CN107954508A - 一种介孔碳空心微球及其制备方法和应用 - Google Patents

一种介孔碳空心微球及其制备方法和应用 Download PDF

Info

Publication number
CN107954508A
CN107954508A CN201711233646.4A CN201711233646A CN107954508A CN 107954508 A CN107954508 A CN 107954508A CN 201711233646 A CN201711233646 A CN 201711233646A CN 107954508 A CN107954508 A CN 107954508A
Authority
CN
China
Prior art keywords
tiny balloon
mesoporous carbon
preparation
cts
carbon tiny
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711233646.4A
Other languages
English (en)
Other versions
CN107954508B (zh
Inventor
杨英
曾德红
李伟
张娜
邵帅
周标
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum Beijing
Original Assignee
China University of Petroleum Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing filed Critical China University of Petroleum Beijing
Priority to CN201711233646.4A priority Critical patent/CN107954508B/zh
Publication of CN107954508A publication Critical patent/CN107954508A/zh
Application granted granted Critical
Publication of CN107954508B publication Critical patent/CN107954508B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/025Applications of microcapsules not provided for in other subclasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明提供了一种介孔碳空心微球及其制备方法和应用。该制备方法包括:将壳聚糖和配体分散于溶剂中,形成混合液;在20℃‑100℃下,搅拌2h‑48h,固液分离后,得到CTS‑i;将CTS‑i与含硅模板分散于碱性醇溶剂中,搅拌2h‑36h,固液分离后,得到Si‑T@CTS‑i;在惰性气氛中,将Si‑T@CTS‑i以2℃/min‑20℃/min的速率升温至800℃‑1000℃并恒温保持1h‑12h;在20℃‑80℃下,碱溶液处理6h‑36h,得到介孔碳空心微球。本发明还提供了上述制备方法得到的介孔碳空心微球,该介孔碳空心微球可以用于降解污水中的有机物。

Description

一种介孔碳空心微球及其制备方法和应用
技术领域
本发明涉及一种空心微球的制备方法,尤其涉及一种以壳聚糖为碳源的介孔碳空心微球的制备方法,属于碳纳米材料制备技术领域。
背景技术
碳空心微球具有化学稳定性高、(水)热稳定性好、密度低与表面积/体积比大等优点,被广泛用于吸附、分离、催化剂载体、超级电容器等诸多领域。其中,将金属活性组分引入碳空心微球衍生的yolk-shell结构,是一类呈现为内核@空隙@外壳构型的纳米材料。由于其独特的结构、内核与外壳的功能化,以及其可调控的物理化学性能,从而赋予了这类材料在微反应器、药物/基因传输、生物传感器、锂电池等方面广泛的应用前景。
目前,碳空心微球主要通过硬模板法合成,即采用纳米浇筑的方法,通过预先合成SiO2、CaCO3、聚苯乙烯(PS)小球等硬模板,然后包覆碳源,再经碳化转化、模板移除可获得各种碳空心结构。显然,硬模板法在碳空心结构的形貌控制方面具有独特的优势。然而,目前使用的碳源主要是酚醛树脂、聚苯胺、聚丙烯腈、苯乙烯、乙腈、苯、乙烯等有毒有害物质,不符合绿色化学与环境保护的要求(An-Hui Lu,Tao Sun,Wen-Cui Li,Qiang Sun,Fei Han,Dong-Hai Liu,and Yue Guo,Synthesis of Discrete and Dispersible Hollow CarbonNanospheres with High Uniformity by Using Confined Nanospace Pyrolysis,Angew.Chem.2011,123,11969-11972)(Su,F.;Zhao,X.S.;Wang,Y.;Wang,L.;Lee,J.Y.Hollow carbon spheres with a controllable shellstructure.J.Mater.Chem.2006,16,4413-4419.)。
