CN107946601A - 一种微生物燃料电池生物阳极及其制备方法 - Google Patents

一种微生物燃料电池生物阳极及其制备方法 Download PDF

Info

Publication number
CN107946601A
CN107946601A CN201711111522.9A CN201711111522A CN107946601A CN 107946601 A CN107946601 A CN 107946601A CN 201711111522 A CN201711111522 A CN 201711111522A CN 107946601 A CN107946601 A CN 107946601A
Authority
CN
China
Prior art keywords
anode
fuel cell
microbiological fuel
preparation
cell biology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711111522.9A
Other languages
English (en)
Inventor
任月萍
李秀芬
王新华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201711111522.9A priority Critical patent/CN107946601A/zh
Publication of CN107946601A publication Critical patent/CN107946601A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)

Abstract

一种微生物燃料电池生物阳极,由产电微生物层,导电颗粒和不锈钢过滤网构成,其制备方法是:将一定浓度的菌悬液或菌悬液‑导电颗粒的混合液通过真空过滤的方式截留在不锈钢过滤网表面形成生物阳极。本发明的优点是:该制备方法可以人为控制阳极表面起始生物量的大小和生物层的厚度,克服了因为自然生长的生物膜微生物量不高,厚度有限导致的阳极电子生成速率较低的问题;通过掺杂导电颗粒可以在阳极表面形成三维导电网络,可以促进电子在微生物层中和生物层与阳极材料之间的传递;此外还可以缩短微生物燃料电池的启动时间。

Description

一种微生物燃料电池生物阳极及其制备方法
技术领域
本发明涉及微生物燃料电池生物阳极的制作方法,属于能源环境技术开发和利用领域。
微生物燃料电池是一种将解决环境污染问题与生产新能源有机结合起来的新技术,能够利用微生物作催化剂,将有机质储存的化学能转化为电能,具有发电与废弃物处置的双重功效,在生物传感器、生物修复、污水处理等方面具有广阔的应用前景。然而,输出功率较低一直是限制MFC进行大规模实际应用的重要问题。阳极生物膜是MFC体系电流输出的源泉,生物膜结构和产电活性是决定体系输出电流大小的关键因素。因此,如何实现阳极表面高产电活性生物膜的富集生长以及膜内电子高效传递是强化MFC体系产电能力的关键。
近年来,通过物理、化学以及电化学等方法对阳极进行改性和修饰,提高阳极的亲水性,改变阳极表面荷电性及粗糙度,使其更利于微生物的附着生长及生物膜的形成,降低电子传递内阻和活化内阻,已经在一定程度上提高了MFC体系的产电性能。例如,Cheng等(Cheng S,Logan B E.Electrochemistry Communications,2007,9(3):492-496.)利用氨气处理阳极碳布,获得的MFC的最大功率密度达到1970mW·m-2。Qiao等(Journal of PowerSources,2007,170: 79–84.)以PTFE为粘结剂将PANI-CNT复合物涂抹在镍泡沫(1cm×1cm×0.1cm)表面形成 PANI-CNT修饰阳极。EIS测试发现CNT用量为1%的PANI-CNT修饰阳极的Rct与PANI修饰阳极相比由1317Ω减小到827Ω,增大CNT的用量到20%,PANI-CNT修饰阳极的Rct减小到434Ω。20%CNT-PANI修饰阳极体系的最大功率密度达到42mW/m2。Zhang等(Journal of Power Sources,2011,196(13):5402-5407.)将5mg石墨烯与PTFE混合后形成膏状物,将其压制在不锈钢网表面形成石墨烯电极。以石墨烯电极为阳极运行的双室MFC的最大功率密度达到了2668mW/m2,是相同运行条件下不锈钢阳极和PTFE阳极体系最大功率密度的17-18 倍。尽管上述研究一定程度上增大了生物阳极产电活性,但仍未涉及阳极生物膜自身结构与性能的改造,如通过调整生物膜厚度和生物量等途径提高生物膜产电能力及微生物燃料电池体系输出功率。
本发明是采用真空过滤菌悬液或微生物-导电颗粒混合液的方式在导电过滤层表面截留微生物和导电颗粒制备生物阳极。该法制备的生物阳极可以加快微生物燃料电池的启动时间,提高体系的产电性能。
发明内容
本发明的目的是提供一种微生物燃料电池生物阳极的制备方法。
本发明的目的可通过以下技术手段来实现:首先以活性污泥,河湖底泥或稳定产电的微生物燃料电池阳极等为接种物,培养驯化产电微生物,形成一定细胞干重的菌悬液。将菌悬液与一定浓度的导电颗粒悬浮液按一定比例混合,形成微生物-导电颗粒混合液。以导电过滤网为过滤层,真空过滤一定体积的上述混合液,在导电过滤网上形成一定厚度的生物层。
本发明的具体步骤如下:
(1)以活性污泥,河湖底泥或稳定产电的微生物燃料电池阳极等为接种物,接种到含有乙酸钠的磷酸盐缓冲液或厌氧微生物培养液中,置于恒温摇床中(30-37℃,100rpm)培养,得到一定细胞干重的菌悬液。
(2)将一定质量的导电颗粒,即碳纳米管/碳纳米纤维,石墨烯和石墨/碳颗粒的一种或多种均匀分散到灭菌的超纯水或去离子水中制备成一定浓度的导电颗粒分散液。将一定体积的上述导电颗粒分散液与菌悬液混合制备成一定浓度的微生物-导电颗粒混合液。
(3)以孔经小于1μm的不锈钢过滤网或导电过滤膜为过滤层,真空过滤一定体积的上述混合液,在导电过滤网上形成一定厚度的生物层,制备得到生物阳极。
本发明方法的优点:
本发明的有点在于提供了一种简便的生物阳极的制备方法,通过调节菌悬液中菌体浓度人为控制阳极表面起始生物量的大小和生物层的厚度,克服了因为自然生长的生物膜微生物量不高,厚度有限导致的阳极电子生成速率较低的问题,并缩短微生物燃料电池的启动时间;另外通过向生物层中掺杂导电颗粒可以在阳极表面形成三维导电网络,促进电子在微生物层中和生物层与阳极材料之间的传递,提高微生物燃料电池体系的输出功率。
附图说明
附图1为一种微生物燃料电池生物阳极的制备方法
具体实施方式
实例1
将稳定运行产电微生物燃料电池阳极剪成碎块,接种于含有1g/L乙酸钠的磷酸盐缓冲溶液中,置于35℃恒温摇床中,105rpm下恒温培养直到菌悬液的OD600达到2。将碳纤维布和孔径为1μm的不锈钢过滤网重叠起来作为过滤层,取300mL的菌悬液通过真空过滤,在不锈钢网表面截留微生物形成生物阳极。将制备好的生物阳极置于体积为27mL的空气阴极微生物燃料电池装置中,外接500Ω外阻,室温下序批式运行。接通电路36h后体系输出电压开始快速增长,与采用传统自由生长的生物阳极体系相比,启动时间明显缩短。运行稳定后,体系的最大输出功率为90mW·m-2
实例2
将稳定运行产电微生物燃料电池阳极剪成碎块,接种于含有1g/L乙酸钠的磷酸盐缓冲溶液中,置于35℃恒温摇床中,105rpm下恒温培养直到菌悬液的OD600达到2。取一定量的石墨烯,分散于去离子水中,配制成0.08g/L的悬浮液,取30mL的石墨烯悬浮液与270mL菌悬液混合均匀,最终配制成微生物-石墨烯混合液。将孔径为1μm的不锈钢过滤网作为过滤层,将上述300mL微生物-石墨烯混合液通过真空过滤,在不锈钢网表面截留微生物和石墨烯形成生物阳极。将制备好的生物阳极置于体积为27mL的空气阴极微生物燃料电池装置中,外接500Ω外阻,室温下序批式运行。接通电路20h后体系输出电压开始快速增长,与采用传统自由生长的生物阳极体系相比,启动时间明显缩短。运行稳定后,体系的最大输出功率为124mW·m-2

Claims (6)

1.一种微生物燃料电池生物阳极,其特征在于,由产电微生物,导电颗粒和导电过滤层构成。
2.根据权利要求1所述的微生物燃料电池生物阳极的制备步骤包括:
1)以活性污泥,河湖底泥或稳定产电的微生物燃料电池阳极等为接种物,培养驯化产电微生物,形成一定细胞干重的菌悬液。
2)将菌悬液与一定浓度的导电颗粒悬浮液按一定比例混合,形成微生物-导电颗粒混合液。
3)以导电过滤网或过滤膜为过滤层,真空过滤一定体积的上述混合液在导电过滤网上形成一定厚度的生物层。
3.根据权利要求2所述微生物燃料电池生物阳极的制备方法,其特征在于采用真空过滤菌悬液的方式在阳极表面形成生物层。
4.根据权利要求2所述微生物燃料电池生物阳极的制备方法,其特征在于所述接种物为以活性污泥,河湖底泥或稳定产电的微生物燃料电池阳极等。
5.根据权利要求2所述微生物燃料电池生物阳极的制备方法,其特征在于所述导电颗粒为碳纳米管/碳纳米纤维,石墨烯和石墨/碳颗粒中的一种或几种的组合。
6.根据权利要求2所述微生物燃料电池生物阳极的制备方法,其特征在于所述导电过滤层为孔经小于1μm的不锈钢过滤网或导电过滤膜。
CN201711111522.9A 2017-11-13 2017-11-13 一种微生物燃料电池生物阳极及其制备方法 Pending CN107946601A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711111522.9A CN107946601A (zh) 2017-11-13 2017-11-13 一种微生物燃料电池生物阳极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711111522.9A CN107946601A (zh) 2017-11-13 2017-11-13 一种微生物燃料电池生物阳极及其制备方法

Publications (1)

Publication Number Publication Date
CN107946601A true CN107946601A (zh) 2018-04-20

Family

ID=61933825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711111522.9A Pending CN107946601A (zh) 2017-11-13 2017-11-13 一种微生物燃料电池生物阳极及其制备方法

Country Status (1)

Country Link
CN (1) CN107946601A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742410A (zh) * 2019-01-07 2019-05-10 东华大学 一种CNTs/CNFs复合电极材料及其制备和MFC应用
CN110649270A (zh) * 2019-09-09 2020-01-03 北京科技大学 一种微生物燃料电池用纳米纤维/产电菌薄膜制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106698682A (zh) * 2017-02-21 2017-05-24 哈尔滨工业大学 一种微生物电化学系统阳极生物膜的构筑方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106698682A (zh) * 2017-02-21 2017-05-24 哈尔滨工业大学 一种微生物电化学系统阳极生物膜的构筑方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
薛丽仙 等: "石墨烯掺杂生物阳极微生物燃料电池的产电性能", 《环境化学》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742410A (zh) * 2019-01-07 2019-05-10 东华大学 一种CNTs/CNFs复合电极材料及其制备和MFC应用
CN110649270A (zh) * 2019-09-09 2020-01-03 北京科技大学 一种微生物燃料电池用纳米纤维/产电菌薄膜制备方法
CN110649270B (zh) * 2019-09-09 2021-04-06 北京科技大学 一种微生物燃料电池用纳米纤维/产电菌薄膜制备方法

Similar Documents

Publication Publication Date Title
Zou et al. Tailoring unique mesopores of hierarchically porous structures for fast direct electrochemistry in microbial fuel cells.
Zhu et al. Lightweight, conductive hollow fibers from nature as sustainable electrode materials for microbial energy harvesting
WO2013073284A1 (ja) 微生物発電装置、微生物発電装置用電極およびその製造方法
Jiang et al. A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation
CN105845947B (zh) 利用油菜秸秆制备微生物燃料电池电极材料的方法
Jiang et al. A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm
CN103165931B (zh) 空气阴极微生物燃料电池处理餐厨垃圾回收电能的方法
CN103682377B (zh) 一种微生物燃料电池空气阴极片的制备方法
CN102263279A (zh) 一种人工湿地水生植物电极的微生物燃料电池装置
Jiang et al. A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation
CN105336964B (zh) 一种氮掺杂碳纳米管/氮化碳复合材料的制备方法及应用
CN106915829A (zh) 碳纤维电极及其制备方法、双极室生物电化学设备
CN108821257A (zh) 一种基于荷叶的二元介孔-微孔多级结构生物碳及其制备方法和应用
CN103275887A (zh) 一株鲍希瓦氏菌及其在产生物电中的应用
Nastro Microbial fuel cells in waste treatment: recent advances
Dong et al. Three-dimensional electrodes enhance electricity generation and nitrogen removal of microbial fuel cells
Huang et al. Modification of carbon based cathode electrode in a batch-type microbial fuel cells
Mansoorian et al. Evaluating the performance of coupled MFC-MEC with graphite felt/MWCNTs polyscale electrode in landfill leachate treatment, and bioelectricity and biogas production
Xu et al. A freestanding carbon submicro fiber sponge as high-efficient bioelectrochemical anode for wastewater energy recovery and treatment
Moradian et al. Yeast-induced formation of graphene hydrogels anode for efficient xylose-fueled microbial fuel cells
CN107946601A (zh) 一种微生物燃料电池生物阳极及其制备方法
CN103972514A (zh) 一种新型三维纳米碳/不锈钢网复合生物阳极及其制备方法与用途
Liu et al. Hollow cobalt ferrite nanofibers integrating with carbon nanotubes as microbial fuel cell anode for boosting extracellular electron transfer
Wang et al. Production of electricity during wastewater treatment using fluidized‐bed microbial fuel cells
Xu et al. Improving electron transport efficiency and power density by continuous carbon fibers as anode in the microbial fuel cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180420