2至SiO2层腐蚀干净为止,然后用硫酸与双氧水的混合液,在100-140℃温度下清洗去除光刻胶,最后采用厚氧化层屏蔽。
3.根据权利要求2所述可集成高密度氮氧化硅材料的制备方法,其特征在于:所述二氧化硅腐蚀液为双氧水与氢氟酸的混合物液,双氧水:氢氟酸=2:1(v/v)。
4.根据权利要求1所述可集成高密度氮氧化硅材料的制备方法,其特征在于,步骤b为:在氮氧化硅介质区域注入氮离子,注入能量为5~25KeV,注入剂量为1.0×1013~1.0×1014/cm2
5.根据权利要求1所述可集成高密度氮氧化硅材料的制备方法,其特征在于:步骤c中,所述清洗包括除光刻胶清洗和入炉前清洗,所述清洗条件为采用硫酸与双氧水的混合液,在100-140℃高温下清洗。
6.根据权利要求5所述可集成高密度氮氧化硅材料的制备方法,其特征在于:所述混合液中硫酸与双氧水=4:1(v/v)。
7.根据权利要求1所述可集成高密度氮氧化硅材料的制备方法,其特征在于:步骤d中,所述氮硅高温氧化是在温度为850℃~1000℃条件下处理12~52min。
8.根据权利要求1所述可集成高密度氮氧化硅材料的制备方法,其特征在于:步骤a之后还包括坚膜工艺,具体是在温度为120℃条件下坚膜30分钟。
9.由权利要求1~8任一项所述制备方法制得的氮氧化硅材料。
10.权利要求9所述氮氧化硅材料在制备MOS电容或MOS晶体管栅介质中的应用。
CN201711168680.8A 2017-11-21 2017-11-21 可集成高密度氮氧化硅材料的制备方法及其产品和应用 Active CN107978512B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711168680.8A CN107978512B (zh) 2017-11-21 2017-11-21 可集成高密度氮氧化硅材料的制备方法及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711168680.8A CN107978512B (zh) 2017-11-21 2017-11-21 可集成高密度氮氧化硅材料的制备方法及其产品和应用

Publications (2)

Publication Number Publication Date
CN107978512A true CN107978512A (zh) 2018-05-01
CN107978512B CN107978512B (zh) 2019-11-12

Family

ID=62010932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711168680.8A Active CN107978512B (zh) 2017-11-21 2017-11-21 可集成高密度氮氧化硅材料的制备方法及其产品和应用

Country Status (1)

Country Link
CN (1) CN107978512B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598168A (zh) * 2018-05-03 2018-09-28 深圳吉华微特电子有限公司 抗总剂量辐射的功率场效应晶体管及其制造方法
CN113126376A (zh) * 2021-04-19 2021-07-16 合肥京东方显示技术有限公司 阵列基板及其制备方法、显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1434486A (zh) * 2002-01-23 2003-08-06 旺宏电子股份有限公司 降低栅极堆栈层氧化侵蚀的方法
CN1614754A (zh) * 2003-11-05 2005-05-11 中芯国际集成电路制造(上海)有限公司 形成氮氧化硅的方法
CN101217158A (zh) * 2007-12-28 2008-07-09 中国电子科技集团公司第五十五研究所 减小晶体管延伸电极电容的结构及制作方法
CN101276846A (zh) * 2007-03-27 2008-10-01 富士通株式会社 半导体可变电容器及其制造方法
CN102074469A (zh) * 2009-11-25 2011-05-25 中国科学院微电子研究所 一种用于pmos器件的金属栅功函数的调节方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1434486A (zh) * 2002-01-23 2003-08-06 旺宏电子股份有限公司 降低栅极堆栈层氧化侵蚀的方法
CN1614754A (zh) * 2003-11-05 2005-05-11 中芯国际集成电路制造(上海)有限公司 形成氮氧化硅的方法
CN101276846A (zh) * 2007-03-27 2008-10-01 富士通株式会社 半导体可变电容器及其制造方法
CN101217158A (zh) * 2007-12-28 2008-07-09 中国电子科技集团公司第五十五研究所 减小晶体管延伸电极电容的结构及制作方法
CN102074469A (zh) * 2009-11-25 2011-05-25 中国科学院微电子研究所 一种用于pmos器件的金属栅功函数的调节方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598168A (zh) * 2018-05-03 2018-09-28 深圳吉华微特电子有限公司 抗总剂量辐射的功率场效应晶体管及其制造方法
CN113126376A (zh) * 2021-04-19 2021-07-16 合肥京东方显示技术有限公司 阵列基板及其制备方法、显示面板及显示装置

Also Published As

Publication number Publication date
CN107978512B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
Brown et al. Properties of Si x O y N z Films on Si
Gwyn Model for radiation‐induced charge trapping and annealing in the oxide layer of MOS devices
Sah et al. Generation annealing kinetics of interface states on oxidized silicon activated by 10.2‐eV photohole injection
Dadap et al. Randomly oriented Angstrom‐scale microroughness at the Si (100)/SiO2 interface probed by optical second harmonic generation
CN107978512B (zh) 可集成高密度氮氧化硅材料的制备方法及其产品和应用
DiMaria et al. Use of electron‐trapping region to reduce leakage currents and improve breakdown characteristics of MOS structures
Zhao et al. Hole-traps in silicon dioxides. Part II. Generation mechanism
Tsubata et al. Silicon nanocrystals embedded in nanolayered silicon oxide for crystalline silicon solar cells
Shanfield et al. Characteristics of hole traps in dry and pyrogenic gate oxides
JPH06224404A (ja) 集積回路装置の製造方法
Yang et al. Modelling of trap-assisted electronic conduction in thin thermally nitrided oxide films
CN104576343B (zh) 栅极氧化层的制造方法
CN110330236B (zh) 一种具有高激光损伤阈值的耐高温氧化铌薄膜制备方法
Huang et al. Electrical properties of InSb metal/insulator/semiconductor diodes prepared by photochemical vapour deposition
Warren et al. A proposed model for positive charge in SiO/sub 2/thin films. Over-coordinated oxygen centers
Chou et al. Application of liquid phase deposited silicon dioxide to metal-oxide-semiconductor capacitor and amorphous silicon thin-film transistor
CN101350305A (zh) 一种可改善负温度不稳定性的pmos管制作方法
CN104201109B (zh) 一种用于制备等离子氮化栅极介质层的方法
CN109559992A (zh) 一种低电阻抗辐照vdmos芯片的制造方法
CN111725330A (zh) 一种碳化硅mos电容栅氧化层的制备方法
JPH11145133A (ja) シリコン半導体素子
Cong et al. Optical kerr nonlinearity of cmos compatible pecvd deposited si-rich-nitride (srn)
Paillet et al. Effect of high temperature processing of Si/SiO2/Si structures on their response to x‐ray irradiation
Ang et al. Electrical characterization of low‐pressure chemical‐vapor‐deposited silicon dioxide metal‐oxide‐silicon structures
CN1170318C (zh) 对电荷超敏感的库仑计及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210106

Address after: 400060 Chongqing Nanping Nan'an District No. 14 Huayuan Road

Patentee after: The 24th Research Institute of China Electronics Technology Group Corp.

Address before: 401332 367, West Wing Road, Xiyong Town, Shapingba District, Chongqing

Patentee before: CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION CHONGQING ACOUSTIC-OPTIC-ELECTRONIC Co.,Ltd.