CN107973866A - 具有高的sod酶活性的四氮大环锰配合物修饰壳聚糖复合材料及其制备方法 - Google Patents

具有高的sod酶活性的四氮大环锰配合物修饰壳聚糖复合材料及其制备方法 Download PDF

Info

Publication number
CN107973866A
CN107973866A CN201711352387.7A CN201711352387A CN107973866A CN 107973866 A CN107973866 A CN 107973866A CN 201711352387 A CN201711352387 A CN 201711352387A CN 107973866 A CN107973866 A CN 107973866A
Authority
CN
China
Prior art keywords
chitosan
solution
manganese complex
enzyme activity
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711352387.7A
Other languages
English (en)
Other versions
CN107973866B (zh
Inventor
周红
瞿隽申
潘志权
程清蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN201711352387.7A priority Critical patent/CN107973866B/zh
Publication of CN107973866A publication Critical patent/CN107973866A/zh
Application granted granted Critical
Publication of CN107973866B publication Critical patent/CN107973866B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)

Abstract

本发明公开了一类具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料及其制备方法,所述的多氮大环配合物是由含四个悬臂的大环四氮化合物与锰离子形成的配合物,该配合物通过羧基与壳聚糖的氨基以酰氨键结合而成。本发明将具有高的SOD活性的四氮大环锰配合物与壳聚糖以共价键结合,使活性位点均匀分散于壳聚糖载体上,具有稳定性高,活性好,生物相容性好的特点,有望在临床医学、药物及涉及清除超氧阴离子自由基的相关问题的应用领域得到应用。

