CN107964586A - 一种智能热释光退火炉 - Google Patents

一种智能热释光退火炉 Download PDF

Info

Publication number
CN107964586A
CN107964586A CN201711220310.4A CN201711220310A CN107964586A CN 107964586 A CN107964586 A CN 107964586A CN 201711220310 A CN201711220310 A CN 201711220310A CN 107964586 A CN107964586 A CN 107964586A
Authority
CN
China
Prior art keywords
annealing
thermoluminescence
instrument
furnace chamber
thermoluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711220310.4A
Other languages
English (en)
Inventor
陈洁
林德雨
何鹏武
刘红旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Center Control Systems Engineering (cse) Co Ltd
Original Assignee
Center Control Systems Engineering (cse) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center Control Systems Engineering (cse) Co Ltd filed Critical Center Control Systems Engineering (cse) Co Ltd
Priority to CN201711220310.4A priority Critical patent/CN107964586A/zh
Publication of CN107964586A publication Critical patent/CN107964586A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/10Luminescent dosimeters
    • G01T1/11Thermo-luminescent dosimeters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明属于放射设备辅助仪器技术领域,属于热释光测量系统的一部分,具体涉及一种智能热释光退火炉。本发明包括:炉体、炉腔、上盖、加热盘、触控显示屏、喇叭、仪器开关。本发明的热释光照射器是与热释光剂量仪配套的关键仪器,具有对经过辐照的热释光元件进行退火。仪器采用高精度温度反馈系统控制,可在常用元件中选择退火程序,或在室温至450℃的范围内任意设定退火温度值。退火完成后智能语音提示取出热释光元件。仪器操作更加简洁方便,且控制更加精准,提高了热释光测量的一致性和精密性。

Description

一种智能热释光退火炉
技术领域
本发明属于放射设备辅助仪器技术领域,属于热释光测量系统的一部分,具体涉及一种智能热释光退火炉。
背景技术
热释光测量技术有着广泛的应用,如:环境保护监测、个人防护剂量监测、核事故现场剂量分析和考古的年代鉴别等诸多应用领域。
热释光退火炉与热释光读出器、热释光照射器和热释光探测器配套组成热释光测量系统。热释光退火炉用于对γ、β或X射线测量的热释光探测器进行老化、退火处理,消除新探测器不稳定、测量后探测器的残留本底和低温峰减少衰退的影响,特别是批量探测器的老化和筛选,可提高热释光测量的一致性和精密度,提高热释光测量的工作效率。
现有技术的退火炉采用负反馈自动调节的温度控制系统。在室温至450℃的温度范围内,可任意设定退火温度,仪器根据设定的退火温度值,自动进行升温和恒温控制炉内温度,并长时间保持炉内温度。
但在热释光剂量元件的退火应用中,常用的元件种类比较固定,本发明设计了一种智能热释光退火炉,采用触控式显示屏操作,仪器内置了集中常用的热释光元件的退火程序,对于特殊材料或新型材料的退火也可自行设定退火温度及退火时间。
因此,研发、设计一种智能热释光退火炉,避免因手动旋钮调节温度带来的误差。
发明内容
本发明要解决的技术问题是提供一种智能热释光退火炉,从而精确控制退火温度及退火时间,降低操作误差。
为了实现这一目的,本发明采取的技术方案是:
一种智能热释光退火炉,包括:炉体、炉腔、上盖、加热盘、触控显示屏、喇叭、仪器开关;
炉体内部设有炉腔,炉腔内为用于热释光元件进行退火的恒温空间;
炉腔的开口处设有上盖,用于实现炉腔内的恒温条件;
炉腔内设有两个加热盘,用于放置待退火热释光元件;
触控显示屏用于显示及操作,仪器开启后进入主界面,用户根据待退火元件的材料设定退火温度及退火时间;
喇叭用于提示操作人员进行操作;
仪器开关为仪器的电源开关。
进一步的,如上所述的一种智能热释光退火炉,喇叭在以下情况下进行提示:操作人员设置完参数仪器开始升温时、仪器升温达到退火温度后、操作人员确定放入热释光元件开始退火时及完成退火时。
本发明技术方案的有益效果在于:本发明的热释光照射器是与热释光剂量仪配套的关键仪器,具有对经过辐照的热释光元件进行退火。仪器采用高精度温度反馈系统控制,可在常用元件中选择退火程序,或在室温至450℃的范围内任意设定退火温度值。退火完成后智能语音提示取出热释光元件。仪器操作更加简洁方便,且控制更加精准,提高了热释光测量的一致性和精密性。
通过这种设备,操作人员通过选定程序或手动输入退火温度及时间,避免了因手动旋钮调节温度带来的误差。且在退火完成后,仪器发出提示音,无需操作人员自行计算时间,避免了操作误差。
附图说明
图1为本发明一种智能热释光照射器结构示意图。
图中:炉体1,炉腔2,上盖3,加热盘4,触控显示屏5,喇叭6,仪器开关7。
具体实施方式
下面结合附图和具体实施例对本发明技术方案进行详细说明。
如图1所示,本发明一种智能热释光退火炉,包括:炉体1、炉腔2、上盖3、加热盘4、触控显示屏5、喇叭6、仪器开关7;
炉体1内部设有炉腔2,炉腔2内为用于热释光元件进行退火的恒温空间;
炉腔2的开口处设有上盖3,用于实现炉腔2内的恒温条件;
炉腔2内设有两个加热盘4,用于放置待退火热释光元件;
触控显示屏5用于显示及操作,仪器开启后进入主界面,用户根据待退火元件的材料设定退火温度及退火时间;
喇叭6用于提示操作人员进行操作;喇叭6在以下情况下进行提示:操作人员设置完参数仪器开始升温时、仪器升温达到退火温度后、操作人员确定放入热释光元件开始退火时及完成退火时。
仪器开关7为仪器的电源开关。
本发明热释光退火炉采用数字化温度控制反馈系统,实现退火温度的高精度控制。在对热释光元件进行退火时,炉腔2内的温度波动很小,保证其恒温状态,使得热释光元件实现较好的退火效果。

Claims (2)

1.一种智能热释光退火炉,其特征在于,包括:炉体(1)、炉腔(2)、上盖(3)、加热盘(4)、触控显示屏(5)、喇叭(6)、仪器开关(7);
炉体(1)内部设有炉腔(2),炉腔(2)内为用于热释光元件进行退火的恒温空间;
炉腔(2)的开口处设有上盖(3),用于实现炉腔(2)内的恒温条件;
炉腔(2)内设有两个加热盘(4),用于放置待退火热释光元件;
触控显示屏(5)用于显示及操作,仪器开启后进入主界面,用户根据待退火元件的材料设定退火温度及退火时间;
喇叭(6)用于提示操作人员进行操作;
仪器开关(7)为仪器的电源开关。
2.如权利要求1所述的一种智能热释光退火炉,其特征在于:喇叭(6)在以下情况下进行提示:操作人员设置完参数仪器开始升温时、仪器升温达到退火温度后、操作人员确定放入热释光元件开始退火时及完成退火时。
CN201711220310.4A 2017-11-29 2017-11-29 一种智能热释光退火炉 Pending CN107964586A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711220310.4A CN107964586A (zh) 2017-11-29 2017-11-29 一种智能热释光退火炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711220310.4A CN107964586A (zh) 2017-11-29 2017-11-29 一种智能热释光退火炉

Publications (1)

Publication Number Publication Date
CN107964586A true CN107964586A (zh) 2018-04-27

Family

ID=61997995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711220310.4A Pending CN107964586A (zh) 2017-11-29 2017-11-29 一种智能热释光退火炉

Country Status (1)

Country Link
CN (1) CN107964586A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014263A (zh) * 2012-11-27 2013-04-03 大连经济技术开发区圣洁真空技术开发有限公司 一种球化退火炉温度控制系统
CN104651762A (zh) * 2013-11-19 2015-05-27 姜韫英 一种铝材退火炉控制系统
CN204902586U (zh) * 2015-08-07 2015-12-23 苏州大学卫生与环境技术研究所 一种热释光退火装置
CN207608596U (zh) * 2017-11-29 2018-07-13 中核控制系统工程有限公司 一种智能热释光退火炉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014263A (zh) * 2012-11-27 2013-04-03 大连经济技术开发区圣洁真空技术开发有限公司 一种球化退火炉温度控制系统
CN104651762A (zh) * 2013-11-19 2015-05-27 姜韫英 一种铝材退火炉控制系统
CN204902586U (zh) * 2015-08-07 2015-12-23 苏州大学卫生与环境技术研究所 一种热释光退火装置
CN207608596U (zh) * 2017-11-29 2018-07-13 中核控制系统工程有限公司 一种智能热释光退火炉

Similar Documents

Publication Publication Date Title
McEwen Measurement of ionization chamber absorbed dose factors in megavoltage photon beams
Shoushan et al. Newly developed highly sensitive LiF (Mg, Cu. P) TL chips with high signal-to-noise ratio
Yazici et al. The analysis of thermoluminescent glow peaks of CaF2: Dy (TLD-200) after β-irradiation
Lacroix et al. Extraction of depth‐dependent perturbation factors for parallel‐plate chambers in electron beams using a plastic scintillation detector
CN207608596U (zh) 一种智能热释光退火炉
Jafari et al. Energy response of glass bead TLDs irradiated with radiation therapy beams
El-Khayatt et al. Determination of mass attenuation coefficient of low-Z dosimetric materials
Sander Air kerma and absorbed dose standards for reference dosimetry in brachytherapy
Hashim et al. Thermoluminescence response of flat optical fiber subjected to 9 MeV electron irradiations
CN107964586A (zh) 一种智能热释光退火炉
Bauk et al. Precision of low-dose response of LiF: Mg, Ti dosimeters exposed to 80 kVp X-Rays
Muñoz et al. Evolution of the CaF2: Tm (TLD-300) glow curve as an indicator of beam quality for low-energy photon beams
Hassan et al. The thermoluminescence response of Ge-doped flat fibre for proton beam measurements: A preliminary study
González et al. Comparison of the TL responses of two different preparations of LiF: Mg, Cu, P irradiated by photons of various energies
Sorger et al. Fading study and readout optimization for routinely use of LiF: Mg, Ti thermoluminescent detectors for personal dosimetry
Adolfsson et al. Investigation of signal fading in lithium formate EPR dosimeters using a new sensitive method
Sibony et al. Combined measurement of dose and α/γ radiation-field-components using the shape of composite peak 5 in the glow curve of LiF: Mg, Ti
Tang et al. Newly developed highly sensitive LiF: Mg, Cu, Si TL discs with good stability to heat treatment
Mukherjee LiBe-14: A novel microdosimeter using LiF and BeO thermoluminescence dosimeter pairs for clinical and aerospace applications
Biró et al. Thermoluminescence investigations on xY2O3 (60− x) P2O5· 40SiO2 vitroceramics
Avilés et al. Thermoluminescent response of TLD-100 to low energy protons
González et al. Dosimetric properties of Li2B4O7: Cu, Ag, P solid detector
Gómez-Facenda et al. Dual TLD-100/TLD-300 method to evaluate beam quality and absorbed dose in radiological imaging procedures
Massillon-Jl et al. CaF2: Tm (TLD-300) thermoluminescent response and glow curve induced by γ-rays and ions
Chen et al. Radiation damage measurements of undoped lead tungstate crystals for the CMS electromagnetic calorimeter at LHC

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination