CN107944198A - 一种双相不锈钢槽型隔舱的加强方法 - Google Patents

一种双相不锈钢槽型隔舱的加强方法 Download PDF

Info

Publication number
CN107944198A
CN107944198A CN201711403090.9A CN201711403090A CN107944198A CN 107944198 A CN107944198 A CN 107944198A CN 201711403090 A CN201711403090 A CN 201711403090A CN 107944198 A CN107944198 A CN 107944198A
Authority
CN
China
Prior art keywords
groove profile
steel
profile compartment
stainless steel
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711403090.9A
Other languages
English (en)
Inventor
胡建耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hudong Zhonghua Shipbuilding Group Co Ltd
Original Assignee
Hudong Zhonghua Shipbuilding Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hudong Zhonghua Shipbuilding Group Co Ltd filed Critical Hudong Zhonghua Shipbuilding Group Co Ltd
Priority to CN201711403090.9A priority Critical patent/CN107944198A/zh
Publication of CN107944198A publication Critical patent/CN107944198A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • B63B71/10Designing vessels; Predicting their performance using computer simulation, e.g. finite element method [FEM] or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明公开了一种双相不锈钢槽型隔舱的加强方法,该方法包括以下步骤:步骤1,在槽型隔舱的两端分别设置碳钢工字钢,在所述槽型隔舱和碳钢工字钢之间设有不锈钢连接板,步骤2,利用MSC.PATRAN对槽型隔舱、碳钢工字钢和不锈钢连接板进行建模,步骤3,分别对弹性模量、泊松比和厚度的有限元单元赋予属性,步骤4,对所述槽型隔舱的翻身过程分为三个工况,步骤5,对三个工况进行边界条件的约束,步骤6,根据设置完成后的工况,将相应的工况导入MSC.NASTRAN进行应力分析和变形分析。本发明根据槽型隔舱的翻身和总组方式,设计相应的加强方法,通过有限元软件进行分析,优化和论证加强方案的可行性,以适应翻身过程中的槽型隔舱强度要求和双相不锈钢保护要求。

Description

一种双相不锈钢槽型隔舱的加强方法
技术领域
本发明属于船舶建造领域,具体涉及一种双相不锈钢槽型隔舱的加强方法。
背景技术
现代先进的化学品船建造都采用抗腐蚀性强、强度高的双相不锈钢内胆,货舱之间普遍采用双相不锈钢材料的槽型隔舱进行分隔。但由于槽型隔舱仅为钢板轧和拼接成型,其强度在翻身和总组阶段并不高,非常容易产生变形。同时为了节省材料,一般采用碳钢型材对其进行加强,而双相不锈钢为了保证其良好的抗腐蚀性和强度,不能与碳钢材料直接接触,否则会影响其性能。
发明内容
针对现有技术中存在的问题,本发明提供一种双相不锈钢槽型隔舱的加强方法,能够满足双相不锈钢槽型隔舱强度需要。
一种双相不锈钢槽型隔舱的加强方法,该方法包括以下步骤:
步骤1,在槽型隔舱的两端分别设置碳钢工字钢,在所述槽型隔舱和碳钢工字钢之间设有不锈钢连接板,
步骤2,根据槽型隔舱、碳钢工字钢和不锈钢连接板的形状、尺寸和布置方式,利用MSC.PATRAN对槽型隔舱、碳钢工字钢和不锈钢连接板进行建模,模型采用板壳单元,所述槽型隔舱、碳钢工字钢的网格大小设置为100*100mm,不锈钢连接板的网格大小设置为100*50mm,
步骤3,所述碳钢工字钢的弹性模量为2.1e5,泊松比为0.3,密度为7850kg/m3,所述不锈钢连接板的弹性模量为2.0e5,泊松比为0.3,密度为7850kg/m3,根据槽型隔舱、碳钢工字钢和不锈钢连接板的板厚、材料,分别对弹性模量、泊松比和厚度的有限元单元赋予属性,
步骤4,对所述槽型隔舱的翻身过程分为三个工况,平行升高工况,翻身至45°工况,翻身至90°工况,
步骤5,对所述步骤4中三个工况进行边界条件的约束,在平行升高工况时,根据平行升高吊装需要对槽型隔舱两端选取节点作为吊点,进行平动约束,重力方向竖直向下,加速度为9800mm/s2,在翻身至45°工况时,根据翻身至45°吊装需要对槽型隔舱两端选取节点作为吊点,进行平动约束,重力方向竖直向下,加速度为9800mm/s2,在翻身至90°工况时,根据翻身至90°吊装需要对槽型隔舱两端选取节点作为吊点,进行平动约束,重力方向竖直向下,加速度为9800mm/s2
步骤6,根据步骤5所述的工况设置完成后,将相应的工况导入到MSC.NASTRAN进行应力分析和变形分析,得出三个工况下的最大应力和变形,由计算结果可见,在平行升高状态下,槽型隔舱的最大应力为101mpa,最大变形为27mm;翻身至45°状态下,槽型隔舱的最大应力为66mpa,最大变形为27mm;翻身至90°状态下,槽型隔舱的最大应力为47mpa,最大变形为2mm,
步骤7,所述槽型隔舱最大承受应力大小为500mpa,碳钢材质最大承受应力大小为235mpa,工程需用应力小于最大承受应力的50%,所述步骤6中槽型隔舱的最大应力为101mpa小于两种材质的最大应力的50%,满足强度需要,若计算结果不符合强度要求,则需要对碳钢工字钢和双相不锈钢连接板的板厚或大小进行增大,以使其最大应力在允许范围之内。
所述不锈钢连接板的材质为双相不锈钢连接板。
所述不锈钢连接板的长、宽、高尺寸为100*50*10mm。
所述碳钢工字钢的长、宽、高尺寸为300*300*10*12mm。
所述两端设置的碳钢工字钢分别距相应的端部的距离为300mm。
本发明中MSC.PATRAN为有限元分析理论基础与应用软件。
与现有技术相比,本发明的有益效果为:
本发明中采用与槽型隔舱相同的材料作为连接材料对槽型隔舱进行加强,避免碳钢对不锈钢槽型隔舱造成污染;并通过在双相不锈钢连接板相应位置设置碳钢工字钢作为辅助的加强工装,通过本发明采用的MSC.PATRAN进行有限元分析,得到本发明的技术方案满足三个不同的工况下(平行升高工况,翻身至45°工况,翻身至90°工况)强度的要求,若计算结果不符合强度要求,可以根据有限元分析计算对碳钢工字钢和双相不锈钢连接板的板厚或大小进行增大,以使其最大应力在允许范围之内。
附图说明
图1为本发明的整体结构示意图。
图2为本发明中槽型隔舱的结构示意图。(图2中a-b方向为向左转,c-d方向为向右转)
图3为图1中A区域的局部放大图。
图4为本发明中平行升高状态下槽型隔舱应力分析有限元计算图。
图5为本发明中平行升高状态下槽型隔舱变形分析有限元计算图。
图6为本发明中翻身至45°状态下槽型隔舱应力分析有限元计算图。
图7为本发明中翻身至45°状态下槽型隔舱变形分析有限元计算图。
图8为本发明中翻身至90°状态下槽型隔舱应力分析有限元计算图。
图9为本发明中翻身至90°状态下槽型隔舱变形分析有限元计算图。
具体实施方式
下面结合附图和实施例来对本发明做进一步的说明,但不应以此限制本发明的保护范围。
如图1-图6所示,本实施例双相不锈钢槽型隔舱的加强方法,该方法包括以下步骤:
步骤1,在槽型隔舱1的两端分别设置碳钢工字钢2,在所述槽型隔舱1和碳钢工字钢2之间设有不锈钢连接板3,
步骤2,根据槽型隔舱1、碳钢工字钢2和不锈钢连接板3的形状、尺寸和布置方式,利用MSC.PATRAN对槽型隔舱1、碳钢工字钢2和不锈钢连接板3进行建模,模型采用板壳单元,所述槽型隔舱1、碳钢工字钢2的网格大小设置为100*100mm,不锈钢连接板3的网格大小设置为100*50mm,
步骤3,所述碳钢工字钢2的弹性模量为2.1e5,泊松比为0.3,密度为7850kg/m3,所述不锈钢连接板3的弹性模量为2.0e5,泊松比为0.3,密度为7850kg/m3,根据槽型隔舱1、碳钢工字钢2和不锈钢连接板3的板厚、材料,分别对弹性模量、泊松比和厚度的有限元单元赋予属性,
步骤4,对所述槽型隔舱1的翻身过程分为三个工况,平行升高工况,翻身至45°工况,翻身至90°工况,
步骤5,对所述步骤4中三个工况进行边界条件的约束,在平行升高工况时,根据平行升高吊装需要对槽型隔舱两端选取节点作为吊点,进行平动约束,重力方向竖直向下,加速度为9800mm/s2,在翻身至45°工况时,根据翻身至45°吊装需要对槽型隔舱两端选取节点作为吊点,进行平动约束,重力方向竖直向下,加速度为9800mm/s2,在翻身至90°工况时,根据翻身至90°吊装需要对槽型隔舱两端选取节点作为吊点,进行平动约束,重力方向竖直向下,加速度为9800mm/s2
步骤6,根据步骤5所述的工况设置完成后,将相应的工况导入到MSC.NASTRAN进行应力分析和变形分析,得出三个工况下的最大应力和变形,由计算结果可见,在平行升高状态下,槽型隔舱的最大应力为101mpa,最大变形为27mm;翻身至45°状态下,槽型隔舱的最大应力为66mpa,最大变形为27mm;翻身至90°状态下,槽型隔舱的最大应力为47mpa,最大变形为2mm,
步骤7,所述槽型隔舱最大承受应力大小为500mpa,碳钢材质最大承受应力大小为235mpa,工程需用应力小于最大承受应力的50%,所述步骤6中槽型隔舱的最大应力为101mpa小于两种材质的最大应力的50%,满足强度需要。
作为优选,本实施例中不锈钢连接板3的材质为双相不锈钢连接板,不锈钢连接板3的长、宽、高尺寸为100*50*10mm。
作为进一步优选,本实施例中碳钢工字钢2的长、宽、高尺寸为:300*300*10*12mm。
作为更进一步优选,本实施例中两端设置的碳钢工字钢2分别距相应的端部的距离为300mm。
尽管上述实施例已对本发明作出具体描述,但是对于本领域的普通技术人员来说,应该理解为可以在不脱离本发明的精神以及范围之内基于本发明公开的内容进行修改或改进,这些修改和改进都在本发明的精神以及范围之内。

