CN107957247A - 一种手持式间隙、面差视觉测量装置及方法 - Google Patents

一种手持式间隙、面差视觉测量装置及方法 Download PDF

Info

Publication number
CN107957247A
CN107957247A CN201711404993.9A CN201711404993A CN107957247A CN 107957247 A CN107957247 A CN 107957247A CN 201711404993 A CN201711404993 A CN 201711404993A CN 107957247 A CN107957247 A CN 107957247A
Authority
CN
China
Prior art keywords
measurement
laser
face difference
image
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711404993.9A
Other languages
English (en)
Other versions
CN107957247B (zh
Inventor
冯伟昌
尹仕斌
郭磊
孙颖
郭寅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Easy Thinking (tianjin) Technology Co Ltd
Original Assignee
Easy Thinking (tianjin) Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Easy Thinking (tianjin) Technology Co Ltd filed Critical Easy Thinking (tianjin) Technology Co Ltd
Priority to CN201711404993.9A priority Critical patent/CN107957247B/zh
Publication of CN107957247A publication Critical patent/CN107957247A/zh
Application granted granted Critical
Publication of CN107957247B publication Critical patent/CN107957247B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种手持式间隙、面差视觉测量装置及方法,属于自动化测量技术领域,其特征在于,包括手柄(1)、显示装置(2)、测头(3)、测量键(6),所述测头(3)位于装置前端,与显示装置(2)电连接,所述显示装置与手柄(1)相连,所述测量键(6)安装于手柄(1)上,其特征在于,所述测头(3)内部安装有一对水平位置上共线的激光器(4)和一对水平位置上共线的相机(5),所述激光器(4)和相机(5)均向测头(3)中心位置具有一定的倾斜角,激光器(4)发射激光呈线型,相机(5)前端安装有滤光片,本发明利用结构光视觉测量原理,能够实现对工件间隙、面差的准确测量,具有操作简单、便携、测量快速的优点。

Description

一种手持式间隙、面差视觉测量装置及方法
技术领域
本发明涉及自动化测量装置领域,具体而言,涉及一种手持式间隙、面差视觉测量装置及方法。
背景技术
在工业现场,考虑到装配工艺、整体设计、美观等原因,在工件组装过程中存在着各种间隙、面差,例如:汽车车门与边框之间的间隙,适当的间隙能够有效减少车门异响、车门磨损、开关车门费力等问题,同时,整车加工、装配过程中,工件间隙、面差是不可或缺的工艺,因此,推及整个工业装配加工领域,工件的间隙、面差是普遍涉及的工艺技术,而间隙距离是否符合设计标准关系到整体的舒适性、协调性,也因此对间隙、面差的测量手段层出不穷。
传统的测量方法往往使用测量标尺,如:游标卡尺、千分尺、百分表等,测量耗时长,而且由于操作人员熟练程度的限制,读取的间隙、面差数据存在较大的误差,数据一致性差。
发明内容
为了解决上述问题,本发明结合结构光三维测量技术与双目立体视觉原理,对机械加工、装配过程中存在的间隙、面差进行智能化测量,保证测量精度的同时采用便携式设计,方便易操作。
本发明公开了一种手持式间隙、面差视觉测量装置及方法,本装置包括手柄、显示装置、测头、测量键,所述测头位于装置前端,与显示装置电连接,所述显示装置与手柄相连,所述测量键位于手柄上,其特征在于,所述测头内部安装有一对水平位置上共线的激光器和一对水平位置上共线的相机,所述激光器和相机均向测头中心位置倾斜,激光器发射激光呈线型,相机前端具有滤光片;
作为本发明的进一步改进,所述激光器和相机均向测头中心位置倾斜,倾斜角度值优选为30°,相比于垂直拍摄或单个相机与激光器拍摄的被测间隙激光条图像,采用左右两组激光器和相机,并设置一定的倾斜角度,能够获取更多间隙的细节信息,图像信息更加完整。
所述两部激光器的安装位置在水平方向上共线,发射的激光呈线型,即左、右位置的激光器所发射的激光条重合;相机前端安装有滤光片,使得相机只采集激光条投射在工件间隙的图像,即采集到的图像为一条激光条投影图像,排除背景干扰。
优选地,所述手柄依据成人手掌大小设计,还可以设置用于防滑的螺纹结构,其前端食指位置处设置测量键。
优选地,所述显示装置优选为工业触摸屏,具有较好的抗干扰性,适用于工业现场,通过触摸屏能够选择测量模式,并能够实时显示被测物的间隙或面差值,且易于观察。
所述测量键用于控制激光器与相机的开启,具体而言,按下测量键时,激光器与相机呈开启状态;松开后,呈关闭状态,节省电量。
本发明装置的工作距依据相机焦距以及激光器工作距而定,在特定的工作距范围内能够准确测量,距离工件间隙太远或太近会造成相机不聚焦或激光条强度不够等问题,对测量结果产生影响,为了更准确的在使用中衡量工作距,优选地,所述测头还安装有工作距支架,其长度即为标准工作距值,所述工作距支架数量优选为两个,异侧对称放置。
所述测头为可拆卸结构,便于维修更换。
为了便于携带,本装置具有可充电模块,充电后,使用中可以作为检测终端使用。
针对上述装置,提出了一种手持式间隙、面差视觉测量方法,其特征在于,包括以下步骤:
a. 打开总开关,系统初始化,选取测量模式,对准待测工件,按动测量键控制激光器与相机打开;
b. 左、右两部相机对应拍摄激光条投射在工件上的图像并传送给处理器;
c. 处理器对两幅激光条图像进行图像处理,提取激光条图像的光条中心线,经过相机单目及双目标定,获取像平面坐标系与世界坐标系之间的转换关系,进行图像立体匹配,将两幅光条中心线图像合成一副待处理图像,根据标定得到的转换关系,获取待处理图像的空间三维点云坐标;;
d. 处理器选取待处理图像中特征点,并根据其空间三维坐标信息,计算被测工件的间隙或面差值,并进行界面显示。
所述步骤a中测量模式具有可选择性,测量模式包括智能测量模式、间隙测量模式、面差测量模式、单一测量模式、组测量模式,系统默认进行智能测量模式,所述智能测量模式中,根据采集的结构光图像特征,判断计算被测工件的间隙值或面差值,若图像中同时存在间隙与面差特征,则计算二者并显示;此外,用户也可以根据实际需要在步骤a中预先选取间隙测量模式、面差测量模式、单一测量模式、组测量模式;
在所述间隙测量模式下,只计算被测工件间隙值并进行显示,同样的,在所述面差测量模式下,只计算被测工件面差值并进行显示;单一测量模式适用于用户对多个待测工件的同一位置进行检测,并将检测结果实时显示,同时软件可以生成相应报表,便于用户判断批量工件的优劣;组测量模式适用于用户对一个待测工件的多个位置进行检测,检测结果实时显示,此时软件生成的报表,能够协助用户判断该工件整体的质量。多种测量模式的选取,使得用户操作更为简单明了,工件测量更具针对性,检测结果更加直观化。
为了得到轮廓清晰的激光条中心线图像,所述步骤c中图像处理算法包括图像去噪、二值化、亚像素处理。
其中,为了提高左、右相机合成的准确性,所述步骤c中,经过标定,统一坐标系下两个相机测得的激光条图像中的点云数据重合,为了提高合成精度,匹配点可选取多个点,利用坐标信息进行两幅图像的立体匹配、合成。
所述步骤d中特征点依据待测工件的光条投影图像特征选取,即选取光条中心线的断开处最外沿的点,所谓间隙是指工件在水平方向上留有空隙,因此激光条投影到间隙上时在水平方向上出现断口,不连续现象,本发明测量方法中,特征点选取正是基于这样的断裂现象,寻找光条中心线断裂处最外沿处的点,进行特征点三维坐标分析,同理,所谓面差是指工件的竖直方向上高低不平,因此,激光条投射的图像在竖直方向上不连续,特征点在此处选取。
综上所述,本发明与现有技术中相比,具有的优点和积极效果是:
利用视觉检测技术,设计了一种便携式的智能测量装置,能够实现对工件间隙的测量,同时操作简单、精确度高。
附图说明
图1是本发明装置的结构图;
图2是本发明装置测头部分的内部结构图及激光器与相机的倾斜角度示意图;
图3是本发明方法流程图;
图4是单相机、激光器采集图像;
图5是本发明采集图像及匹配点合成的待测图;
图6是本发明立体视觉测量模型图。
图中:手柄1、显示装置2、测头3、激光器4、相机5、测量键6、工作距支架7。
具体实施方式
由激光器投出的光平面与被测工件表面相交形成特征光条,特征光条在空间位于光平面上,经透视投影形成的特征图像位于相机的图像平面上,因此,建立光平面与相机图像平面的对应关系,是建立线结构光视觉测量模型的有效途径。
本发明提出了一种手持式间隙、面差视觉测量装置及方法,如图1所示,本装置包括手柄1、显示装置2、测头3、测量键6,所述测头3位于装置前端,所述测头3位于装置前端,与显示装置2电连接,所述显示装置2与手柄1相连,所述测量键6位于手柄上,图2是本发明装置测头部分的内部结构图,测头3内部安装有一对水平位置上共线的激光器4和一对同样在水平位置上共线的相机5;所述激光器4和相机5均向测头3中心位置具有一定的倾斜角,图3是本发明装置激光器与相机的倾斜角度示意图,如图所示,激光器4和相机5均向测头3的中心位置具有的倾斜角为30°,相比于垂直拍摄或单个相机与激光器拍摄的被测激光条图像,如图4所示;采用左右两组激光器和相机,并设置一定的倾斜角度,能够获取更多的细节信息,图像信息更加完整,如图5本发明采集图像及匹配合成的待测图像示意图。
图3是本发明方法流程图,本发明手持式间隙、面差视觉测量方法,包括以下步骤:
a. 打开总开关,系统初始化,选取测量模式,对准待测工件,按动测量键控制激光器与相机打开;
b. 左、右两部相机对应拍摄激光条投射在工件上的图像并传送给处理器;
c. 处理器对两幅激光条图像进行图像处理,提取激光条图像的光条中心线,经过相机单目及双目标定,获取像平面坐标系与世界坐标系之间的转换关系,进行图像立体匹配,将两幅光条中心线图像合成一副待处理图像,根据标定得到的转换关系,获取待处理图像的空间三维点云坐标;;
d. 处理器选取待处理图像中特征点,并根据其空间三维坐标信息,计算被测工件的间隙或面差值,并进行界面显示。
所述步骤a中测量模式具有可选择性,测量模式包括智能测量模式、间隙测量模式、面差测量模式、单一测量模式、组测量模式,系统默认进行智能测量模式。
由于投射激光条的原始图像较粗、轮廓不够清晰,为了得到轮廓清晰的激光条中心线图像,所述步骤c中图像处理算法包括图像去噪、二值化、亚像素处理。
其中,为了提高左、右相机合成的准确性,所述步骤c中,经过标定,统一坐标系下两个相机测得的激光条图像中的点云数据重合,为了提高合成精度,匹配点可选取多个点,利用坐标信息进行两幅图像的立体匹配、合成。
所述步骤d中特征点依据待测工件的光条投影图像特征选取,即选取光条中心线的断开处最外沿的点。
本发明实施例可以具体描述为:用手握住装置手柄1,打开总开关通电,系统初始化后,根据实际测量需要,通过显示装置2选取以下测量模式中的一项,测量模式包括智能测量模式、间隙测量模式、面差测量模式、单一测量模式、组测量模式;若不进行选择则默认进行智能测量模式,
调节本装置位置,对准待测工件,配合工作距支架7衡量本装置到待测工件的最佳工作距,按下测量键6控制激光器4与相机5打开;激光器4发射的激光呈线型,且左、右两部激光器所发射的激光条重合,相机5前端安装有滤光片,因此相机只采集线型激光条投射在工件间隙上的图像,排除背景干扰。
所述手柄1依据成人手掌大小设计,还可以设置用于防滑的螺纹结构。
本实施例中,显示装置2为工业触摸屏,具有抗干扰性,适用于工业现场。
测量键6位于手柄前端食指位置处,用于控制激光器4与相机5的开启,具体而言,按下测量键6时,激光器4与相机5呈开启状态;松开后,呈关闭状态,节省电量。
本实施例中,工作距支架7设置为两个,上下位置放置,使测量过程更加稳固准确;测头3为可拆卸结构,便于维修更换;为了便于携带,本装置具有可充电模块,使用中可以作为检测终端使用。
进一步地,左、右两部相机对应拍摄工件激光条图像并传送给处理器;
进一步地,处理器对原始激光条图像进行图像处理,包括图像去噪、二值化、亚像素处理,提取轮廓清晰的激光条中心线图像;经过标定,统一坐标系下两个相机测得的激光条图像中的点云数据重合,并获取像平面坐标系与世界坐标系之间的转换关系,处理器从左、右相机获取的图像中对应选取匹配点,如图5所示,根据匹配点的坐标位置,进行左右两幅图像立体匹配、合成,将两幅图像合成一副待处理图像,根据标定得到的转换关系,获取待处理图像的空间三维点云坐标;
进一步地,处理器选取待处理图像断开处最外沿的特征点,并根据该点的空间三维坐标信息,计算被测工件的间隙或面差值,并进行界面显示。具体而言,如图6所示,分别作光条中心线的平行线与垂直线,通过计算特征点到平行线的距离,得出面差值;计算特征点到垂直线的距离,得出间隙值。
本发明结合结构光三维测量技术与双目立体视觉原理,设计了一种便携式的智能测量装置,能够实现对工件间隙的测量,同时操作简单、精确度高。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

1.一种手持式间隙、面差视觉测量装置,其特征在于,包括手柄(1)、显示装置(2)、测头(3)、测量键(6),所述测头(3)位于装置前端,与显示装置(2)电连接,所述显示装置与手柄(1)相连,所述测量键(6)安装于手柄(1)上,其特征在于,所述测头(3)内部安装有一对水平位置上共线的激光器(4)和一对水平位置上共线的相机(5),所述激光器(4)和相机(5)均向测头(3)中心位置倾斜,激光器(4)发射激光呈线型,相机(5)前端具有滤光片。
2.根据权利要求1所述的一种手持式间隙、面差视觉测量装置,其特征在于,所述手柄(1)设置螺纹结构。
3.根据权利要求1所述的一种手持式间隙、面差视觉测量装置,其特征在于,所述显示装置(2)为工业触摸屏。
4.根据权利要求1所述的一种手持式间隙、面差视觉测量装置,其特征在于,所述测头(3)还安装有工作距支架(7),所述工作距支架(7)有两个,异侧安装。
5.根据权利要求1所述的一种手持式间隙、面差视觉测量装置,其特征在于,所述测头(3)为可拆卸结构。
6.根据权利要求1所述的一种手持式间隙、面差视觉测量装置,其特征在于,所述激光器(4)和相机(5)均向测头(3)中心位置倾斜角度值为30°。
7.一种手持式间隙、面差视觉测量方法,其特征在于,包括以下步骤:
a. 打开总开关,系统初始化,选取测量模式,对准待测工件,按动测量键控制激光器与相机打开;
b. 左、右两部相机对应拍摄激光条投射在工件上的图像并传送给处理器;
c. 处理器对两幅激光条图像进行图像处理,提取激光条图像的光条中心线,经过相机单目及双目标定,获取像平面坐标系与世界坐标系之间的转换关系,进行图像立体匹配,将两幅光条中心线图像合成一副待处理图像,根据标定得到的转换关系,获取待处理图像的空间三维点云坐标;;
d. 处理器选取待处理图像中特征点,并根据其空间三维坐标信息,计算被测工件的间隙或面差值,并进行界面显示。
8.根据权利要求7所述的一种手持式间隙、面差视觉测量方法,其特征在于,所述步骤a中测量模式包括智能测量模式、间隙测量模式、面差测量模式、单一测量模式、组测量模式。
9.根据权利要求7所述的一种手持式间隙、面差视觉测量方法,其特征在于,为了得到轮廓清晰的激光条中心线图像,所述步骤c中图像处理算法包括图像去噪、二值化、亚像素处理。
10.根据权利要求7所述的一种手持式间隙、面差视觉测量方法,其特征在于,其特征在于,所述步骤d中特征点依据待测工件的光条投影图像特征选取,即选取光条中心线的断开处最外沿的点。
CN201711404993.9A 2017-12-22 2017-12-22 一种手持式间隙、面差视觉测量装置及方法 Active CN107957247B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711404993.9A CN107957247B (zh) 2017-12-22 2017-12-22 一种手持式间隙、面差视觉测量装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711404993.9A CN107957247B (zh) 2017-12-22 2017-12-22 一种手持式间隙、面差视觉测量装置及方法

Publications (2)

Publication Number Publication Date
CN107957247A true CN107957247A (zh) 2018-04-24
CN107957247B CN107957247B (zh) 2023-09-08

Family

ID=61956755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711404993.9A Active CN107957247B (zh) 2017-12-22 2017-12-22 一种手持式间隙、面差视觉测量装置及方法

Country Status (1)

Country Link
CN (1) CN107957247B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132171A (zh) * 2019-05-31 2019-08-16 长春巨达智能科技有限公司 一种手持激光轮廓测量装置
CN110160455A (zh) * 2019-06-24 2019-08-23 易思维(杭州)科技有限公司 间隙面差检测系统
CN110220481A (zh) * 2019-05-09 2019-09-10 易思维(杭州)科技有限公司 手持式视觉检测设备及其位姿检测方法
CN110298853A (zh) * 2019-07-04 2019-10-01 易思维(杭州)科技有限公司 面差视觉检测方法
CN110530278A (zh) * 2019-10-09 2019-12-03 易思维(杭州)科技有限公司 利用多线结构光测量间隙面差的方法
CN111895926A (zh) * 2020-06-08 2020-11-06 上海四宁信息科技有限公司 利用移动终端镜头进行汽车间隙与段差测量的方法
CN112595252A (zh) * 2020-12-22 2021-04-02 航天智造(上海)科技有限责任公司 一种手持式间隙与面差视觉测量设备
CN113739714A (zh) * 2021-08-19 2021-12-03 成都飞机工业(集团)有限责任公司 一种飞机蒙皮装配间隙双线激光测量装置及方法
CN114111576A (zh) * 2021-11-24 2022-03-01 易思维(杭州)科技有限公司 一种飞机蒙皮间隙面差检测方法及传感器
CN114577129A (zh) * 2020-11-30 2022-06-03 细美事有限公司 间隙测量装置及方法
CN115143944A (zh) * 2022-07-04 2022-10-04 山东大学 一种手持式全断面多炮孔空间测量装置及使用方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329163A (zh) * 2008-07-15 2008-12-24 合肥工业大学 基于双目的三维表面建模系统
JP2012047637A (ja) * 2010-08-27 2012-03-08 Kurabo Ind Ltd 非接触三次元計測装置及び非接触三次元計測方法
CN104084669A (zh) * 2014-06-20 2014-10-08 河北工业大学 一种基于解耦检测的环缝视觉检测方法及装置
CN105066909A (zh) * 2015-09-01 2015-11-18 华中科技大学 一种手持式多激光条纹快速三维测量方法
CN105081627A (zh) * 2015-08-13 2015-11-25 北人机器人系统(苏州)有限公司 基于双线激光测量系统的焊缝测量方法
CN105571502A (zh) * 2015-12-29 2016-05-11 上海交通大学 搅拌摩擦焊接中焊缝间隙的测量方法
CN105698699A (zh) * 2016-01-26 2016-06-22 大连理工大学 一种基于时间转轴约束的双目视觉测量方法
CN106123802A (zh) * 2016-06-13 2016-11-16 天津大学 一种自主流动式三维形貌测量方法
CN106123795A (zh) * 2016-08-24 2016-11-16 湖南科天健光电技术有限公司 基于结构光三维检测技术的盾尾间隙测量方法和装置
CN106403838A (zh) * 2015-07-31 2017-02-15 北京航天计量测试技术研究所 一种手持式线结构光视觉三维扫描仪的现场标定方法
CN207395672U (zh) * 2017-12-22 2018-05-22 易思维(天津)科技有限公司 一种手持式间隙、面差视觉测量装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329163A (zh) * 2008-07-15 2008-12-24 合肥工业大学 基于双目的三维表面建模系统
JP2012047637A (ja) * 2010-08-27 2012-03-08 Kurabo Ind Ltd 非接触三次元計測装置及び非接触三次元計測方法
CN104084669A (zh) * 2014-06-20 2014-10-08 河北工业大学 一种基于解耦检测的环缝视觉检测方法及装置
CN106403838A (zh) * 2015-07-31 2017-02-15 北京航天计量测试技术研究所 一种手持式线结构光视觉三维扫描仪的现场标定方法
CN105081627A (zh) * 2015-08-13 2015-11-25 北人机器人系统(苏州)有限公司 基于双线激光测量系统的焊缝测量方法
CN105066909A (zh) * 2015-09-01 2015-11-18 华中科技大学 一种手持式多激光条纹快速三维测量方法
CN105571502A (zh) * 2015-12-29 2016-05-11 上海交通大学 搅拌摩擦焊接中焊缝间隙的测量方法
CN105698699A (zh) * 2016-01-26 2016-06-22 大连理工大学 一种基于时间转轴约束的双目视觉测量方法
CN106123802A (zh) * 2016-06-13 2016-11-16 天津大学 一种自主流动式三维形貌测量方法
CN106123795A (zh) * 2016-08-24 2016-11-16 湖南科天健光电技术有限公司 基于结构光三维检测技术的盾尾间隙测量方法和装置
CN207395672U (zh) * 2017-12-22 2018-05-22 易思维(天津)科技有限公司 一种手持式间隙、面差视觉测量装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110220481A (zh) * 2019-05-09 2019-09-10 易思维(杭州)科技有限公司 手持式视觉检测设备及其位姿检测方法
CN110132171A (zh) * 2019-05-31 2019-08-16 长春巨达智能科技有限公司 一种手持激光轮廓测量装置
CN110160455A (zh) * 2019-06-24 2019-08-23 易思维(杭州)科技有限公司 间隙面差检测系统
CN110160455B (zh) * 2019-06-24 2020-10-27 易思维(杭州)科技有限公司 间隙面差检测系统
CN110298853B (zh) * 2019-07-04 2021-05-25 易思维(杭州)科技有限公司 面差视觉检测方法
CN110298853A (zh) * 2019-07-04 2019-10-01 易思维(杭州)科技有限公司 面差视觉检测方法
CN110530278A (zh) * 2019-10-09 2019-12-03 易思维(杭州)科技有限公司 利用多线结构光测量间隙面差的方法
CN110530278B (zh) * 2019-10-09 2021-02-02 易思维(杭州)科技有限公司 利用多线结构光测量间隙面差的方法
CN111895926A (zh) * 2020-06-08 2020-11-06 上海四宁信息科技有限公司 利用移动终端镜头进行汽车间隙与段差测量的方法
CN114577129A (zh) * 2020-11-30 2022-06-03 细美事有限公司 间隙测量装置及方法
CN112595252A (zh) * 2020-12-22 2021-04-02 航天智造(上海)科技有限责任公司 一种手持式间隙与面差视觉测量设备
CN113739714A (zh) * 2021-08-19 2021-12-03 成都飞机工业(集团)有限责任公司 一种飞机蒙皮装配间隙双线激光测量装置及方法
CN113739714B (zh) * 2021-08-19 2023-01-10 成都飞机工业(集团)有限责任公司 一种飞机蒙皮装配间隙双线激光测量装置及方法
CN114111576A (zh) * 2021-11-24 2022-03-01 易思维(杭州)科技有限公司 一种飞机蒙皮间隙面差检测方法及传感器
CN115143944A (zh) * 2022-07-04 2022-10-04 山东大学 一种手持式全断面多炮孔空间测量装置及使用方法
CN115143944B (zh) * 2022-07-04 2023-12-01 山东大学 一种手持式全断面多炮孔空间测量装置及使用方法

Also Published As

Publication number Publication date
CN107957247B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
CN107957247A (zh) 一种手持式间隙、面差视觉测量装置及方法
AU2017201545B2 (en) Noncontact measuring device
CN105606129B (zh) 一种辅助飞机惯导成品组件安装的测量校准方法
CN104567679A (zh) 一种涡轮叶片视觉检测的系统
CN103217100A (zh) 一种大型客车车厢的在线双目视觉测量装置
JP2007523389A5 (zh)
CN107843202A (zh) 一种与机器人配合使用的间隙、面差视觉测量装置及方法
CN207395672U (zh) 一种手持式间隙、面差视觉测量装置
CN105157603A (zh) 一种线激光传感器及其三维坐标数据的计算方法
CN107121061B (zh) 一种基于椭圆锥约束的制孔点法矢量求解方法
CN107084671A (zh) 一种基于三线结构光的凹球直径测量系统及测量方法
CN204514271U (zh) 一种涡轮叶片视觉检测的系统
CN110514142A (zh) 一种面形检测装置及面形检测方法
CN202066514U (zh) 一种大尺度坐标测量用复合靶标
CN102621147A (zh) 钢板表面色差缺陷检测装置
CN110118646A (zh) 一种基于合成莫尔条纹技术的眼镜参数检测装置和方法
CN109931882B (zh) 换热翅片关键参数检测系统及测量方法
CN205607423U (zh) 一种汽车仪表指针指示值的自动识别装置
CN105157562B (zh) 一种小空间复杂精密工件几何尺寸在线动态视觉测量系统及测量方法
CN208140026U (zh) 基于立体视觉原理的焊接螺柱检测系统
KR101924302B1 (ko) 투사 매핑 시스템 및 장치
CN106123808B (zh) 一种用于汽车后视镜镜面角度偏转测量的方法
CN104807403A (zh) 一种用于大型工件尺寸测量的主动光测棒
CN107782242A (zh) 基于图像处理技术的主轴轴向热伸长测量装置和方法
CN110360944B (zh) 一种基于三维点云的吊钩形变监测与显示方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Feng Weichang

Inventor after: Guo Lei

Inventor after: Sun Ying

Inventor before: Feng Weichang

Inventor before: Yin Shibin

Inventor before: Guo Lei

Inventor before: Sun Ying

Inventor before: Guo Yin

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant