CN107291979A - 用于钢制盖板节点的弯矩轴力作用下承载力的核算方法 - Google Patents

用于钢制盖板节点的弯矩轴力作用下承载力的核算方法 Download PDF

Info

Publication number
CN107291979A
CN107291979A CN201710322189.XA CN201710322189A CN107291979A CN 107291979 A CN107291979 A CN 107291979A CN 201710322189 A CN201710322189 A CN 201710322189A CN 107291979 A CN107291979 A CN 107291979A
Authority
CN
China
Prior art keywords
msub
mrow
bearing capacity
strap joint
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710322189.XA
Other languages
English (en)
Other versions
CN107291979B (zh
Inventor
高博青
张生伟
吴慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710322189.XA priority Critical patent/CN107291979B/zh
Publication of CN107291979A publication Critical patent/CN107291979A/zh
Application granted granted Critical
Publication of CN107291979B publication Critical patent/CN107291979B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Abstract

本发明公开了一种用于钢制盖板节点的弯矩轴力作用下承载力的核算方法,属于工程领域。该方法需要判断待核算的钢制盖板节点是否满足本发明所提出的核算公式;若满足该公式,则判定该钢制盖板节点在弯矩轴力作用下承载力满足要求,若不满足该公式,则判定该钢制盖板节点在弯矩轴力作用下承载力不满足要求。本发明提出的钢制盖板节点在不同荷载作用下承载力核算方法,填补了钢制盖板节点的研究空白,可以为工程设计提供参考依据。

Description

用于钢制盖板节点的弯矩轴力作用下承载力的核算方法
技术领域
本发明属于工程计算领域,具体涉及一种用于钢制盖板节点的弯矩轴力作用下承载力的核算方法。
背景技术
盖板节点是美国TEMCOR公司研制的一种铝合金空间网格结构节点体系,最初仅应用于铝合金结构,后来因其诸多优点逐步应用于钢结构。该节点主要有铝合金圆形盖板、紧固螺栓和铝合金杆件三部分组成。其杆件的截面通常为H型铝,多根杆件杆端交汇于节点中心,由上下盖板将其搭接,并由螺栓固定。钢制盖板节点和铝合金盖板节点有相同构造,由钢制圆形盖板、紧固螺栓和工字钢杆件构成,如图1。目前,国内外对钢制盖板节点承载力的研究还较少。
目前盖板节点的研究仅限于铝合金盖板,钢制盖板节点的研究还处于空白状态。它在钢制网壳中的研究成果和工程经验还比较欠缺,亟待补充完善。而当前的盖板节点的研究也存在一些不足,其中包括:1)有限元分析模型不够精确:大多数有限元分析模型中未考虑螺栓的预紧力,有些模型中仅考虑了节点耦合并未建立螺栓的实体模型,还有些模型没有考虑盖板、螺栓和杆件之间的接触;2)考虑到试验研究的复杂性,盖板节点的分析均以有限元模型分析为主,试验研究的数量也有限,钢制盖板节点的试验研究较少;3)目前还没有提出一套针对盖板节点不同受力状态下的承载力公式,多是说明盖板节点的破坏机理。因此有必要对钢制盖板节点做更进一步的分析研究,考察盖板节点受力特性,破坏机理,提供一种用于钢制盖板节点的弯矩轴力作用下承载力的核算方法,以便以后的工程设计。
发明内容
本发明的目的在于解决现有技术中存在的问题,并提供一种用于钢制盖板节点的弯矩轴力作用下承载力的核算方法。本发明具体采用的技术方案如下:
用于钢制盖板节点的弯矩轴力作用下承载力的核算方法,具体为:判断待核算的钢制盖板节点是否满足下列公式;若满足该公式,则判定该钢制盖板节点在弯矩轴力作用下承载力满足要求,若不满足该公式,则判定该钢制盖板节点在弯矩轴力作用下承载力不满足要求;
式中,N为盖板节点单根杆件所受轴力;
Nu为盖板节点在轴压力作用下抗压承载力设计值;
M为盖板节点单根杆件所受弯矩;
Mu为盖板节点在弯矩作用下相应的抗弯承载力设计值。
该核算公式中的各参数,可以通过参考现有规范或者通过理论推导得出,具体可采用如下的各优选方式:
所述的Nu为计算公式如下:
Nu=min(Pv,PC)
式中,Pv为盖板节点在轴力作用下抗剪承载力设计值;
PC为盖板节点在轴力作用下盖板中心屈曲破坏承载力设计值。
依据《钢结构设计规范》GB2003中螺栓抗剪承载力公式,拟合出盖板节点抗剪承载力设计值Pv的公式,Pv计算公式如下:
式中,n为单根杆件上螺栓总数目;
d为螺栓直径,单位为mm;
fv b为螺栓抗剪强度设计值,单位为N/mm2
根据理论分析和有限元数值结果的拟合给出了PC计算公式如下:
式中,为盖板的弯曲刚度;
E为材料弹性模量;
ν为泊松比;
t为盖板厚度,单位为mm;
R0为盖板圆心到内排螺栓孔中心距离,单位为mm。
所述的Mu计算公式如下:
Mu=min(MT,Mv,MC)
式中,MT为在弯矩作用下,盖板节点首先发生盖板块状拉剪破坏的抗弯承载力设计值,计算公式为
MT=PT(h+t)
式中:PT为发生盖板撕裂破坏的承载力设计值;
Mv为在弯矩作用下,盖板节点首先发生螺栓剪断破坏的抗弯承载力设计值,计算公式为
MC为在弯矩作用下,时,盖板节点首先发生盖板中心屈曲破坏的抗弯承载力设计值,计算公式为
上式中,h为杆件高度,t为盖板厚度。
所述的PT计算公式如下:
式中,β—盖板多向拉剪下承载力折减系数,取0.78,单向受力取1;
fu—钢材的极限强度,单位为MPa;
fy—钢材的屈服强度,单位为MPa;
Ant—受拉破坏面净截面面积,单位为mm2
Agv—受剪破坏面毛截面面积,单位为mm2
下面论述本发明所提出的核算方法的理论依据:
在实际工程中,盖板节点受力情况复杂,大部分是受轴力弯矩共同作用,所以非常有必要研究轴力和弯矩组合作用下的钢制盖板节点的承载力。盖板节点在轴压力和弯矩作用下的破坏模式,需要给出承载力公式并验证公式的可靠性,然后在此基础上建立轴力弯矩共同作用下的盖板节点有限元模型,分析轴力弯矩共同作用下的盖板受力特点和破坏模式,最后提出轴力弯矩共同作用的承载力公式。
1.轴力弯矩组合作用下盖板内力分析
在轴力和弯矩的同时作用下,上下盖板受力是不相同的,内力分析如图2所示,图中为画出工字钢部分。弯矩M作用下,上下盖板会分别受到一对拉压力P,大小为
轴力N的作用下,上下盖板均受到N/2的压力。最终上下盖板受力分别为:
上盖板拉力:
下盖板压力:
根据上下盖板的受力特点可知,下盖板可能会发生盖板受压屈曲破坏或者螺栓剪断破坏;上盖板可能会发生盖板撕裂破坏、螺栓剪断破坏或受压屈曲。而具体盖板会发生怎样的破坏可以分类讨论:
定义盖板发生屈曲破坏的承载力为PC,发生螺栓剪断破坏承载力为Pv,发生盖板撕裂破坏的承载力为PT
1)当PC>PT>Pv时,随着荷载的增加,下盖板螺栓会先达到螺栓剪断承载力。发生螺栓剪断破坏。
2)当PC>Pv>PT时,破坏与上下盖板的受力比有关:
a.当则先发生下盖板螺栓剪断破坏。
b.当则同时发生上盖板撕裂破坏和螺栓剪断破坏。
c.当则先发生上盖板撕裂破坏。
3)当Pv>PC>PT时,破坏与上下盖板的受力比有关:
a.当则先发生下盖板受压屈曲破坏。
b.当则同时发生上盖板撕裂破坏和下盖板受压屈曲破坏。
c.当则先发生上盖板撕裂破坏。
4)当Pv>PT>PC时,发生下盖板受压屈曲破坏。
5)当PT>Pv>PC时,发生下盖板受压屈曲破坏。
6)当PT>PC>Pv时,发生下盖板螺栓剪断破坏。
当发生1)、4)、5)、6)四种破坏情况时,盖板节点的破坏模式只有一种,且均为下盖板发生破坏(下盖板受力更大)。盖板节点的承载力只与节点的尺寸构造以及材料特性有关,与上下盖板受力比值无关。
为便于对比分析,把不同轴力和弯矩组合下盖板节点的承载力N,M除以相应的抗压承载力设计值Nu和抗弯承载力设计值Mu,得到无量纲影响系数
在弯矩M和轴力M共同作用下,当下盖板发生破坏时,下盖板承载力极限为
当M趋于0时,盖板节点外荷载等效为轴力N,发生破坏时的下盖板承载力
而当N趋于0时,盖板节点外荷载等效为轴力M,发生破坏时下盖板的承载力
式5可以写为
相关性曲线如图3所示。
当盖板节点发生2)破坏时,即PC>Pv>PT
a.当把式2、3代入得到
可以得到当弯矩轴力为这一数值时,同时发生上盖板撕裂破坏和螺栓剪断破坏。
b.当则先发生上盖板撕裂破坏。在N趋于0时,上盖板承载力上盖板的承载力又可以写为:
将式5代入得到
在M趋于减小时,盖板节点外荷载等效为轴力N,发生破坏时的盖板承载力为a条件下的承载力。此时的上盖板的承载力为
最后可以得到:
c.当发生下盖板螺栓剪断破坏,则下盖板承载力
其中当M趋于0时,盖板节点外荷载等效为轴力N,则上下盖板同时发生螺栓剪断破坏,此时下盖板承载力
在N趋于减小时,上盖板发生撕裂破坏,此时上盖板承载力
最后可以得到:
作出相关性曲线,两条直线的交点即为a条件下的,M,N值
相关性曲线如图4所示
同样,节点发生3)破坏时
a.当使用前文所述的分析方法可以得到
当弯矩轴力为这一数值时,同时发生上盖板撕裂破坏和下盖板受压屈曲破坏。
b.当则先发生上盖板撕裂破坏。在N趋于0时,上盖板承载力
将式5代入得到
在M趋于减小时,盖板节点外荷载等效为轴力N,发生破坏时的盖板承载力为a条件下的承载力。此时的上盖板的承载力为
最后可以得到:
c.当发生下盖板受压屈曲破坏,则下盖板承载力
其中当M趋于0时,盖板节点外荷载等效为轴力N,则上下盖板同时发生螺栓剪断破坏,此时下盖板承载力
在N趋于减小时,上盖板发生撕裂破坏,此时上盖板承载力
最后可以得到
作出相关性曲线,两条直线的交点即为a条件下的,M,N值
相关性曲线如图5:
总结上述三种相关性曲线,由于实际盖板节点的承载力PT,PS,PC相差不大,可以视为
故曲线中的转折点可近似视为点(1,0),所以曲线可以近似视为曲线。
利用有限元软件对该公式的进行验证,结果表明:值符合的关系,不同盖板节点模型的轴力-弯矩相关关系基本一致。
本发明提出的钢制盖板节点在不同荷载作用下承载力核算方法,填补了钢制盖板节点的工程核算领域的空白,可以为工程设计提供参考依据。
附图说明
图1为盖板节点有限元计算模型图;
图2为盖板内力简图;
图3为相关性曲线图;
图4为相关性曲线图;
图5为相关性曲线图;
图6为实施例1中钢制盖板节点示意图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步阐述和说明。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。
用于钢制盖板节点的弯矩轴力作用下承载力的核算方法,具体如下:判断待核算的钢制盖板节点是否满足下列公式;若满足该公式,则判定该钢制盖板节点在弯矩轴力作用下承载力满足要求,若不满足该公式,则判定该钢制盖板节点在弯矩轴力作用下承载力不满足要求;
式中,N为盖板节点单根杆件所受轴力;
Nu为盖板节点在轴压力作用下抗压承载力设计值;
M为盖板节点单根杆件所受弯矩;
Mu为盖板节点在弯矩作用下相应的抗弯承载力设计值。
该公式中,各参数的计算方法如下:
Nu为计算公式如下:
Nu=min(Pv,PC)
式中,Pv为盖板节点在轴力作用下抗剪承载力设计值;
PC为盖板节点在轴力作用下盖板中心屈曲破坏承载力设计值。
Pv计算公式如下:
式中,n为单根杆件上螺栓总数目;
d为螺栓直径,单位为mm;
fv b为螺栓抗剪强度设计值,单位为N/mm2
PC计算公式如下:
式中,为盖板的弯曲刚度;
E为材料弹性模量;
ν为泊松比;
t为盖板厚度,单位为mm;
R0为盖板圆心到内排螺栓孔中心距离,单位为mm。
Mu计算公式如下:
Mu=min(MT,Mv,MC)
式中,MT为在弯矩作用下,盖板节点首先发生盖板块状拉剪破坏的抗弯承载力设计值,计算公式为
MT=PT(h+t)
式中:PT为发生盖板撕裂破坏的承载力设计值;
Mv为在弯矩作用下,盖板节点首先发生螺栓剪断破坏的抗弯承载力设计值,计算公式为
MC为在弯矩作用下,盖板节点首先发生盖板中心屈曲破坏的抗弯承载力设计值,计算公式为
上式中,h为杆件高度,t为盖板厚度。
PT计算公式如下:
式中,β—盖板多向拉剪下承载力折减系数,取0.78,单向受力取1;
fu—钢材的极限强度,单位为MPa;
fy—钢材的屈服强度,单位为MPa;
Ant—受拉破坏面净截面面积,单位为mm2
Agv—受剪破坏面毛截面面积,单位为mm2
下面基于上述方法,通过两个实施例对本发明进行进一步的说明。
实施例1
给定一个钢制盖板节点,杆件所受轴力最大值750kN,弯矩最大值100kN·m,取盖板直径为240mm,厚度16mm,杆件采用H型钢,钢材为Q235B,截面尺寸为H250×125×6×8,螺栓直径为16mm,按照3排布置,如图6所示。现对此盖板节点进行验算。
一、首先计算其在轴压力作用下抗压承载力设计值Nu:
1若钢制盖板节点首先发生螺栓剪断破坏,则其抗剪承载力为
其中,单根杆件上螺栓数量n=3×2×2=12个,查阅规范fv b=250MPa。
2若钢制盖板节点首先发生盖板中心屈曲破坏,则盖板中心屈曲破坏承载力设计值为:
其中,根据螺栓的布置可以得到盖板圆心到内排螺栓孔中心距离R0=95mm,盖板的弯曲刚度为
故计算得到PC=1380.11kN
综上,此盖板在轴压力作用下抗压承载力设计值Nu=1266.05kN
二、计算盖板节点在弯矩作用下相应的抗弯承载力设计值Mu
1若盖板节点首先发生盖板块状拉剪破坏,则其承载力计算公式为
MT=PT(h+t)
其中,
MT=639.89×(250+16)×10-3=170.21kN·m
2若盖板节点首先发生螺栓剪断破坏,则其承载力计算公式为
根据上述计算结果得:
3若盖板节点首先发生盖板中心屈曲破坏,则其承载力计算公式为
根据上述计算结果得:
综上,盖板节点在弯矩作用下相应的抗弯承载力设计值
Mu=168.38kN·m
三、验算盖板节点轴力弯矩作用下承载力:
已知盖板节点所受轴力最大值750kN,弯矩最大值100kN·m,
根据公式
所以,这个节点承载力不满足要求。
实施例2
给定一个钢制盖板节点,杆件所受轴力最大值420kN,弯矩最大值40kN·m,取盖板直径为240mm,厚度12mm,杆件采用H型钢,钢材为Q235B,截面尺寸为H250×125×6×8,螺栓直径为14mm,按照3排布置。现对此盖板节点进行验算。
一、首先计算其在轴压力作用下抗压承载力设计值Nu:
1若钢制盖板节点首先发生螺栓剪断破坏,则其抗剪承载力为
其中,单根杆件上螺栓数量n=3×2×2=12个,查阅规范fv b=250MPa。
计算得到
2若钢制盖板节点首先发生盖板中心屈曲破坏,则盖板中心屈曲破坏承载力设计值为:
其中,根据螺栓的布置可以得到盖板圆心到内排螺栓孔中心距离R0=95mm,盖板的弯曲刚度为
计算得到PC=1020.21kN
综上,此盖板在轴压力作用下抗压承载力设计值Nu=969.32kN
二、计算盖板节点在弯矩作用下相应的抗弯承载力设计值Mu
1若盖板节点首先发生盖板块状拉剪破坏,则其抗弯承载力设计值计算公式为
MT=PT(h+t)
其中,
MT=479.91×(250+12)×10-3=125.74kN·m
2若盖板节点首先发生螺栓剪断破坏,则其抗弯承载力设计值计算公式为
3若盖板节点首先发生盖板中心屈曲破坏,则其抗弯承载力设计值计算公式为
综上,盖板节点在弯矩作用下相应的抗弯承载力设计值
Mu=125.74kN·m
三、验算盖板节点轴力弯矩作用下承载力
已知盖板节点所受轴力最大值420kN,弯矩最大值40kN·m,
根据公式
所以,这个节点承载力满足要求。
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (6)

1.一种用于钢制盖板节点的弯矩轴力作用下承载力的核算方法,其特征在于,判断待核算的钢制盖板节点是否满足下列公式;若满足该公式,则判定该钢制盖板节点在弯矩轴力作用下承载力满足要求,若不满足该公式,则判定该钢制盖板节点在弯矩轴力作用下承载力不满足要求;
<mrow> <mfrac> <mi>N</mi> <msub> <mi>N</mi> <mi>u</mi> </msub> </mfrac> <mo>+</mo> <mfrac> <mi>M</mi> <msub> <mi>M</mi> <mi>u</mi> </msub> </mfrac> <mo>&amp;le;</mo> <mn>1</mn> </mrow>
式中,N为盖板节点单根杆件所受轴力设计值;
Nu为盖板节点在轴压力作用下抗压承载力设计值;
M为盖板节点单根杆件所受弯矩设计值;
Mu为盖板节点在弯矩作用下相应的抗弯承载力设计值。
2.如权利要求1所述核算方法,其特征在于,所述的Nu为计算公式如下:
Nu=min(Pv,PC)
式中,Pv为盖板节点在轴力作用下抗剪承载力设计值;
PC为盖板节点在轴力作用下盖板中心屈曲破坏承载力设计值。
3.如权利要求2所述核算方法,其特征在于,所述的Pv计算公式如下:
<mrow> <msub> <mi>P</mi> <mi>v</mi> </msub> <mo>=</mo> <mn>2.</mn> <mi>l</mi> <mi>n</mi> <mfrac> <mrow> <msup> <mi>&amp;pi;d</mi> <mn>2</mn> </msup> </mrow> <mn>4</mn> </mfrac> <msup> <msub> <mi>f</mi> <mi>v</mi> </msub> <mi>b</mi> </msup> </mrow>
式中,n为单根杆件上螺栓总数目;
d为螺栓直径,单位为mm;
fv b为螺栓抗剪强度设计值,单位为N/mm2
4.如权利要求2所述核算方法,其特征在于,所述的PC计算公式如下:
<mrow> <msub> <mi>P</mi> <mi>C</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>43.65</mn> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>t</mi> <mn>4.165</mn> </mfrac> </mrow> </msup> <mo>+</mo> <mn>0.8</mn> <mo>)</mo> </mrow> <mfrac> <mi>D</mi> <msub> <mi>R</mi> <mn>0</mn> </msub> </mfrac> </mrow>
式中,为盖板的弯曲刚度;
E为材料弹性模量;
ν为泊松比;
t为盖板厚度,单位为mm;
R0为盖板圆心到内排螺栓孔中心距离,单位为mm。
5.如权利要求1所述核算方法,其特征在于,所述的Mu计算公式如下:
Mu=min(MT,Mv,MC)
式中,MT为在弯矩作用下,盖板节点首先发生盖板块状拉剪破坏的抗弯承载力设计值,计算公式为
MT=PT(h+t)
式中:PT为发生盖板撕裂破坏的承载力设计值;
Mv为在弯矩作用下,盖板节点首先发生螺栓剪断破坏的抗弯承载力设计值,计算公式为
<mrow> <msub> <mi>M</mi> <mi>v</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>P</mi> <mi>v</mi> </msub> <mrow> <mo>(</mo> <mi>h</mi> <mo>+</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
MC为在弯矩作用下,盖板节点首先发生盖板中心屈曲破坏的抗弯承载力设计值,计算公式为
<mrow> <msub> <mi>M</mi> <mi>C</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>P</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>h</mi> <mo>+</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
上式中,h为杆件高度,t为盖板厚度。
6.如权利要求5所述核算方法,其特征在于,所述的PT计算公式如下:
<mrow> <msub> <mi>P</mi> <mi>T</mi> </msub> <mo>=</mo> <mn>0.95</mn> <mi>&amp;beta;</mi> <mo>&amp;lsqb;</mo> <msub> <mi>f</mi> <mi>u</mi> </msub> <msub> <mi>A</mi> <mrow> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>y</mi> </msub> <mo>/</mo> <msqrt> <mn>3</mn> </msqrt> <mo>)</mo> </mrow> <msub> <mi>A</mi> <mrow> <mi>g</mi> <mi>v</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow>
式中,β—盖板多向拉剪下承载力折减系数;
fu—钢材的极限强度,单位为MPa;
fy—钢材的屈服强度,单位为MPa;
Ant—受拉破坏面净截面面积,单位为mm2
Agv—受剪破坏面毛截面面积,单位为mm2
CN201710322189.XA 2017-05-09 2017-05-09 用于钢制盖板节点的弯矩轴力作用下承载力的核算方法 Expired - Fee Related CN107291979B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710322189.XA CN107291979B (zh) 2017-05-09 2017-05-09 用于钢制盖板节点的弯矩轴力作用下承载力的核算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710322189.XA CN107291979B (zh) 2017-05-09 2017-05-09 用于钢制盖板节点的弯矩轴力作用下承载力的核算方法

Publications (2)

Publication Number Publication Date
CN107291979A true CN107291979A (zh) 2017-10-24
CN107291979B CN107291979B (zh) 2020-06-23

Family

ID=60094983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710322189.XA Expired - Fee Related CN107291979B (zh) 2017-05-09 2017-05-09 用于钢制盖板节点的弯矩轴力作用下承载力的核算方法

Country Status (1)

Country Link
CN (1) CN107291979B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108595791A (zh) * 2018-04-09 2018-09-28 中国船舶工业集团公司第七0八研究所 一种考虑强力上层建筑的船体梁总纵强度规范校核方法
WO2021103576A1 (zh) * 2019-11-29 2021-06-03 青岛理工大学 框架梁与集成房屋骨架梁的连接方式及连接节点的确定方法
CN113673058A (zh) * 2021-08-25 2021-11-19 中铁建工集团有限公司 一种螺栓装配结构节点计算系统及计算方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359344A (zh) * 2008-01-23 2009-02-04 浙江大学 方钢管焊接球节点的承载力计算方法
CN101812886A (zh) * 2010-04-02 2010-08-25 浙江东宸建设控股集团有限公司 一种肋环型刚性索穹顶结构
US20140250436A1 (en) * 2011-05-27 2014-09-04 Transoft (Shanghai), Inc. Transaction-based service control system and control method
CN104878871A (zh) * 2015-05-15 2015-09-02 河南工业大学 全干式连接预制混凝土板、楼盖及其抗震性能提升方法
CN205637169U (zh) * 2016-05-20 2016-10-12 西安建筑科技大学 一种梁端拼接的带外伸盖板的双侧板支撑节点
CN106285160A (zh) * 2015-06-10 2017-01-04 中国电力科学研究院 一种输电钢管塔的钢管节点承载力的确定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359344A (zh) * 2008-01-23 2009-02-04 浙江大学 方钢管焊接球节点的承载力计算方法
CN101812886A (zh) * 2010-04-02 2010-08-25 浙江东宸建设控股集团有限公司 一种肋环型刚性索穹顶结构
US20140250436A1 (en) * 2011-05-27 2014-09-04 Transoft (Shanghai), Inc. Transaction-based service control system and control method
CN104878871A (zh) * 2015-05-15 2015-09-02 河南工业大学 全干式连接预制混凝土板、楼盖及其抗震性能提升方法
CN106285160A (zh) * 2015-06-10 2017-01-04 中国电力科学研究院 一种输电钢管塔的钢管节点承载力的确定方法
CN205637169U (zh) * 2016-05-20 2016-10-12 西安建筑科技大学 一种梁端拼接的带外伸盖板的双侧板支撑节点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BOQING GAO: "Theoretical and experimental study of robustness based design of single-layer grid structures", 《STRUCTURAL ENGINEERING AND MECHANICS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108595791A (zh) * 2018-04-09 2018-09-28 中国船舶工业集团公司第七0八研究所 一种考虑强力上层建筑的船体梁总纵强度规范校核方法
WO2021103576A1 (zh) * 2019-11-29 2021-06-03 青岛理工大学 框架梁与集成房屋骨架梁的连接方式及连接节点的确定方法
CN113673058A (zh) * 2021-08-25 2021-11-19 中铁建工集团有限公司 一种螺栓装配结构节点计算系统及计算方法
CN113673058B (zh) * 2021-08-25 2023-08-15 中铁建工集团有限公司 一种螺栓装配结构节点计算系统及计算方法

Also Published As

Publication number Publication date
CN107291979B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
Ye et al. Efficient design of cold-formed steel bolted-moment connections for earthquake resistant frames
Shin et al. Behavior of welded CFT column to H-beam connections with external stiffeners
Roeder et al. A balanced design procedure for special concentrically braced frame connections
CN109610650A (zh) 钢管混凝土柱-钢梁穿心螺栓连接节点抗弯承载力和弯矩-转角曲线的一种计算方法
Urgessa et al. Blast response comparison of multiple steel frame connections
Guo et al. Displacement response analysis of steel-concrete composite panels subjected to impact loadings
Zhang et al. Seismic performance of steel beam-to-column moment connections with different structural forms
CN107291979A (zh) 用于钢制盖板节点的弯矩轴力作用下承载力的核算方法
Yan et al. Experimental study on curved steel-concrete-steel sandwich shells under concentrated load by a hemi-spherical head
Batuwitage et al. Impact behaviour of carbon fibre reinforced polymer (CFRP) strengthened square hollow steel tubes: A numerical simulation
Tong et al. Experimental and numerical investigations on seismic behavior of stiffened corrugated steel plate shear walls
CN105201260A (zh) 一种设有粘弹性阻尼器的钢结构减震耗能体系及设计方法
CN107143061A (zh) 可更换阻尼填充墙
CN106593059A (zh) 一种狗骨式节点梁端屈曲约束装置
Nassiraei et al. Static strength of X-joints reinforced with collar plates subjected to brace tensile loading
CN206298991U (zh) 一种加强型耗能减震组合剪力墙
CN106202598A (zh) 一种复合材料冲击损伤后剩余压缩强度的分析方法
Wang et al. Dynamic performance of retrofitted steel beam-column connections subjected to impact loadings
Cheng et al. Mechanical behavior of T-shaped CFST column to steel beam joint
Moon et al. Performance evaluation of a transmission tower by substructure test
Zeynalian et al. Structural performance of cold-formed steel trusses used in electric power substations
Wang et al. Experimental and analytical behavior of square CFDST column blind bolted to steel beam connections
Deng et al. Seismic behavior of a novel liftable connection for modular steel buildings: Experimental and numerical studies
Deng et al. Behaviour of double-corrugated steel plates under cyclic in-plane shear loading: An experimental study
Deng et al. Cyclic shear performance of built-up double-corrugated steel plate shear walls: Experiment and simulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200623

Termination date: 20210509

CF01 Termination of patent right due to non-payment of annual fee