Claims (5)

1.一种双相不锈钢槽型隔舱的加强方法,其特征在于,该方法包括以下步骤:
步骤1,在槽型隔舱(1)的两端分别设置碳钢工字钢(2),在所述槽型隔舱(1)和碳钢工字钢(2)之间设有不锈钢连接板(3),
步骤2,根据槽型隔舱(1)、碳钢工字钢(2)和不锈钢连接板(3)的形状、尺寸和布置方式,利用MSC.PATRAN对槽型隔舱(1)、碳钢工字钢(2)和不锈钢连接板(3)进行建模,模型采用板壳单元,所述槽型隔舱(1)、碳钢工字钢(2)的网格大小设置为100*100mm,不锈钢连接板(3)的网格大小设置为100*50mm,
步骤3,所述碳钢工字钢(2)的弹性模量为2.1e5,泊松比为0.3,密度为7850kg/m3,所述不锈钢连接板(3)的弹性模量为2.0e5,泊松比为0.3,密度为7850kg/m3,根据槽型隔舱(1)、碳钢工字钢(2)和不锈钢连接板(3)的板厚、材料,分别对弹性模量、泊松比和厚度的有限元单元赋予属性,
步骤4,对所述槽型隔舱(1)的翻身过程分为三个工况,平行升高工况,翻身至45°工况,翻身至90°工况,
步骤5,对所述步骤4中三个工况进行边界条件的约束,在平行升高工况时,根据平行升高吊装需要对槽型隔舱两端选取节点作为吊点,进行平动约束,重力方向竖直向下,加速度为9800mm/s2,在翻身至45°工况时,根据翻身至45°吊装需要对槽型隔舱两端选取节点作为吊点,进行平动约束,重力方向竖直向下,加速度为9800mm/s2,在翻身至90°工况时,根据翻身至90°吊装需要对槽型隔舱两端选取节点作为吊点,进行平动约束,重力方向竖直向下,加速度为9800mm/s2
步骤6,根据步骤5所述的工况设置完成后,将相应的工况导入到MSC.NASTRAN进行应力分析和变形分析,得出三个工况下的最大应力和变形,由计算结果可见,在平行升高状态下,槽型隔舱的最大应力为101mpa,最大变形为27mm;翻身至45°状态下,槽型隔舱的最大应力为66mpa,最大变形为27mm;翻身至90°状态下,槽型隔舱的最大应力为47mpa,最大变形为2mm,
步骤7,所述槽型隔舱最大承受应力大小为500mpa,碳钢材质最大承受应力大小为235mpa,工程需用应力小于最大承受应力的50%,所述步骤6中槽型隔舱的最大应力为101mpa小于两种材质的最大应力的50%,满足强度需要。
2.根据权利要求1所述的双相不锈钢槽型隔舱的加强方法,其特征在于,所述不锈钢连接板(3)的材质为双相不锈钢连接板。
3.根据权利要求1所述的双相不锈钢槽型隔舱的加强方法,其特征在于,所述不锈钢连接板(3)的长、宽、高尺寸为100*50*10mm。
4.根据权利要求1所述的双相不锈钢槽型隔舱的加强方法,其特征在于,所述碳钢工字钢(2)的长、宽、高尺寸为300*300*10*12mm。
5.根据权利要求1所述的双相不锈钢槽型隔舱的加强方法,其特征在于,所述两端设置的碳钢工字钢(2)分别距相应的端部的距离为300mm。
CN201711403090.9A 2017-12-22 2017-12-22 一种双相不锈钢槽型隔舱的加强方法 Pending CN107944198A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711403090.9A CN107944198A (zh) 2017-12-22 2017-12-22 一种双相不锈钢槽型隔舱的加强方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711403090.9A CN107944198A (zh) 2017-12-22 2017-12-22 一种双相不锈钢槽型隔舱的加强方法

Publications (1)

Publication Number Publication Date
CN107944198A true CN107944198A (zh) 2018-04-20

Family

ID=61941100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711403090.9A Pending CN107944198A (zh) 2017-12-22 2017-12-22 一种双相不锈钢槽型隔舱的加强方法

Country Status (1)

Country Link
CN (1) CN107944198A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109533194A (zh) * 2018-10-23 2019-03-29 上海江南长兴造船有限责任公司 一种用于双相不锈钢化学品船横隔舱中间分段的加强方法
CN109533191A (zh) * 2018-10-23 2019-03-29 上海江南长兴造船有限责任公司 一种用于双相不锈钢化学品船横隔舱中间分段的吊装方法
CN112124518A (zh) * 2020-05-22 2020-12-25 沪东中华造船(集团)有限公司 一种可用于双相不锈钢槽型分段加强的控制方法
CN113978646A (zh) * 2021-11-18 2022-01-28 沪东中华造船(集团)有限公司 一种用于船舶无隔舱u型不锈钢总段吊装加强方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204775829U (zh) * 2015-05-28 2015-11-18 沪东中华造船(集团)有限公司 一种用于集装箱船横隔舱快速搭载的保距梁
CN206218136U (zh) * 2016-11-23 2017-06-06 展翔海事(大连)有限责任公司 一种含有槽形舱壁的40米铝合金高速艇

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204775829U (zh) * 2015-05-28 2015-11-18 沪东中华造船(集团)有限公司 一种用于集装箱船横隔舱快速搭载的保距梁
CN206218136U (zh) * 2016-11-23 2017-06-06 展翔海事(大连)有限责任公司 一种含有槽形舱壁的40米铝合金高速艇

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
徐光前 等: "基于约束理论的船舶分段制造管理", 《上海造船》 *
胡建耀: "双相不锈钢槽型隔舱安装精度控制研究", 《科技视界》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109533194A (zh) * 2018-10-23 2019-03-29 上海江南长兴造船有限责任公司 一种用于双相不锈钢化学品船横隔舱中间分段的加强方法
CN109533191A (zh) * 2018-10-23 2019-03-29 上海江南长兴造船有限责任公司 一种用于双相不锈钢化学品船横隔舱中间分段的吊装方法
CN109533191B (zh) * 2018-10-23 2020-09-25 上海江南长兴造船有限责任公司 一种用于双相不锈钢化学品船横隔舱中间分段的吊装方法
CN109533194B (zh) * 2018-10-23 2021-01-19 上海江南长兴造船有限责任公司 一种用于双相不锈钢化学品船横隔舱中间分段的加强方法
CN112124518A (zh) * 2020-05-22 2020-12-25 沪东中华造船(集团)有限公司 一种可用于双相不锈钢槽型分段加强的控制方法
CN113978646A (zh) * 2021-11-18 2022-01-28 沪东中华造船(集团)有限公司 一种用于船舶无隔舱u型不锈钢总段吊装加强方法
CN113978646B (zh) * 2021-11-18 2023-11-07 沪东中华造船(集团)有限公司 一种用于船舶无隔舱u型不锈钢总段吊装加强方法

Similar Documents

Publication Publication Date Title
CN107944198A (zh) 一种双相不锈钢槽型隔舱的加强方法
CN104573212B (zh) 一种油套管螺纹接头密封结构的优化设计方法
WO2014034954A1 (ja) プレス成形品のスプリングバック抑制対策方法および解析装置
CN105740551A (zh) 一种焊缝疲劳寿命预测方法
CN103514325A (zh) 轮辐三旋轮错距强力旋压工艺的有限元数值模拟方法
CN105279343B (zh) 一种基于焊点受力均匀化的焊点排布优化方法
CN205327334U (zh) 船舶舱壁板的骨材贯穿孔孔型结构
CN104405597A (zh) 风机塔架的门框、门框单元、门框的制造方法及风机塔架
Li et al. Reliability-based design optimization for the lattice boom of crawler crane
CN106621621A (zh) 一种增强h形截面立柱稳定性的构造及方法
Hwang et al. Investigation for the bending modes of a semi-circular pyramidal kagome sandwich structure and the bending load calculation
CN111539135A (zh) 一种用于钣金连接区域疲劳开裂预测的有限元建模方法
CN105620657A (zh) 船舶舱壁板的骨材贯穿孔孔型结构
CN108756409A (zh) 一种提高钢筋混凝土框架侧移刚度及耗能的抗震结构
CN107291979A (zh) 用于钢制盖板节点的弯矩轴力作用下承载力的核算方法
CN201618558U (zh) 薄壁压力容器大开孔补强结构
CN102900235A (zh) 一种布料臂架、布料臂架的制造方法及泵送设备
CN106768547A (zh) 一种计算增生装置滚轮接触力的方法
Chen et al. Structural optimization of uniaxial symmetry non-circular bolt clearance hole on turbine disk
CN206916941U (zh) 一种钢结构柱
CN113971361B (zh) 一种基于结构应力的复杂焊接接头抗疲劳设计方法
CN108062441A (zh) 一种自卸车货箱的设计方法
CN109372145A (zh) 一种自复位、快修复u型软钢消能支撑
CN109915327B (zh) 确定钢筋混凝土-钢组合风机塔架固有频率的方法
CN206320502U (zh) 一种钣金弯折件加强结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180420