Description

具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材 料及其制备方法
技术领域
本发明涉及一种超氧化物歧化酶(SOD)的模拟物,具体涉及以壳聚糖为载体的多氮大环配合物为活性位点的SOD模拟物的制备方法。
背景技术
超氧化物歧化酶是生物体系中一种重要的抗氧化酶,具有SOD 功能的抗氧化剂在医学上可用于阿尔茨默氏症、中风、心脏病、衰老及癌症等疾病的治疗,研制具有SOD抗氧化酶活性的模拟物,理解其高效催化机理及研发潜在治疗的抗氧化剂化合物,对提高寿命、延缓衰老、治疗及防止由有ROS引起的相关疾病具有十分重要的意义。为得到活性高、生物相容性好、体内循环周期长、无毒且专一抗氧化作用的新型SOD模拟物,必须选择合适的大分子材料作为载体以减少活性分子与生物体内细胞的相互作用,使活性分子最大限度地接近目标物,最少地分散于周围组织环境。模拟物的研究已从小分子转向与大分子环境与活性中心相结合的系统模拟:如以纳米颗粒、聚合物和天然材料为载体的SOD的模拟研究。但纳米颗粒存在分散性差,不均匀易团聚;合成的聚合物在降解速率、降解后产物的毒性及排放存在诸多问题,而生物相容性好、可生物降解且降解产物无毒的天然材料如羧甲基纤维素、壳聚糖引起人们的关注。那么何种形态的模拟物为最佳材料呢?当活性小分子与天然大分子结合为液态或固态聚集形式时,分别存在与生物大分子作用和分散性问题,而凝胶作为介于液态和固态之间的一种材料,因其可注射性,好的渗透性,含水量高及和组织相似的机械性能而成为首选材料。
发明内容
基于以上现有技术的不足,本发明所解决的技术问题在于将具有高活性SOD酶活性的小分子与壳聚糖通过共价键结合,形成具有 SOD活性位点且性能稳定的有机无机杂化材料,该设计在壳聚糖上增加了分子中的催化活性中心,达到提高其生物相容及酶活性的双重目的。
为了解决上述技术问题,本发明提供一种具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料,其特征在于:化学名称为:四氮大环锰配合物修饰壳聚糖复合材料;化学分子式为: (C6H10NO4)2n(MnC16H26N4O6)m;化学结构式为
其中n与原料粘度为40-60mpa.s壳聚糖分子式中n值相同,m 为键合的四羧基悬臂的四氮大环锰配合物的单元数,此单元数与加入的DOTA的物质的量相关,结构式中n与m的比例约为2.5- 3.0。
一种如上所述的具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料的制备方法,其特征在于,步骤如下:
步骤一、壳聚糖悬浊液的制备,将脱乙酰度壳聚糖溶于乙酸溶液中,搅拌至完全溶解后静置0.5-2小时得到溶液A,然后将溶液A 加入三聚磷酸钠溶液中并剧烈搅拌,混合完成后继续剧烈搅拌0.5-2 小时,得到象牙白悬浊液静置8-36小时后,离心分离,并用超纯水洗涤至少5次,即为所述的壳聚糖悬浊液,至于水中备用;
步骤二、1,4,7,10-四氮十二杂环-1,4,7,10-四羧酸四盐酸盐的合成,将1,4,7,10-四氮杂环十二烷四盐酸与NaOH溶液混合,在冰水浴中搅拌5-20分钟,然后升温至50-70℃反应12-36小时,然后移入冰浴中冷却,并向其中滴入浓盐酸,收集反应产生的白色粉末状沉淀,干燥即得所述的1,4,7,10-四氮十二杂环-1, 4,7,10-四羧酸四盐酸盐;
步骤三、具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料的制备,将步骤二所得的1,4,7,10-四氮十二杂环-1, 4,7,10-四羧酸四盐酸盐和pH为5.4的MES缓冲溶液按照0.2-1.0 g:20-80mL混合,然后依次投入EDC以及NHS和二水合醋酸锰的混合物,在室温下反应3-8小时,得到混合液B,然后将湿润壳聚糖凝胶分散液与混合液B混合并在室温下继续反应12-36小时,反应得到乳白色状物体离心分离并用乙醇与超纯水洗涤至少三次,每次洗涤间隔至少两小时并保证材料浸泡在乙醇或水中,将洗涤后所得物干燥,所得灰白色固体仔细研磨后即为所述的具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料。
作为上述技术方案的优选,本发明提供的具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料的制备方法进一步包括下列技术特征的部分或全部:
作为上述技术方案的改进,所述步骤一中,脱乙酰度壳聚糖的纯度为95%,所述乙酸溶液的浓度为0.5-2.0%m/v的乙酸水溶液,所述脱乙酰度壳聚糖与乙酸溶液按照1.5-3.0g:300-600mL的比例混合;所述三聚磷酸钠溶液是0.1-1.0mg/mL的三聚磷酸钠水溶液;所述三聚磷酸钠溶液与乙酸溶液的体积比为0.5:1.5。
作为上述技术方案的改进,所述溶液A加入三聚磷酸钠溶液中的过程是,将溶液A采用蠕动泵以50-180mL/分的速度泵入三聚磷酸钠溶液。
作为上述技术方案的改进,所述步骤一中,离心分离条件为 5000-10000rpm,15min。
作为上述技术方案的改进,所述步骤二中,1,4,7,10-四氮杂环十二烷四盐酸与NaOH溶液混合的具体过程为,1,4,7,10-四氮杂环十二烷四盐酸与1.0-3.5mol/L NaOH溶液按照0.001-0.004mol:10- 35mL的比例混合。
作为上述技术方案的改进,所述步骤二中,干燥条件为35- 50℃真空干燥20-72小时。
作为上述技术方案的改进,所述步骤三中,所述湿润壳聚糖分散液为湿润壳聚糖超声分散在pH为5.0-6.0的MES缓冲溶液中所得,所述湿润壳聚糖与MES缓冲溶液的比例为0.1-1.0g:10-80 mL
作为上述技术方案的改进,步骤三中,所述1,4,7,10-四氮十二杂环-1,4,7,10-四羧酸四盐酸盐、MES缓冲溶液、EDC、 NHS、二水合醋酸锰以及湿润壳聚糖分散液的比例为0.25-1.25g: 20-80mL:0.005-0.04mol:0.004-0.016mol:0.5-2mmol(10-40 mL)。
作为上述技术方案的改进,步骤三中,所述离心分离条件为 5000-10000rpm,10-20min;所述干燥条件为35-50℃真空干燥24- 72小时。
与现有技术相比,本发明的技术方案具有如下有益效果:
本发明中将生物相容性好的壳聚糖与具有较高活性的DOTA- Mn(II)通过酰氨键结合,合成了一类新型的高活性四氮大环锰配合物修饰的壳聚糖复合材料。该复合材料具有很好的生物相容性,可在涉及清除超阴离子自由基的相关领域中得到应用。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下结合优选实施例,详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍。
图1是本发明含锰四氮大环修饰壳聚糖的合成路线;
图2是本发明壳聚糖与Chitosan-DOTA的TGA测试曲线;
图3a是本发明壳聚糖悬浊液的电镜图;
图3b是本发明Chitosan-DOTA-Mn(II)复合材料电镜图。
具体实施方式
下面详细说明本发明的具体实施方式,其作为本说明书的一部分,通过实施例来说明本发明的原理,本发明的其他方面、特征及其优点通过该详细说明将会变得一目了然。
实施例1
本发明的合成路线:以1,4,7,10-四氮杂环十二烷(Cyclen)为原料与氯乙酸发生反应得到含四个羧基悬臂的四氮大环化合物 (DOTA),以DOTA为原料在EDC 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和NHS(N-羟基琥珀酰亚胺)的催化作用下与醋酸锰及壳聚糖发生酰氨化反应合成以DOTA的锰配合物修饰的壳聚糖凝胶
1)壳聚糖凝胶的制备方法,将1.5g 95%脱乙酰度壳聚糖溶于500mL 1%(m/v)乙酸溶液中,搅拌至完全溶解后静置一小时使之稳定。后经由蠕动泵以100mL/分的速度将壳聚糖溶液泵入500mL 0.5mg/mL TPP(三聚磷酸钠)溶液中,并剧烈磁力搅拌。滴加完成后继续剧烈搅拌1小时,所得象牙白悬浊液静置24小时后,经由高速离心(9000rpm,15min)分离,并用超纯水洗涤5次,保存在水中备用。
2)2.3.5 1,4,7,10-四氮十二杂环-1,4,7,10-四羧酸四盐酸盐(DOTA·4HCl)的合成
利用Cyclen与氯乙酸之间的反应合成1,4,7,10-四氮十二杂环-1,4,7,10-四羧酸四盐酸盐。称取0.9543g(0.003mol) 1,4,7,10-四氮杂环十二烷四盐酸于一100mL圆底烧瓶中。向其中加入25mL 2.5mol/L NaOH溶液,在冰水浴中搅拌10分钟。然后向其中加入3.01g(0.024mol)氯乙酸,在室温浴氮气气氛保护下继续搅拌15分钟,然后升温至65℃反应24小时。反应结束后,将烧瓶移入冰浴中冷却,并向其中滴入浓盐酸。随着浓盐酸滴入可见白色粉末状沉淀生成,收集沉淀,40℃真空干燥24小时,即得1,4,7, 10-四氮十二杂环-1,4,7,10-四羧酸四盐酸盐。
3)Chitosan-DOTA-Mn(II)的制备方法
将按文献方法合成的DOTA(1,4,7,10-四氮十二杂环-1, 4,7,10-四羧酸四盐酸盐)0.5502g溶于40mL pH为5.4的MES 缓冲溶液中,并向其中投入EDC 1.9170g(0.01mol),5分钟后再向其中投入1.15g(0.01mol)NHS与0.245g(0.001mol)二水合醋酸锰。投料后在室温下反应5小时。同时将0.4g的湿润壳聚糖凝胶超声分散在20mL pH为5.4的MES缓冲溶液中,并将其倾倒入烧瓶内,在室温下继续反应24小时。所得的乳白色凝胶状物体利用离心分离 (8000rpm,15min)并利用乙醇与超纯水多次洗涤。每次洗涤间隔至少两小时并保证材料浸泡在乙醇或水中。最终所得凝胶在40℃真空干燥24小时,所得灰白色固体仔细研磨后即为Chitosan-DOTA- Mn(II)。
4)SOD活性检测及评价
首先称取一定量的Mn-NPs分散在8mL的PBS缓冲溶液中,含 0.05mol/L蛋氨酸,1.16×10-3mol/L NBT,8.50×10-5mol/L核黄素以及 2.55×10-6mol/L EDTA。其操作如下:先向混合液中鼓入空气并在黑暗条件下搅拌5分钟,之后在光照条件下反应10分钟。其中光照前 (Aa)和光照后(Ab)的吸光度利用紫外可见光谱仪测量,根据下面公式计算抑制率,Chitosan-DOTA-Mn(II)的SOD活性单位IC50为 0.001mg/mL。
因壳聚糖本身就具有良好的染料吸附性能,而甲瓒是一种蓝色染料。故为排除壳聚糖自身吸附对实验结果造成的影响,进行了如下的试验。取用0.2g新鲜制备方法的壳聚糖凝胶,超声分散于10 mL PBS溶液中,取1mL作为样品,按照前面所述SOD活性测定方法对其进行了SOD活性测试,结果表明,浓度为20μg·mL-1的壳聚糖凝胶其因吸附所产生的SOD活性为4.25%,而所得复合材料在达到IC50时浓度远远小于20μg·mL-1,所以可以排除壳聚糖凝胶吸附甲瓒对实验结果的影响。
5)Chitosan-DOTA-Mn(II)稳定性评价
因Mn(Ⅱ)离子本身就具有很强的SOD活性,为了排除实验中可能存在的游离锰离子对结果造成影响,进行如下试验。取2mg 复合材料Chitosan-DOTA-Mn(II),将其超声45s分散于10mL的 PBS溶液中,所得悬浊液静置24小时,然后9000rpm离心15min 共计三次,所得上清液视为0.2mg/mL溶液。小心的取出上清液,将其稀释至20g/mL、10g/mL与1g/mL,按照前文所述的方法对其进行SOD活性测试,结果均未检出SOD活性。可说明复合材料中没有游离金属离子,复合材料的SOD活性均来源于复合材料本身,样品具有极好的稳定性。
由于壳聚糖凝胶具有很好的生物相容性,且与活性组份 DOTA-Mn(II)键合后在溶液中可稳定存在、SOD活性很高,有望在临床医学、药物及涉及清除超氧阴离子自由基问题的相关应用领域中得到应用。
本发明所列举的各原料,以及本发明各原料的上下限、区间取值,以及工艺参数(如温度、时间等)的上下限、区间取值都能实现本发明,但其IC50值与所包含锰的四氮大环配合物的物质量相关,在所述范围内两者具有正比例关系。在此不一一列举实施例。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (10)

1.具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料,其特征在于:化学名称为:四氮大环锰配合物修饰壳聚糖复合材料;化学分子式为:(C6H10NO4)2n(MnC16H26N4O6)m;化学结构式为
DOTA-Mn-Chitosan
其中n与原料粘度为40-60mpa.s壳聚糖分子式中n值相同,m为键合的四羧基悬臂的四氮大环锰配合物的单元数;此单元数与加入的DOTA的物质的量相关,结构式中n与m的比例约为2.5-3.0。
2.一种如权利要求1所述的具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料的制备方法,其特征在于,步骤如下:
步骤一、壳聚糖悬浊液的制备,将脱乙酰度壳聚糖溶于乙酸溶液中,搅拌至完全溶解后静置0.5-2小时得到溶液A,然后将溶液A加入三聚磷酸钠溶液中并剧烈搅拌,混合完成后继续剧烈搅拌0.5-2小时,得到象牙白悬浊液静置8-36小时后,离心分离,并用超纯水洗涤至少5次,即为所述的壳聚糖悬浊液,至于水中备用;
步骤二、1,4,7,10-四氮十二杂环-1,4,7,10-四羧酸四盐酸盐的合成,将1,4,7,10-四氮杂环十二烷四盐酸与NaOH溶液混合,在冰水浴中搅拌5-20分钟,然后升温至50-70℃反应12-36小时,然后移入冰浴中冷却,并向其中滴入浓盐酸,收集反应产生的白色粉末状沉淀,干燥即得所述的1,4,7,10-四氮十二杂环-1,4,7,10-四羧酸四盐酸盐;
步骤三、具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料的制备,将步骤二所得的1,4,7,10-四氮十二杂环-1,4,7,10-四羧酸四盐酸盐和pH为5.4的MES缓冲溶液按照0.2-1.0g:20-80mL混合,然后依次投入EDC以及NHS和二水合醋酸锰的混合物,在室温下反应3-8小时,得到混合液B,然后将湿润壳聚糖分散液与混合液B混合并在室温下继续反应12-36小时,反应得到乳白色状物体离心分离并用乙醇与超纯水洗涤至少三次,每次洗涤间隔至少两小时并保证材料浸泡在乙醇或水中,将洗涤后所得物干燥,所得灰白色固体仔细研磨后即为所述的具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料。
3.如权利要求2所述的具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料的制备方法,其特征在于:所述步骤一中,脱乙酰度壳聚糖的纯度为95%,所述乙酸溶液的浓度为0.5-2.0%m/v的乙酸水溶液,所述脱乙酰度壳聚糖与乙酸溶液按照1.5-3.0g:300-600mL的比例混合;所述三聚磷酸钠溶液是0.1-1.0mg/mL的三聚磷酸钠水溶液;所述三聚磷酸钠溶液与乙酸溶液的体积比为0.5:1.5。
4.如权利要求2所述的具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料的制备方法,其特征在于:所述溶液A加入三聚磷酸钠溶液中的过程是,将溶液A采用蠕动泵以50-180mL/分的速度泵入三聚磷酸钠溶液。
5.如权利要求2所述的具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料的制备方法,其特征在于:所述步骤一中,离心分离条件为5000-10000rpm,15min。
6.如权利要求2所述的具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料的制备方法,其特征在于:所述步骤二中,1,4,7,10-四氮杂环十二烷四盐酸与NaOH溶液混合的具体过程为,1,4,7,10-四氮杂环十二烷四盐酸与1.0-3.5mol/L NaOH溶液按照0.001-0.004mol:10-35mL的比例混合。
7.如权利要求2所述的具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料的制备方法,其特征在于:所述步骤二中,干燥条件为35-50℃真空干燥20-72小时。
8.如权利要求2所述的具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料的制备方法,其特征在于:所述步骤三中,所述湿润壳聚糖分散液为湿润壳聚糖超声分散在pH为5.0-6.0的MES缓冲溶液中所得,所述湿润壳聚糖与MES缓冲溶液的比例为0.1-1.0g:10-80mL。
9.如权利要求2所述的具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料的制备方法,其特征在于:步骤三中,所述1,4,7,10-四氮十二杂环-1,4,7,10-四羧酸四盐酸盐、MES缓冲溶液、EDC、NHS、二水合醋酸锰以及湿润壳聚糖分散液的比例为0.25-1.25g:20-80mL:0.005-0.04mol:0.004-0.016mol:0.5-2mmol(10-40mL)。
10.如权利要求2所述的具有高的SOD酶活性的四氮大环锰配合物修饰壳聚糖复合材料的制备方法,其特征在于:步骤三中,所述离心分离条件为5000-10000rpm,10-20min;所述干燥条件为35-50℃真空干燥24-72小时。
CN201711352387.7A 2017-12-15 2017-12-15 具有高的sod酶活性的四氮大环锰配合物修饰壳聚糖复合材料及其制备方法 Expired - Fee Related CN107973866B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711352387.7A CN107973866B (zh) 2017-12-15 2017-12-15 具有高的sod酶活性的四氮大环锰配合物修饰壳聚糖复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711352387.7A CN107973866B (zh) 2017-12-15 2017-12-15 具有高的sod酶活性的四氮大环锰配合物修饰壳聚糖复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107973866A true CN107973866A (zh) 2018-05-01
CN107973866B CN107973866B (zh) 2020-08-28

Family

ID=62006463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711352387.7A Expired - Fee Related CN107973866B (zh) 2017-12-15 2017-12-15 具有高的sod酶活性的四氮大环锰配合物修饰壳聚糖复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107973866B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245431A (zh) * 1996-12-16 2000-02-23 诺维斯森思股份公司 药物组合物及其在制备局部防护制剂、紫外辐射吸收剂或抗病毒、抗真菌或抗炎制剂中的应用
CN101550200A (zh) * 2009-05-27 2009-10-07 北京化工大学 一种大环多胺偶联壳聚糖基因载体及其制备方法和应用
CN102336838A (zh) * 2011-06-27 2012-02-01 中国科学院长春应用化学研究所 一种顺磁性金属配合物和合成方法及应用
US20130302255A1 (en) * 2012-05-09 2013-11-14 Bbs Nanomedicina Zrt. Novel targeted paramagnetic contrast agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245431A (zh) * 1996-12-16 2000-02-23 诺维斯森思股份公司 药物组合物及其在制备局部防护制剂、紫外辐射吸收剂或抗病毒、抗真菌或抗炎制剂中的应用
CN101550200A (zh) * 2009-05-27 2009-10-07 北京化工大学 一种大环多胺偶联壳聚糖基因载体及其制备方法和应用
CN102336838A (zh) * 2011-06-27 2012-02-01 中国科学院长春应用化学研究所 一种顺磁性金属配合物和合成方法及应用
US20130302255A1 (en) * 2012-05-09 2013-11-14 Bbs Nanomedicina Zrt. Novel targeted paramagnetic contrast agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
瞿隽申等: ""两种新型席夫碱-Mn(II)配合物-壳聚糖复合材料的合成表征及其SOD活性"", 《化学与生物工程》 *

Also Published As

Publication number Publication date
CN107973866B (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
Kang et al. Aggregation‐enhanced theranostics: AIE sparkles in biomedical field
Han et al. Photosensitizer-conjugated hyaluronic acid-shielded polydopamine nanoparticles for targeted photomediated tumor therapy
Yao et al. Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery
Yang et al. Ultrasmall and photostable nanotheranostic agents based on carbon quantum dots passivated with polyamine-containing organosilane molecules
Gao et al. pH-responsive prodrug nanoparticles based on a sodium alginate derivative for selective co-release of doxorubicin and curcumin into tumor cells
Li et al. Smart nanomedicine agents for cancer, triggered by pH, glutathione, H2O2, or H2S
Sun et al. Bis (pyrene)-doped cationic dipeptide nanoparticles for two-photon-activated photodynamic therapy
Karimi et al. A nanoporous photosensitizing hydrogel based on chitosan cross-linked by zinc phthalocyanine: an injectable and pH-stimuli responsive system for effective cancer therapy
Lv et al. pH sensitive chitosan-mesoporous silica nanoparticles for targeted delivery of a ruthenium complex with enhanced anticancer effects
Brandhonneur et al. Molybdenum cluster loaded PLGA nanoparticles as efficient tools against epithelial ovarian cancer
CN104274834A (zh) 一种环境敏感的肿瘤靶向聚合物胶束及其制备方法
CN110314136B (zh) 一种基于不饱和脂肪酸纳米粒的肿瘤靶向药物的制备及其应用
Min et al. Encapsulation of NIR-II AIEgens in virus-like particles for bioimaging
Zhang et al. Near-infrared BODIPY-paclitaxel conjugates assembling organic nanoparticles for chemotherapy and bioimaging
CN104258391B (zh) 一种多功能刺激敏感型聚合物-纳米金笼载体及其制备方法
Wang et al. Smart sensing of Cu 2+ in living cells by water-soluble and nontoxic Tb 3+/Eu 3+-induced aggregates of polysaccharides through fluorescence imaging
Xue et al. Fluorescence resonance energy transfer enhanced photothermal and photodynamic antibacterial therapy post a single injection
CN1743008A (zh) 纳米肝靶向生物降解药物载体材料的制备方法
Jung et al. Synthesis and characterization of bovine serum albumin‐coated nanocapsules loaded with indocyanine green as potential multifunctional nanoconstructs
Cheng et al. Covalently conjugated hydrogelators for imaging and therapeutic applications
CN111407743A (zh) 一种多巴胺组装体药物递送系统及其制备方法
Li et al. Postsynthetic Modification of Thermo-Treated Metal–Organic Framework for Combined Photothermal/Photodynamic Antibacterial Therapy
Yu et al. Nanozyme-nanoclusters in metal–organic framework: GSH triggered Fenton reaction for imaging guided synergistic chemodynamic-photothermal therapy
Zhang et al. Functionalized magnetic nanoparticles for NIR-induced photothermal therapy of potential application in cervical cancer
Quílez-Alburquerque et al. Hyaluronic acid-poly (lactic-co-glycolic acid) nanoparticles with a ruthenium photosensitizer cargo for photokilling of oral cancer cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200828