近年来,以葡萄糖、蔗糖、果糖、淀粉等生物质为碳源制备碳空心微球的研究引起了专家学者的广泛关注(Chuanlong Han,Shiping Wang,Jing Wang,Mingming Li,JiangDeng,Haoran Li,and Yong Wang,Controlled synthesis of sustainable N-dopedhollow core-mesoporous shell carbonaceous nanospheres from biomass,NanoResearch 2014,7:1809-1819)。但以粮食为原料具有“与农争地”和“与人争食”的弊端,无法实现可持续发展。而且上述碳源多为单体,需加入引发剂或其它化学试剂使其原位聚合。
另一方面,目前硬模板法制备的碳空心微球的壳层多为微孔结构,在液固相反应中不利于物质传递。显然,开发介孔碳空心微球对于物料传输、电子传递及能量存储等具有重要的理论与现实意义。然而,目前的介孔碳空心微球的制备还依赖于使用超分子表面活性剂来形成介孔结构。例如,Li等人以二氧化硅为模板,P123为结构导向剂,多巴胺为碳源经聚合、碳化、除硅等得到空心介孔碳微球(Yihui Dai,Hao Jiang,Yanjie Hu,Yao Fu,andChunzhong LiDai Y H,Jiang H,Hu Y J,Fu Y,Li C Z.,Controlled Synthesis ofUltrathin Hollow Mesoporous Carbon Nanospheres for SupercapacitorApplications,Ind.Eng.Chem.Res.,2014,53,3125-3130)。
以上可以看出,在不使用超分子表面活性剂的条件下,实现介孔碳空心微球的经济合成还面临巨大挑战。
壳聚糖(chitosan),一种高分子聚合物,由自然界广泛存在的几丁质(chitin)经脱乙酰作用得到,多来源于水产加工厂废弃的虾、蟹等甲壳类动物,是自然界中含量仅次于纤维素的第二大类多糖。将生物质壳聚糖作为碳源制备氮掺杂碳材料及由其衍生的金属/氮掺杂碳材料的研究已见诸报道。这种直接碳化壳聚糖或金属-壳聚糖聚合物得到的大块氮掺杂碳材料或金属/氮掺杂碳材料通常比表面积小(SBET<10m2·g-1)、孔隙率低(AnnaKucinska,Aleksandra Cyganiuk,Jerzy P.LukaszewiczA.Kucinska,A.Cyganiuk andJ.P.Lukaszewicz,A microporous and high surface area active carbon obtained bythe heat-treatment of chitosan,Carbon,2012,50,3098-3101)。最近,相关研究通过固态转化壳聚糖-氧化硅复合物,获得了表面积大、孔隙率丰富的多孔碳结构,然而,这类多孔碳缺乏均匀的形貌结构(Andrzej Olejniczak,Maria Lezanska,Jerzy Wloch,AnnaKucinska and Jerzy P.Lukaszewicz,Novel nitrogen-containing mesoporous carbonsprepared from chitosan,J.Mater.Chem.A,2013,1:8961-8967)。
从以上可以看出,采用纳米浇筑的方法,将壳聚糖包覆于硬模板表面,经碳化与模板移除后将有望获得兼具均匀形貌与高孔隙率的空心碳纳米结构。但高聚物壳聚糖与硬模板之间的相互作用较弱,不利于壳聚糖的包覆。
因此,以壳聚糖为碳源,在不使用超分子表面活性剂的条件下实现介孔碳空心微球的经济、绿色合成困难重重。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种以壳聚糖为碳源,不需要超分子模板剂的介孔碳空心微球的制备方法。
为了实现上述技术目的,本发明提供了一种介孔碳空心微球的制备方法,该制备方法包括以下步骤:
步骤一:将质量比为0.2-1:1的壳聚糖和配体分散于溶剂中,形成混合液;其中,壳聚糖与溶剂的质量比为0.005-0.015:1,配体包括5-氯甲基-8-羟基喹啉、水杨醛、氯乙酸、二羟乙酸、乙醛酸中的一种或几种的组合;
步骤二:在20℃-100℃下,搅拌2h-48h,固液分离后,得到配体修饰的壳聚糖CTS-i;
步骤三:将配体修饰的壳聚糖CTS-i与含硅模板以0.5-2:1的质量比分散于碱性醇溶剂中,搅拌2h-36h,固液分离后,得到Si-T@CTS-i;其中,配体修饰的壳聚糖CTS-i与碱性醇溶剂的质量比为0.004-0.007:1;
步骤四:在惰性气氛中,将Si-T@CTS-i以2℃/min-20℃/min的速率升温至800℃-1000℃并恒温保持1h-12h;
步骤五:在20℃-80℃下,碱溶液处理6h-36h,得到介孔碳空心微球;其中,配体修饰的壳聚糖CTS-i与碱溶液的质量比为0.01-1:1。
根据本发明的具体实施方式,通过模板法将CTS-i与含硅模板分散于碱性醇溶剂中,得到core-shell结构的前体(记为Si-T@CTS-i)。
在上述制备方法中,优选地,采用的含硅模板为SiO2、Au@SiO2微球、Pt@SiO2微球、Rh@SiO2微球或SiO2/Ru微球;当采用Au@SiO2(以Au为核、SiO2为壳的核壳结构)微球、Pt@SiO2微球、Rh@SiO2微球或SiO2/Ru(Ru负载在二氧化硅微球表面)微球作为含硅模板时,可以制备得到含有Au、Pt、Rh或Ru的介孔碳空心微球。
在上述制备方法中,优选地,采用的溶剂包括甲醇、乙醇、丙二醇和乙二醇中的一种或几种的组合。
在上述制备方法中,优选地,采用的碱性醇溶剂为含NH3·H2O或NaOH的甲醇溶剂、含NH3·H2O或NaOH的乙醇溶剂(含NH3·H2O的甲醇溶剂、含NaOH的甲醇溶剂、含NH3·H2O的乙醇溶剂或含NaOH的乙醇溶剂)。
在上述制备方法中,优选地,采用的碱溶液的浓度为1mol/L-6mol/L;更优选地,采用的碱溶液包括NaOH溶液、KOH溶液、NaHCO3溶液、Na2CO3溶液和NH4HF4溶液中的一种或几种的组合。
在上述制备方法中,优选地,步骤二中,搅拌的温度为75℃,搅拌的时间为36h。
在上述制备方法中,优选地,在步骤三中,配体修饰的壳聚糖CTS-i与含硅模板的质量比为0.5:1。
本发明还提供了一种介孔碳空心微球,该介孔碳空心微球是通过上述介孔碳空心微球的制备方法制备得到的;同时,当采用Au@SiO2微球、Pt@SiO2微球、Rh@SiO2微球或SiO2/Ru微球作为含硅模板时,可以制备得到含有Au、Pt、Rh或Ru的介孔碳空心微球。
上述介孔碳空心微球的氮掺杂量为3.0%-5.0%,孔径为3.5nm-5nm;其中,含有Au或Ru的介孔碳空心微球的比表面积为50m2/g-300m2/g,孔径为4.0-5.0nm。
本发明的上述介孔碳空心微球可以用于降解污水中的有机物,尤其用于降解污水中的4-硝基酚,尤其,含有Au、Pt、Rh或Ru的介孔碳空心微球降解污水中4-硝基酚的能力更强。
本发明的介孔碳空心微球的制备方法,以生物质壳聚糖为碳源,经配体修饰后与含硅模板(Si-T)混合,通过原位模板法将配体修饰后的壳聚糖CTS-i包覆在Si-T表面,再经高温碳化和碱处理得到介孔碳空心微球(MCHS)。
本发明的介孔碳空心微球的制备方法,不使用超分子模板剂就可形成介孔,无需额外氮源便可实现氮掺杂,且能同时控制介孔碳空心微球的形貌。
本发明的介孔碳空心微球的制备方法制备得到的介孔碳空心微球可用于污水降解过程,可以将污水中的4-硝基酚转化为4-氨基酚,并且表现出较高的催化活性,其比速率常数为33.25s-1·g-1,同时该催化剂稳定性高,能被重复使用19次而活性没有明显下降。
附图说明
图1为实施例1的介孔碳空心微球的合成示意图。
图2a为实施例1的SiO2@CTS-HQ前体的TEM图像。
图2b为实施例1的介孔碳空心微球的TEM图像。
图2c为实施例1的介孔碳空心微球中C元素的面分布图。
图2d为实施例1的介孔碳空心微球中N元素的面分布图。
图2e为实施例1的介孔碳空心微球中O元素的面分布图。
图3为实施例1的SiO2@CTS-HQ前体(曲线a)和介孔碳空心微球(曲线b)的红外光谱图(IR)。
图4a实施例1的介孔碳空心微球的C1s X-射线光电子能谱图(XPS)。
图4b实施例1的介孔碳空心微球的N1s X-射线光电子能谱图(XPS)。
图4c为实施例1的介孔碳空心微球的O1s X-射线光电子能谱图(XPS)。
图5a实施例1的介孔碳空心微球的N2吸附/脱附等温线。
图5b为实施例1的介孔碳空心微球的孔径分布曲线。
图6为实施例3的介孔碳空心微球衍生物Au@void@C的合成示意图。
图7a为实施例3的Au@void@C的TEM图像。
图7b为实施例3中的Au颗粒的HRTEM图像。
图7c为实施例3中的Au颗粒的HRTEM图像。
图8a为实施例3的介孔碳空心微球Au@void@C的N2吸附/脱附等温线。
图8b为实施例3的介孔碳空心微球Au@void@C的孔径分布曲线。
图9为实施例3的0.02mg介孔碳空心微球Au@void@C催化4-硝基酚还原的吸光度随时间变化的关系图。
图10为实施例3的介孔碳空心微球Au@void@C与中间体催化剂催化4-硝基酚还原的准一级动力学速率常数拟合曲线。
图11为实施例3的介孔碳空心微球Au@void@C的循环使用结果图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供了一种介孔碳空心微球的制备方法,其包括以下步骤:
配体5-氯甲基-8-羟基喹啉(HQ)的制备:
将5.84g 8-羟基喹啉加入到含有0.6g ZnCl2·6H2O、6.4mL的HCHO(37%)和50mL浓盐酸的混合体系中,室温下搅拌24h后静置48h,过滤并用丙酮洗涤,干燥得到黄绿色粉末配体5-氯甲基-8-羟基喹啉(HQ)。
8-羟基喹啉修饰的壳聚糖的制备:
称取0.9g壳聚糖加入到50mL(20wt%)醋酸溶液中室温下搅拌1h,之后加入4.6g配体HQ和60mL(36wt%)三乙胺,将温度升至75℃后继续搅拌36h,过滤并用乙醇和水洗涤,干燥得到亮黄色粉末,即为5-氯甲基-8-羟基喹啉修饰的壳聚糖(CTS-HQ);
介孔碳空心微球的制备:
介孔碳空心微球的合成示意图如图1所示,首先是制备SiO2微球胶体分散液,再加入碳源CTS-HQ原位将其包覆在SiO2表面,最后经高温碳化和碱处理得到介孔碳空心微球。具体如下:
将3mL氨水加入到40mL乙醇和水的混合液(乙醇:水=7:1)中搅拌30min,随后快速加入1.5mL正硅酸四乙酯,室温下搅拌24h后加入0.2g CTS-HQ继续搅拌24h,离心并用乙醇洗涤数次,60℃干燥得到前体SiO2@CTS-HQ;
将SiO2@CTS-HQ置于氮气气氛中,以5℃/min的速率升温至800℃,在此温度下保持2h,然后用6mol/L NaOH溶液在80℃处理6h,得到介孔碳空心微球。
将实施例1得到的SiO2@CTS-HQ前体、介孔碳空心微球用TEM、IR、XPS、N2吸附/脱附等技术进行表征。
SiO2@CTS-HQ及介孔碳空心微球的透射电镜图如图2a、图2b所示,碳化除硅后得到的介孔碳空心微球的C、N、O元素的面分布图分别如图2c、图2d和图2e所示,通过图2a和图2b可知SiO2@CTS-HQ前体及介孔碳空心微球的形貌均匀,尺寸均一且壳层较薄,通过元素面分布图可知C、N、O元素在碳壳上分布均匀。
SiO2@CTS-HQ前体及碳介孔碳空心微球的红外光谱图(IR)如图3(曲线a为SiO2@CTS-HQ前体,曲线b为介孔碳空心微球)所示,从图3可以看出,SiO2@CTS-HQ前体存在很多吸收峰,其中473cm-1、805cm-1和1103cm-1处的吸收峰分别归属于Si-O-Si的弯曲振动和伸缩振动,954cm-1处的吸收峰归属于Si-OH的弯曲振动,2924cm-1和2852cm-1归属于-CH2的伸缩振动,而经高温碳化和碱处理后,吸收峰消失,表明前体已碳化成碳且硅模板已除尽。
介孔碳空心微球的C1s、N1s、O1s X-射线光电子能谱图分别如图4a、图4b和图4c所示,从图4a可以看出,在介孔碳空心微球中存在四种类型的碳原子,分别是:C=C/C-C(284.62eV)、C-OH(285.13eV)、C-N(286.01eV)和C=O(288.64eV),其含量分别为:33.51at%、26.82at%、17.98at%和21.69at%;从图4b可以看出,在介孔碳空心微球中存在三种类型的氮原子,分别是:石墨化氮(401.30eV)、吡咯氮(400.54eV)和吡啶氮(398.41eV),其含量分别为:36.34at%、34.63at%和29.03at%;从图4c可以看出,在介孔碳空心微球中存在三种类型的氧原子,分别是:C=O(533.20eV)、C-O(532.05eV)和O-H(530.93eV),其含量分别为:38.80at%、49.74at%和11.46at%。
介孔碳空心微球的N2吸附/脱附等温线如图5a所示,孔径分布曲线如图5b所示,从图5a可以看出,N2吸附/脱附等温线为IV型曲线,表明碳空心微球具有介孔结构;从图5b可以看出,碳空心微球的介孔尺寸为3.88nm。
实施例2
本实施例提供了介孔碳空心微球的制备方法,其包括以下步骤:
水杨醛修饰的壳聚糖(CTS-SA)的制备:
将0.4g壳聚糖分散于50mL去离子水中并搅拌2h,再将10mL含有0.34mL水杨醛的乙醇混合液加入到上述壳聚糖分散液中,在80℃水浴下回流2-3h,过滤干燥得到水杨醛修饰的壳聚糖(CTS-SA);
介孔碳空心微球的制备:
将3mL氨水加入到40mL乙醇和水的混合液(乙醇:水=7:1)中搅拌30min,随后快速加入1.5mL正硅酸四乙酯,室温下搅拌24h后加入0.2g的CTS-SA继续搅拌24h,离心并用乙醇洗涤数次,60℃干燥得到前体SiO2@CTS-SA;将SiO2@CTS-SA置于氮气气氛中,以5℃/min的速率升温至800℃,在此温度下保持2h,然后用6mol/L的NaOH溶液在80℃处理6h,得到介孔碳空心微球。
实施例3
本实施例提供了一种介孔碳空心微球Au@void@C的制备方法,其包括以下步骤:
2nm的Au颗粒的制备:
量取5mL的10mmol/L的氯金酸溶液并用去离子水稀释至50mL,加入555.0mg聚乙烯吡咯烷酮(PVP)后在0℃搅拌30min,之后快速加入5mL的0.1mol/L现配的硼氢化钠溶液,溶液立刻由无色变为棕红色,得到2nm金溶胶置于冰箱中保存备用。
5nm的Au颗粒的制备:
量取5mL的10mmol/L的氯金酸溶液并用去离子水稀释至35mL,加入555.0mg的PVP后在0℃搅拌30min,再加入10mL由上步制备得到的2nm金晶种溶胶,再在0℃搅拌30min,然后缓慢滴加15mL 5mmol/L的抗坏血酸溶液,继续在0℃搅拌2h,得到5nm金溶胶置于冰箱中保存备用。
介孔碳空心微球Au@void@C的制备:
配体5-氯甲基-8-羟基喹啉(HQ)的制备:
将5.84g 8-羟基喹啉加入到含有0.6g ZnCl2·6H2O、6.4mL的HCHO(37%)和50mL浓盐酸的混合体系中,室温下搅拌24h后静置48h,过滤并用丙酮洗涤,干燥得到黄绿色粉末配体5-氯甲基-8-羟基喹啉(HQ);
8-羟基喹啉修饰的壳聚糖的制备:
称取0.9g壳聚糖加入到50mL(20wt%)醋酸溶液中室温下搅拌1h,之后加入4.6g配体HQ和60mL(36wt%)三乙胺,将温度升至75℃后继续搅拌36h,过滤并用乙醇和水洗涤,干燥得到亮黄色粉末,即为5-氯甲基-8-羟基喹啉修饰的壳聚糖(CTS-HQ);
介孔碳空心微球Au@void@C的制备:
量取5mL的10mmol/L的氯金酸溶液并用去离子水稀释至50mL,加入555.0mg聚乙烯吡咯烷酮(PVP)后在0℃搅拌30min,之后快速加入5mL的0.1mol/L现配的硼氢化钠溶液,溶液立刻由无色变为棕红色,得到2nm金溶胶置于冰箱中保存备用。量取5mL的10mmol/L的氯金酸溶液并用去离子水稀释至35mL,加入555.0mg的PVP后在0℃搅拌30min,再加入10mL由上步制备得到的2nm金晶种溶胶,再在0℃搅拌30min,然后缓慢滴加15mL 5mmol/L的抗坏血酸溶液,继续在0℃搅拌2h,得到5nm金溶胶置于冰箱中保存备用;量取6mL上一步制备的5nm的Au溶胶于含有18.9mL乙醇和0.84mL氨水的混合溶液中,室温下搅拌5min后逐滴加入含有1.19mL正硅酸四乙酯和12.80mL乙醇的混合溶液,室温下搅拌12h后加入0.16g的CTS-HQ继续搅拌24h,离心并用乙醇洗涤数次,60℃干燥得到前体Au@SiO2@CTS-HQ;
将Au@SiO2@CTS-HQ置于氮气气氛中,以5℃/min的速率升温至800℃,在此温度下保持2h,然后用6mol/L的NaOH溶液在80℃处理6h,得到介孔碳空心微球Au@void@C。
将本实施例得到的介孔碳空心微球Au@void@C用TEM、N2吸附/脱附等技术进行表征。
介孔碳空心微球Au@void@C的合成示意图如图6所示,首先是制备硅模板Au@SiO2胶体分散液,再加入碳源CTS-HQ原位将其包覆在Au@SiO2表面,最后经高温碳化和碱处理得到介孔碳空心微球Au@void@C。
介孔碳空心微球Au@void@C的透射电镜图如图7a所示,Au颗粒的HRTEM图像如图7b和图7c所示,通过图7a可知介孔碳空心微球Au@void@C的形貌均匀,尺寸均一壳层较薄,且单个碳空心微球封装单个Au颗粒,由图7b和图7c可知晶面间距d=0.235nm和d=0.205nm分别归属于Au颗粒的(111)和(200)晶面。
介孔碳空心微球Au@void@C的N2吸附/脱附等温线如图8a所示,孔径分布曲线如图8b所示,从图8a可以看出,N2吸附/脱附等温线为IV型曲线,表明碳空心微球Au@void@C具有介孔结构;从图8b可以看出,Au@void@C的介孔尺寸为4.18nm。
实施例4
本实施例提供了一种介孔碳空心微球Ru@void@C的制备方法,其包括以下步骤:
Ru/SiO2微球的制备:
量取0.7mL NH3·H2O溶于30mL乙醇和2.5mL去离子水中,室温下搅拌1h后加入1.9mL正硅酸四乙酯再搅拌4h,然后逐滴加入2mL的5mg/mL三氯化钌水溶液,继续搅拌2h后加入5mL的0.1mol/L的硼氢化钠溶液,再搅拌0.5h,离心并用乙醇洗两次,80℃干燥得到Ru/SiO2微球。
介孔碳空心微球Ru@void@C的制备:
将0.25g的Ru/SiO2微球加入到150mL乙醇与100mL去离子水的混合溶液中,室温下搅拌使其分散均匀后加入2.0mL的NH3·H2O和1.5mL正硅酸四乙酯,继续搅拌6h后加入0.2g的CTS-HQ再搅拌24h,离心并用乙醇和水洗涤数次,60℃干燥得到前体Ru/SiO2@SiO2@CTS-HQ;
将Ru/SiO2@SiO2@CTS-HQ置于氮气气氛中,以5℃/min的速率升温至800℃,在此温度下保持2h,然后用6mol/L额NaOH溶液在80℃处理6h,得到介孔碳空心微球衍生物Ru@void@C。
实施例5
本实施例提供了实施例3制备得到的介孔碳空心微球Au@void@C在污水降解中的应用,包括以下步骤:
(1)污水中4-硝基酚的还原反应:
称取0.02mg Au@void@C催化剂于1×1cm石英比色皿中,加入2.5mL的0.01mol/L硼氢化钠溶液和25μL的0.01mol/L 4-硝基酚溶液,超声数秒得到均匀分散的固液混合物,在此条件下,反应20min,4-硝基酚的转化率达到90.0%以上。
采用754PC紫外分光光度计(单光束,上海菁华有限公司生产)监测4-硝基酚的反应进程,扫描速度为中速,扫描范围为200-500nm。将石英比色皿迅速放入样品槽中,记录200-500nm波长范围内吸光度随时间的变化情况;当吸光度不再变化时,停止采集数据。
0.02mg的Au@void@C催化剂催化4-硝基酚还原的吸光度随时间的变化情况如图9所示,图9表明,随着反应的进行,位于400nm处的吸收逐渐减弱,而位于296nm处的吸收逐渐增强,说明反应物4-硝基酚不断消耗,而产物4-氨基酚不断生成,并且产物含量不断积累;将反应混合物离心,经多次洗涤之后,再加入2.5mL浓度为0.01mol/L的硼氢化钠溶液和25μL的0.01mol/L的4-硝基酚溶液,超声混合均匀,进行下一次反应。Au@void@C催化剂的循环使用结果图如图11所示,图11表明,Au@void@C催化剂重复使用19次时,4-硝基酚的转化率仍高达85%。
(2)4-硝基酚还原性能的评价:
根据文献可知,4-硝基酚还原反应符合准一级反应(Ying Yang,Wen Zhang,YingZhang,Anmin Zheng,Hui Sun,Xinsong Li,Suyan Liu,Pengfang Zhang,Xin Zhang.Asingle Au nanoparticle anchored inside the porous shell of periodicmesoporous organosilica hollow spheres,Nano Reasearch,2015,8(10),3404-3411),所以我们根据-ln(Ct/C0)vs.kt的线性关系求算准一级反应的动力学速率常数。
介孔碳空心微球Au@void@C与中间体催化剂催化4-硝基酚还原的准一级动力学速率常数拟合曲线如图10所示,通过计算得知Au-2、Au-5、Au@SiO2@CTS-HQ、Au@SiO2@C和Au@void@C的比速率常数分别为0.63、0.24、0.04、0.72、33.25s-1·g-1,因此可以看出介孔碳空心微球衍生物Au@void@C应用于污水降解有较好的催化作用。
以上实施例说明,本发明的介孔碳空心微球的制备方法不使用超分子模板剂就可形成介孔,无需额外氮源便可实现氮掺杂,且能同时控制介孔碳空心微球的形貌,制备得到的介孔碳空心微球可用于污水降解过程。

Claims (10)

1.一种介孔碳空心微球的制备方法,其特征在于,该制备方法包括以下步骤:
步骤一:将质量比为0.2-1:1的壳聚糖和配体分散于溶剂中,形成混合液;其中,所述壳聚糖与所述溶剂的质量比为0.005-0.015:1,所述配体包括5-氯甲基-8-羟基喹啉、水杨醛、氯乙酸、二羟乙酸、乙醛酸中的一种或几种的组合;
步骤二:在20℃-100℃下,搅拌2h-48h,固液分离后,得到配体修饰的壳聚糖CTS-i;
步骤三:将所述配体修饰的壳聚糖CTS-i与含硅模板以0.5-2:1的质量比分散于碱性醇溶剂中,搅拌2h-36h,固液分离后,得到Si-T@CTS-i;其中,所述配体修饰的壳聚糖CTS-i与所述碱性醇溶剂的质量比为0.004-0.007:1;
步骤四:在惰性气氛中,将所述Si-T@CTS-i以2℃/min-20℃/min的速率升温至800℃-1000℃并恒温保持1h-12h;
步骤五:在20℃-80℃下,碱溶液处理6h-36h,得到所述介孔碳空心微球;其中,所述配体修饰的壳聚糖CTS-i与所述碱溶液的质量比为0.01-1:1。
2.根据权利要求1所述的制备方法,其特征在于,在步骤三中,所述含硅模板为SiO2、Au@SiO2微球、Pt@SiO2微球、Rh@SiO2微球或SiO2/Ru微球。
3.根据权利要求1所述的制备方法,其特征在于,在步骤一中,所述溶剂包括甲醇、乙醇、丙二醇和乙二醇中的一种或几种的组合。
4.根据权利要求1所述的制备方法,其特征在于,在步骤三中,所述碱性醇溶剂为含NH3·H2O或NaOH的甲醇溶剂、含NH3·H2O或NaOH的乙醇溶剂。
5.根据权利要求1所述的制备方法,其特征在于,在步骤五中,所述碱溶液的浓度为1mol/L-6mol/L;优选地,所述碱溶液包括NaOH溶液、KOH溶液、NaHCO3溶液、Na2CO3溶液和NH4HF4溶液中的一种或几种的组合。
6.根据权利要求1所述的制备方法,其特征在于,在所述步骤二中,搅拌的温度为75℃,搅拌的时间为36h。
7.根据权利要求1所述的制备方法,其特征在于,在步骤三中,所述配体修饰的壳聚糖CTS-i与含硅模板的质量比为0.5:1。
8.一种介孔碳空心微球,其特征在于,该介孔碳空心微球是通过权利要求1-7任一项所述的介孔碳空心微球的制备方法制备得到的。
9.权利要求8所述的介孔碳空心微球,其特征在于,该介孔碳空心微球的氮掺杂量为3.0%-5.0%,孔径为3.5nm-5nm。
10.权利要求8或9所述的介孔碳空心微球的应用,其特征在于,该介孔碳空心微球用于降解污水中的有机物。
CN201711233646.4A 2017-11-30 2017-11-30 一种介孔碳空心微球及其制备方法和应用 Active CN107954508B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711233646.4A CN107954508B (zh) 2017-11-30 2017-11-30 一种介孔碳空心微球及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711233646.4A CN107954508B (zh) 2017-11-30 2017-11-30 一种介孔碳空心微球及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107954508A true CN107954508A (zh) 2018-04-24
CN107954508B CN107954508B (zh) 2020-03-06

Family

ID=61962617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711233646.4A Active CN107954508B (zh) 2017-11-30 2017-11-30 一种介孔碳空心微球及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107954508B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727965A (zh) * 2020-06-11 2020-10-02 南京大学 一种壳聚糖包封的介孔碳纳米除草剂的制备及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024587A2 (de) * 2001-09-20 2003-03-27 Hemoteq Gmbh Verfahren zur aufreinigung von vollblut
CN101601986A (zh) * 2009-07-09 2009-12-16 南京大学 一种壳聚糖-二氧化硅复合空心微球的制法及应用
CN103193223A (zh) * 2013-04-02 2013-07-10 中国矿业大学 具有空心结构石墨化碳球的可控合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024587A2 (de) * 2001-09-20 2003-03-27 Hemoteq Gmbh Verfahren zur aufreinigung von vollblut
CN101601986A (zh) * 2009-07-09 2009-12-16 南京大学 一种壳聚糖-二氧化硅复合空心微球的制法及应用
CN103193223A (zh) * 2013-04-02 2013-07-10 中国矿业大学 具有空心结构石墨化碳球的可控合成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727965A (zh) * 2020-06-11 2020-10-02 南京大学 一种壳聚糖包封的介孔碳纳米除草剂的制备及应用
CN111727965B (zh) * 2020-06-11 2022-02-08 南京大学 一种壳聚糖包封的介孔碳纳米除草剂的制备及应用

Also Published As

Publication number Publication date
CN107954508B (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
Li et al. Hollow carbon spheres, synthesis and applications–a review
Wang et al. Polymer-derived heteroatom-doped porous carbon materials
Lu et al. Chemical synthesis of carbon materials with intriguing nanostructure and morphology
Inonu et al. An emerging family of hybrid nanomaterials: metal–organic framework/aerogel composites
Malgras et al. Fabrication of nanoporous carbon materials with hard-and soft-templating approaches: A review
Lee et al. Straightforward synthesis of hierarchically porous nitrogen-doped carbon via pyrolysis of chitosan/urea/KOH mixtures and its application as a support for formic acid dehydrogenation catalysts
Liu et al. Controllable synthesis of functional hollow carbon nanostructures with dopamine as precursor for supercapacitors
Zhang et al. Amine-functionalized GO as an active and reusable acid–base bifunctional catalyst for one-pot cascade reactions
Bekiroğullari et al. Highly efficient Co-B catalysts with Chlorella Vulgaris microalgal strain modified using hydrochloric acid as a new support material for hydrogen production from methanolysis of sodium borohydride
Nassar et al. A review on the current research on graphene-based aerogels and their applications
Cheng et al. Preparation and characterization of monodisperse, micrometer-sized, hierarchically porous carbon spheres as catalyst support
CN103043644A (zh) 粒状化碳介孔结构体的制备方法
WO2005113431A2 (en) Mesoporous carbon films and methods of preparation thereof
CN104474791B (zh) 有催化功能的微晶竹炭蜂窝陶质空气过滤板及其制备方法
CN103936987B (zh) 一种碳纳米管复合材料及其制备方法
Mai et al. Catalytic nanofiber composite membrane by combining electrospinning precursor seeding and flowing synthesis for immobilizing ZIF-8 derived Ag nanoparticles
Suzuki et al. Hybridization of photoactive titania nanoparticles with mesoporous silica nanoparticles and investigation of their photocatalytic activity
CN110405200A (zh) 一种蛋黄-蛋壳结构贵金属@空心碳纳米球复合材料及其制备方法和应用
Rey-Raap et al. Carbon gels and their applications: a review of patents
Jin et al. One-step synthesis of highly ordered Pt/MCM-41 from natural diatomite and the superior capacity in hydrogen storage
Xiao et al. Monolithic Cu/C hybrid beads with well-developed porosity for the reduction of 4-nitrophenol to 4-aminophenol
Yang et al. Surfactant-free synthesis of hollow mesoporous carbon spheres and their encapsulated Au derivatives using biopolymeric chitosan
CN112337499A (zh) 一种具有催化性质的复合纳米材料及制备方法与应用
Xu et al. Synthesis of multiple Ag nanoparticles loaded hollow mesoporous carbon spheres for highly efficient and recyclable catalysis
CN108715444B (zh) 一种超疏水氧化硅杂化石墨烯气凝胶微粉、制法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant