CN107916235A - 一种重组酵母菌株以及微生物混菌产电的方法 - Google Patents

一种重组酵母菌株以及微生物混菌产电的方法 Download PDF

Info

Publication number
CN107916235A
CN107916235A CN201711128925.4A CN201711128925A CN107916235A CN 107916235 A CN107916235 A CN 107916235A CN 201711128925 A CN201711128925 A CN 201711128925A CN 107916235 A CN107916235 A CN 107916235A
Authority
CN
China
Prior art keywords
shewanella
mfc
yeast strains
saccharomyces cerevisiae
restructuring yeast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711128925.4A
Other languages
English (en)
Other versions
CN107916235B (zh
Inventor
宋浩
林童
白雪
曹英秀
李炳志
元英进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201711128925.4A priority Critical patent/CN107916235B/zh
Publication of CN107916235A publication Critical patent/CN107916235A/zh
Application granted granted Critical
Publication of CN107916235B publication Critical patent/CN107916235B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01027L-Lactate dehydrogenase (1.1.1.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01028D-Lactate dehydrogenase (1.1.1.28)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01307D-Xylose reductase (1.1.1.307)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01017Xylulokinase (2.7.1.17)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及生物能源技术领域,公开了一种重组酵母菌株以及微生物混菌产电的方法。本发明所述重组酵母菌株的PDC1、PDC5、PDC6、ADHI、ADH4基因被敲除,并插入LDH、XR、XDH和XKS基因。同时本发明构建了以葡萄糖和木糖为碳源的酵母‑希瓦氏混菌体系,通过改造酿酒酵母,使其能够代谢葡萄糖和木糖,产生乳酸,在MFC中为希瓦氏菌提高碳源和电子供体,不仅增加了希瓦氏菌可利用的碳源谱,而且在电化学效果上也表现出较佳性能,为人类对生物质的研究和新能源转化方式鉴定基础。

Description

一种重组酵母菌株以及微生物混菌产电的方法
技术领域
本发明涉及生物能源技术领域,更具体的说是涉及一种重组酵母菌株以及微生物混菌产电的方法。
背景技术
能源短缺和环境污染是我国现今面临的日益严峻的问题,因而能源开发和环境废物治理及过程中能源可再生利用成为了我国现代社会进行可持续发展的一大挑战。科学家们不断寻找新的技术解决方案,其中微生物燃料电池(MicrobialFuelCell,MFC)就是其中之一用来产生可替代能源和环境废物治理新装置,并且其重要性现今日益显现。
MFC是利用产电微生物作为阳极催化剂将有机物中的化学能转化为电能的装置。微生物产电能力相差很大,产电微生物决定着MFC的功能及应用,希瓦氏菌属是目前发现的广泛用于MFC中产电的微生物之一,其代谢路径和胞外电子传递路径研究的比较明确。
近年来,随着经济技术的发展和人类思想意识的提高,出现了多种新能源的转化方式。比如利用淤泥产电。然而淤泥成分非常复杂,很多菌体及碳源作用关系不明确。此外,希瓦氏菌可利用的碳源谱也较窄。因此,探索混菌体系的微生物产电方法,不仅能够弥补希瓦氏菌的一些缺陷,而且也能够提高MFC的电化学效果。
发明内容
有鉴于此,本发明的目的在于提供一种重组酵母菌株以及微生物混菌产电的方法,使得所述重组酵母菌株能够与希瓦氏菌组成混菌体系进行MFC产电,并具备多个周期的较佳的电化学效果。
为实现上述发明目的,本发明提供如下技术方案:
一种重组酵母菌株,所述重组酵母菌株的PDC1、PDC5、PDC6(PDC为丙酮酸脱羧酶)、ADHI、ADH4(ADH为乙醛脱氢酶)基因被敲除,并插入LDH(乳酸脱氢酶)、XR(木糖还原酶)、XDH(木糖脱氢酶)和XKS(木酮糖激酶)基因。
本发明通过敲除PDC1、PDC5、PDC6三个丙酮酸脱羧酶以及ADHI、ADH4两个乙醛脱氢酶,敲除了酿酒酵母产乙醇途径,并通过插入LDH至ADHI和PDC1处,插入XR、XDH和XKS基因至delta位点,使酿酒酵母能够代谢葡萄糖和木糖,可以产生乳酸(基因改造示意图见图1),同时乳酸能够在MFC中为希瓦氏菌提高碳源和电子供体,不仅增加了希瓦氏菌可利用的碳源谱,而且酵母主要沉积在MFC底部,不与希瓦氏菌竞争碳布电极,减小了电池内阻,避免了肠杆菌容易与希瓦氏菌竞争碳布电极的问题。
在本发明具体实施方式中,所述重组酿酒酵母菌株以酿酒酵母BY4741为出发菌株进行重组改造。各基因的敲除和插入可通过构建上下游同源臂并借助酵母同源重组机制来完成,其中PDC1、PDC5、PDC6、ADHI、ADH4基因的敲除和LDH基因插入方法可参考专利201510516170.X。
在本发明具体实施方式中,所述LDH基因来源于牛,所述XR、XDH和XKS基因来源于毕赤酵母(依次如SEQ ID NO:1-3所示)。
基于本发明所述重组酿酒酵母的功能,本发明提出了所述重组酵母菌株在和希瓦氏菌联合MFC产电或制备MFC中的应用。在本发明具体实施方式中,本发明以所述重组酿酒酵母菌株和希瓦氏菌MR-1联合进行MFC发电,电化学效果显示,MFC的最大输出电压近300mV,每个产电周期均超过200小时,最大电流密度为168mA/m2,最大功率密度为58.2mW/m2,并且能够进行第二周期的产电,并与第一周期的产电效果基本一致。
此外,本发明还采用一种改造后的希瓦氏菌3C5与所述重组酿酒酵母菌株进行MFC产电,与上述和希瓦氏菌MR-1联合进行MFC发电的效果相比,最大输出电压增加至600mV以上。因此,本发明所述希瓦氏菌可优选为希瓦氏菌MR-1和/或希瓦氏菌3C5。
其中,所述希瓦氏菌3C5先体外合成flavin相关的五个基因ribA,ribD,ribE,ribH,ribC(来自枯草芽孢杆菌,合成之前在Jcat中先优化基因序列),将五个基因连到PYYDT载体上,构建好的质粒先转入WM3064大肠杆菌中,然后WM3064与希瓦氏菌MR-1结合转移,将构建好的质粒转入希瓦氏菌MR-1中。(WM3064为商业菌株,其生长需要在培养基中添加DAP(2,6-二氨基庚二酸),具体方法可参照文献Yang Y,Ding Y,HuY,et al.Enhancingbidirectionalelectron transfer of Shewanella oneidensis by asynthetic flavinpathway[J].ACS synthetic biology,2015,4(7):815-823.。
同时,本发明还分别采用了不同阳极液成分进行了MFC产电试验,结果显示,按照本发明阳极液成分MFC产电,采用本发明阳极液的MFC产电最高电压持续时间比采用对照阳极液的时间长,且库伦效率高(即U-t组成的面积更大)。
本发明还提供了一种混菌体系MFC产电的方法,包括:
步骤1、活化本发明所述重组酿酒酵母菌株以及希瓦氏菌;
步骤2、将所述重组酿酒酵母菌株以及希瓦氏菌倒入阳极液中采用双室MFC产电;
其中,所述阳极液由36.7g氨基酸混合物/l、6.7g/lYNB、0.02g/lHis、0.02g/lTrp、0.1g/lLeuM9缓冲液、0.4g/l葡萄糖和0.6g/l木糖组成。
作为优选,所述步骤1为:
将希瓦氏菌在LB培养基(含卡那霉素)里30℃,200rpm,过夜培养;过夜培养液按1:100比例转接入新的LB培养基里30℃,200rpm,培养10小时;
重组酿酒酵母转接到YPD培养基中,30℃,200rpm,培养48小时,1ml培养液转接入新的100mlYPD中,30℃,200rpm,培养36小时。
作为优选,所述重组酿酒酵母菌株以及希瓦氏菌在阳极液中的OD600值均为0.6。
作为优选,所述双室MFC的阴极液由50mM铁氰化钾、50mM磷酸氢二钾、50mM磷酸二氢钾和余量水组成。
作为优选,所述氨基酸混合物由以下组分组成:
0.5g腺嘌呤、2.0g丙氨酸、2.0g精氨酸、2.0g天冬酰胺、2.0g天冬氨酸、2.0g半胱氨酸、2.0g谷酰胺、2.0g赖氨酸、2.0g甲硫氨酸、0.2g对氨基苯甲酸、2.0g苯丙氨酸、2.0g脯氨酸、2.0g丝氨酸、2.0g谷氨酸、2.0g甘氨酸、2.0g肌醇、2.0g异亮氨酸、2.0g苏氨酸、2.0g酪氨酸和2.0g缬氨酸。
作为优选,所述双室MFC各参数如下:
阳极碳布电极大小为2.5cm×2.5cm,阴极碳布电极大小为2.5cm×3cm,双室之间用1M盐酸过夜浸泡的质子交换膜隔开,MFC放在30℃培养箱中,阴阳两极连接2KΩ的外电阻,阳极液充氮气除氧。
由以上技术方案可知,本发明构建了以葡萄糖和木糖为碳源的酵母-希瓦氏混菌体系,通过改造酿酒酵母,使其能够代谢葡萄糖和木糖,产生乳酸,在MFC中为希瓦氏菌提高碳源和电子供体,不仅增加了希瓦氏菌可利用的碳源谱,而且在电化学效果上也表现出较佳性能,为人类对生物质的研究和新能源转化方式鉴定基础。
附图说明
图1所示为所述重组酿酒酵母菌株基因改造构建示意图;
图2所示为重组酿酒酵母-希瓦氏菌MR-1的MFC电压图;
图3所示为重组酿酒酵母-希瓦氏菌MR-1的循环伏安图(CV,1mV/s);横坐标是电压,纵坐标为电流密度;
图4所示为重组酿酒酵母-希瓦氏菌MR-1的极化曲线;横坐标为电流密度,纵坐标为电压;
图5所示为重组酿酒酵母-希瓦氏菌MR-1的极化曲线;横坐标是电流密度,纵坐标为功率密度;
图6所示为重组酿酒酵母-希瓦氏菌MR-1以及重组酿酒酵母-希瓦氏菌3C5的MFC电压图;其中,A表示重组酿酒酵母-希瓦氏菌3C5的MFC电压图,即3C5+Y;B表示重组酿酒酵母-希瓦氏菌MR-1的MFC电压图,即MR-1+Y;
图7所示为电化学表征结果,从左至右依次为LSV图、电流密度-功率密度图和CV图;其中A表示3C5+Y的极化曲线和CV曲线;B表示MR-1+Y的极化曲线和CV曲线;
图8所示为不同总糖浓度的阳极液下重组酿酒酵母-希瓦氏菌MR-1的MFC电压图;其中,A表示总糖浓度为1g,B表示总糖浓度为2g,C表示总糖浓度为4g;
图9所示为不同组成阳极液下重组酿酒酵母-希瓦氏菌MR-1的MFC电压图;其中,A表示本发明阳极液,简写为SC;B表示为对照阳极液,简写为SD;
图10所示为仅代谢葡萄糖的酿酒酵母-改造过的希瓦氏菌46C的电化学表征图,SCRecomb表示改造后的可代谢葡萄糖的酿酒酵母,SORecomb表示改造后的希瓦氏菌46C;其中,A为CV图,B为LSV图,C为电流密度-功率密度图。
具体实施方式
本发明公开了一种重组酵母菌株以及微生物混菌产电的方法,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明所述菌株、方法和应用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的菌株、方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
下面结合实施例,进一步阐述本发明。
实施例1:本发明所述重组酿酒酵母菌株的构建
利用酿酒酵母BY4741为出发菌株,参考专利201510516170.X方法敲除基因PDC1、PDC5、PDC6、ADHI、ADH4,实现酿酒酵母乙醇途径的敲除,同时将牛源LDH基因插入到酵母基因组上,构建了产乳酸的路径。
通过导入毕赤酵母来源的XR、XDH和XKS基因(依次如SEQ ID NO:1-3所示),利用同源重组的方法插入到酿酒酵母基因组delta位点,构建了木糖利用途径。
实施例2:重组酿酒酵母-希瓦氏菌(Shewanella Oneidensis,MR-1)联合MFC产电
1、菌株活化
将含空质粒PYYDT的希瓦氏菌(Shewanella Oneidensis,MR-1,购自ATCC)从-80℃冰箱取出,在LB培养基(含卡那霉素)里30℃,200rpm,过夜培养。过夜培养液按1:100的比例转接入新的含卡那霉素和IPTG诱导剂的LB培养基里30℃,200rpm,培养10小时,测OD600,计算体积(MFC中OD600=0.6)倒入阳极液中。
实施例1中重组酵母储存在-80℃冰箱里,将其转接到YPD培养基中,30℃,200rpm,培养48小时,1ml培养液转接入100mlYPD中,30℃,200rpm,培养36小时后,计算体积,4000rpm离心5分钟,用阳极混合液重悬倒入阳极液中(MFC中OD600=0.6)。
2、MFC产电
实验装置采用双室MFC(150ml阳极液室和140ml阴极液室),阳极碳布电极大小为2.5cm×2.5cm,阴极碳布电极大小为2.5cm×3cm,双室之间用质子交换膜隔开,质子交换膜用之前用1M盐酸过夜浸泡,并保持在无菌的蒸馏水中。阳极液包含36.7g氨基酸混合物/l、6.7g/lYNB、0.02g/lHis、0.02g/l Trp、0.1g/lLeu、M9缓冲液、50μg/ml卡那霉素、0.4g/l葡萄糖和0.6g/l木糖。阴极液包含50mM铁氰化钾、50mM磷酸氢二钾和50mM磷酸二氢钾。MFC放在30℃培养箱中,阴阳两极连接2KΩ的外电阻。
所述氨基酸混合物由以下组分组成:
0.5g腺嘌呤、2.0g丙氨酸、2.0g精氨酸、2.0g天冬酰胺、2.0g天冬氨酸、2.0g半胱氨酸、2.0g谷酰胺、2.0g赖氨酸、2.0g甲硫氨酸、0.2g对氨基苯甲酸、2.0g苯丙氨酸、2.0g脯氨酸、2.0g丝氨酸、2.0g谷氨酸、2.0g甘氨酸、2.0g肌醇、2.0g异亮氨酸、2.0g苏氨酸、2.0g酪氨酸和2.0g缬氨酸。
3、电化学效果分析
循环伏安法(CV)以氯化银为参比电极,用多通道电化学工作站CHI1000C扫描,扫速为1mV/s。
线性扫描伏安法(LSV)从开路电压扫到-0.3V,扫速为0.1mV/s,仪器为多通道电化学工作站CHI1000C。
4、结果
由图2可以看出,所述重组酿酒酵母-希瓦氏菌(Shewanella Oneidensis,MR-1)联合MFC产电具备较佳的产电性能,第二周期的产电(待第一个周期电量降至50mV左右时换液,阳极液更换四分之一新液,阴极液全部换掉)性能与第一周期基本一致,最高输出电压近300mV,每个产电周期均超过200小时;
由图3-5可知,生物电化学分析可以进一步研究MFC中胞外电子传递效率。如图3所示,以1mV/s为扫速的循环伏安图(CV),从图中可以发现在-0.4V左右有明显的flavin的氧化还原峰(vs氯化银电极),这表明了电子载体flavin调节胞外电子转移是主要的电化学产物。图4和5是以为扫速为0.1mV/s的线性扫描伏安图(LSV)即极化曲线,从图上可以看出,MFC的最大电流密度为168mA/m2,最大功率密度为58.2mW/m2
实施例3:重组酿酒酵母-希瓦氏菌(Shewanella Oneidensis,MR-1)/希瓦氏菌(Shewanella Oneidensis,3C5)联合MFC产电对比
参照实施例2的产电方法和电化学分析方法进行MFC产电对比,结果见图6-7。
由图6结果可以看出,与和希瓦氏菌MR-1联合进行MFC发电的效果相比,采用希瓦氏菌3C5联合进行MFC发电,最大输出电压增加至600mV以上,呈极显著增加效果,并且在产电周期和第二周期(待第一个周期电量降至50mV左右时换液,阳极液更换四分之一新液,阴极液全部换掉)的电化学效果上也没有出现显著影响。
同时由图7可以看出,在最大电流密度和最大功率等方面的电化学效果上,用希瓦氏菌3C5联合进行MFC发电明显要优于希瓦氏菌MR-1联合产电。
实施例4:不同碳源浓度的阳极液的MFC产电对比
以实施例2阳极液为基础,更改总糖浓度分别是1g/l葡萄糖0.4g/l、木糖0.6g/l)、2g(葡萄糖0.8g/l、木糖1.2g/l)和4g(葡萄糖1.6g/l、木糖2.4g/l),然后参照实施例2方式进行MFC产电,结果见图8。
图8结果显示,总糖浓度为1g/l(葡萄糖0.4g/l、木糖0.6g/l)时,电池电压最高且周期最长。
实施例5:不同阳极液的MFC产电对比
1、本发明阳极液:实施例2阳极液(附图中图例为SC);
对照阳极液:1 g/L葡萄糖、6.7 g/L YNB、0.02 g/L Ura、0.02 g/L His、0.02 g/LTrp、0.1 g/L Leu、50μg/ml卡那霉素、0.01 mMIPTG和M9缓冲液(附图中图例为SD);
2、方法
在其他条件保持一致的前提下,按照1中不同阳极液以实施例2中的MFC产电方式产电。
3、结果
由图9可知,相同条件下,含SC的电池产电最高电压持续时间比含SD的时间长,且库伦效率高(即U-t组成的面积更大)。
实施例6:不同菌株在不同阳极液中的MFC产电(电化学功率密度)对比
对比菌株:按照专利201510516170.X构建的仅代谢葡萄糖的酿酒酵母+希瓦氏菌46C;阳极液:实施例5对照阳极液;其中,46C改造方法同3C5,区别在于导入的基因不同,具体如下:
将OprF基因(序列如SEQ ID NO:4所示)连到PYYDT载体上,构建好的质粒先转入WM3064大肠杆菌中,然后WM3064与希瓦氏菌MR-1结合转移,将构建好的质粒转入希瓦氏菌MR-1中。
本发明菌株:重组酿酒酵母+希瓦氏菌3C5;阳极液:实施例2阳极液;
在其他条件保持一致的前提下,以实施例2中的MFC产电方式产电,并记录电化学特征结果。
结果参见图7和图10,对比菌株的电化学效果整体不如本发明菌株,在功率密度结果上,对比菌株功率密度为123.4 mW/m2(图10中的C),而本发明菌株为238.5 mW/m2(图7中电流密度-功率密度图A)。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
序列表
<110> 天津大学
<120> 一种重组酵母菌株以及微生物混菌产电的方法
<130> MP1715586
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1235
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
cctcacttta gtttgtttca atcaccccta atactcttca cacaattaaa atgactgcta 60
acccttcctt ggtgttgaac aagatcgacg acatttcgtt cgaaacttac gatgccccag 120
aaatctctga acctaccgat gtcctcgtcc aggtcaagaa aaccggtatc tgtggttccg 180
acatccactt ctacgcccat ggtagaatcg gtaacttcgt tttgaccaag ccaatggtct 240
tgggtcacga atccgccggt actgttgtcc aggttggtaa gggtgtcacc tctcttaagg 300
ttggtgacaa cgtcgctatc gaaccaggta ttccatccag attctccgac gaatacaaga 360
gcggtcacta caacttgtgt cctcacatgg ccttcgccgc tactcctaac tccaaggaag 420
gcgaaccaaa cccaccaggt accttatgta agtacttcaa gtcgccagaa gacttcttgg 480
tcaagttgcc agaccacgtc agcttggaac tcggtgctct tgttgagcca ttgtctgttg 540
gtgtccacgc ctctaagttg ggttccgttg ctttcggcga ctacgttgcc gtctttggtg 600
ctggtcctgt tggtcttttg gctgctgctg tcgccaagac cttcggtgct aagggtgtca 660
tcgtcgttga cattttcgac aacaagttga agatggccaa ggacattggt gctgctactc 720
acaccttcaa ctccaagacc ggtggttctg aagaattgat caaggctttc ggtggtaacg 780
tgccaaacgt cgttttggaa tgtactggtg ctgaaccttg tatcaagttg ggtgttgacg 840
ccattgcccc aggtggtcgt ttcgttcaag tcggtaacgc tgctggtcca gtcagcttcc 900
caatcaccgt tttcgccatg aaggaattga ctttgttcgg ttctttcaga tacggattca 960
acgactacaa gactgctgtt ggaatctttg acactaacta ccaaaacggt agagaaaatg 1020
ctccaattga ctttgaacaa ttgatcaccc acagatacaa gttcaaggac gctattgaag 1080
cctacgactt ggtcagagcc ggtaagggtg ctgtcaagtg tctcattgac ggccctgagt 1140
aagtcaaccg cttggctggc ccaaagtgaa ccagaaacga aaatgattat caaatagctt 1200
tatagacctt tatccaaatt tatgtaaact aatag 1235
<210> 2
<211> 960
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atgccatcca tcaagttgaa ctctggttat gatatgccag ctgttggttt tggttgttgg 60
aaagttgatg ttgatacctg ttccgaacaa atctacagag ctattaagac cggttacaga 120
ttattcgatg gtgctgaaga ttacgccaac gaaaaattgg ttggtgctgg tgttaagaag 180
gctattgacg aaggtatcgt caagagagaa gatttgttct tgacctctaa gttgtggaac 240
aactaccatc atccagataa cgttgaaaag gctttgaaca gaaccttgtc tgacttgcaa 300
gttgattacg ttgacttgtt cttgatccat ttcccagtta ccttcaagtt cgttccattg 360
gaagaaaagt acccaccagg tttttactgt ggtaagggtg ataacttcga ctatgaagat 420
gtcccaattt tggaaacttg gaaggctttg gaaaagttgg ttaaggccgg taagattaga 480
tccattggtg tttctaattt cccaggtgct ttgttgttgg atttgttgag aggtgctacc 540
attaagccat ccgttttaca agttgaacac catccatact tgcaacaacc tagattgatc 600
gaatttgctc aatccagagg tattgctgtt actgcttact cttcttttgg tccacaatcc 660
ttcgtcgaat tgaatcaagg tagagctttg aacacctctc ctttgtttga aaacgaaacc 720
attaaggcta ttgctgctaa gcacggtaaa tctccagctc aagttttgtt gagatggtca 780
tctcaaagag gtattgccat tattccaaag tctaacaccg tcccaagatt attggaaaac 840
aaggatgtta actccttcga cttggatgaa caagatttcg ctgatattgc caagttggac 900
atcaacttga gattcaatga tccatgggat tgggataaga tcccaatttt cgtctaatga 960
<210> 3
<211> 1803
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atgttgtgtt cagtaattca gagacagaca agagaggttt ccaacacaat gtctttagac 60
tcatactatc ttgggtttga tctttcgacc caacaactga aatgtctcgc cattaaccag 120
gacctaaaaa ttgtccattc agaaacagtg gaatttgaaa aggatcttcc gcattatcac 180
acaaagaagg gtgtctatat acacggcgac actatcgaat gtcccgtagc catgtggtta 240
gaggctctag atctggttct ctcgaaatat cgcgaggcta aatttccatt gaacaaagtt 300
atggccgtct cagggtcctg ccagcagcac gggtctgtct actggtcctc ccaagccgaa 360
tctctgttag agcaattgaa taagaaaccg gaaaaagatt tattgcacta cgtgagctct 420
gtagcatttg caaggcaaac cgcccccaat tggcaagacc acagtactgc aaagcaatgt 480
caagagtttg aagagtgcat aggtgggcct gaaaaaatgg ctcaattaac agggtccaga 540
gcccatttta gatttactgg tcctcaaatt ctgaaaattg cacaattaga accagaagct 600
tacgaaaaaa caaagaccat ttctttagtg tctaattttt tgacttctat cttagtgggc 660
catcttgttg aattagagga ggcagatgcc tgtggtatga acctttatga tatacgtgaa 720
agaaaattca gtgatgagct actacatcta attgatagtt cttctaagga taaaactatc 780
agacaaaaat taatgagagc acccatgaaa aatttgatag cgggtaccat ctgtaaatat 840
tttattgaga agtacggttt caatacaaac tgcaaggtct ctcccatgac tggggataat 900
ttagccacta tatgttcttt acccctgcgg aagaatgacg ttctcgtttc cctaggaaca 960
agtactacag ttcttctggt caccgataag tatcacccct ctccgaacta tcatcttttc 1020
attcatccaa ctctgccaaa ccattatatg ggtatgattt gttattgtaa tggttctttg 1080
gcaagggaga ggataagaga cgagttaaac aaagaacggg aaaataatta tgagaagact 1140
aacgattgga ctctttttaa tcaagctgtg ctagatgact cagaaagtag tgaaaatgaa 1200
ttaggtgtat attttcctct gggggagatc gttcctagcg taaaagccat aaacaaaagg 1260
gttatcttca atccaaaaac gggtatgatt gaaagagagg tggccaagtt caaagacaag 1320
aggcacgatg ccaaaaatat tgtagaatca caggctttaa gttgcagggt aagaatatct 1380
cccctgcttt cggattcaaa cgcaagctca caacagagac tgaacgaaga tacaatcgtg 1440
aagtttgatt acgatgaatc tccgctgcgg gactacctaa ataaaaggcc agaaaggact 1500
ttttttgtag gtggggcttc taaaaacgat gctattgtga agaagtttgc tcaagtcatt 1560
ggtgctacaa agggtaattt taggctagaa acaccaaact catgtgccct tggtggttgt 1620
tataaggcca tgtggtcatt gttatatgac tctaataaaa ttgcagttcc ttttgataaa 1680
tttctgaatg acaattttcc atggcatgta atggaaagca tatccgatgt ggataatgaa 1740
aattgggatc gctataattc caagattgtc cccttaagcg aactggaaaa gactctcatc 1800
taa 1803
<210> 4
<211> 1121
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
gcagaattcg cggccgcttc tagagaaaga ggagaaatac tagagatgaa attaaaaaac 60
actttaggtg ttgttatcgg ttctttagtt gctgcttctg ctatgaacgc tttcgctcaa 120
ggtcaaaact ctgttgaaat cgaagctttc ggtaaacgtt acttcactga ttctgttcgt 180
aacatgaaaa acgctgattt atacggtggt tctatcggtt acttcttaac tgatgatgtt 240
gaattagctt tatcttacgg tgaataccac gatgttcgtg gtacttacga aactggtaac 300
aaaaaagttc acggtaactt aacttcttta gatgctatct accacttcgg tactccaggt 360
gttggtttac gtccatacgt ttctgctggt ttagctcacc aaaacatcac taacatcaac 420
tctgattctc aaggtcgtca acaaatgact atggctaaca tcggtgctgg tttaaaatac 480
tacttcactg aaaacttctt cgctaaagct tctttagatg gtcaatacgg tttagaaaaa 540
cgtgataacg gtcaccaagg tgaatggatg gctggtttag gtgttggttt caacttcggt 600
ggttctaaag ctgctccagc tccagaacca gttgctgatg tttgttctga ttctgataac 660
gatggtgttt gtgataacgt tgataaatgt ccagatactc cagctaacgt tactgttgat 720
gctaacggtt gtccagctgt tgctgaagtt gttcgtgttc aattagatgt taaattcgat 780
ttcgataaat ctaaagttaa agaaaactct tacgctgata tcaaaaactt agctgatttc 840
atgaaacaat acccatctac ttctactact gttgaaggtc acactgattc tgttggtact 900
gatgcttaca accaaaaatt atctgaacgt cgtgctaacg ctgttcgtga tgttttagtt 960
aacgaatacg gtgttgaagg tggtcgtgtt aacgctgttg gttacggtga atctcgtcca 1020
gttgctgata acgctactgc tgaaggtcgt gctatcaacc gtcgtgttga agctgaagtt 1080
gaagctgaag ctaaataata ctagtagcgg ccgcctgcag g 1121

Claims (12)

1.一种重组酵母菌株,其特征在于,所述重组酵母菌株的PDC1、PDC5、PDC6、ADHI、ADH4基因被敲除,并插入LDH、XR、XDH和XKS基因。
2.根据权利要求1所述重组酵母菌株,其特征在于,所述重组酵母菌株以酿酒酵母BY4741为出发菌株。
3.根据权利要求1所述重组酵母菌株,其特征在于,所述LDH基因来源于牛。
4.根据权利要求1所述重组酵母菌株,其特征在于,所述XR、XDH和XKS基因来源于毕赤酵母。
5.权利要求1-4任意一项所述重组酵母菌株在和希瓦氏菌联合MFC产电或制备MFC中的应用。
6.根据权利要求5所述应用,其特征在于,所述希瓦氏菌为希瓦氏菌MR-1和/或希瓦氏菌3C5。
7.一种混菌体系MFC产电的方法,其特征在于,包括:
步骤1、活化权利要求1-4任意一项所述重组酿酒酵母菌株以及希瓦氏菌;
步骤2、将所述重组酿酒酵母菌株以及希瓦氏菌倒入阳极液中采用双室MFC产电;
其中,所述阳极液由36.7g氨基酸混合物/l、6.7g/l YNB、0.02g/l His、0.02g/l Trp、0.1g/l Leu、M9缓冲液、0.4g/l葡萄糖和0.6g/l木糖组成。
8.根据权利要求7所述方法,其特征在于,步骤1为:
将希瓦氏菌在LB培养基里30℃,200rpm,过夜培养;过夜培养液按1:100比例转接入新的LB培养基里30℃,200rpm,培养10小时;
重组酿酒酵母转接到YPD培养基中,30℃,200rpm,培养48小时,1ml培养液转接入新的100mlYPD中,30℃,200rpm,培养36小时。
9.根据权利要求7所述方法,其特征在于,所述重组酿酒酵母菌株以及希瓦氏菌在阳极液中的OD600值均为0.6。
10.根据权利要求7所述方法,其特征在于,所述双室MFC的阴极液由50mM铁氰化钾、50mM磷酸氢二钾、50mM磷酸二氢钾和余量水组成。
11.根据权利要求7所述方法,其特征在于,所述氨基酸混合物由以下组分组成:
0.5g腺嘌呤、2.0g丙氨酸、2.0g精氨酸、2.0g天冬酰胺、2.0g天冬氨酸、2.0g半胱氨酸、2.0g谷酰胺、2.0g赖氨酸、2.0g甲硫氨酸、0.2g对氨基苯甲酸、2.0g苯丙氨酸、2.0g脯氨酸、2.0g丝氨酸、2.0g谷氨酸、2.0g甘氨酸、2.0g肌醇、2.0g异亮氨酸、2.0g苏氨酸、2.0g酪氨酸和2.0g缬氨酸。
12.根据权利要求7所述方法,其特征在于,所述双室MFC各参数如下:
阳极碳布电极大小为2.5cm×2.5cm,阴极碳布电极大小为2.5cm×3cm,双室之间用1M盐酸过夜浸泡的质子交换膜隔开,MFC放在30℃培养箱中,阴阳两极连接2KΩ的外电阻,阳极液充氮气赶走MFC中氧气。
CN201711128925.4A 2017-11-15 2017-11-15 一种重组酵母菌株以及微生物混菌产电的方法 Expired - Fee Related CN107916235B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711128925.4A CN107916235B (zh) 2017-11-15 2017-11-15 一种重组酵母菌株以及微生物混菌产电的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711128925.4A CN107916235B (zh) 2017-11-15 2017-11-15 一种重组酵母菌株以及微生物混菌产电的方法

Publications (2)

Publication Number Publication Date
CN107916235A true CN107916235A (zh) 2018-04-17
CN107916235B CN107916235B (zh) 2020-12-18

Family

ID=61896378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711128925.4A Expired - Fee Related CN107916235B (zh) 2017-11-15 2017-11-15 一种重组酵母菌株以及微生物混菌产电的方法

Country Status (1)

Country Link
CN (1) CN107916235B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550882A (zh) * 2018-04-02 2018-09-18 南京工业大学 一种利用酵母产海藻糖制备生物燃料电池的方法
CN111320266A (zh) * 2020-02-28 2020-06-23 江苏大学 一种低碳源成本的染料厌氧生物脱色体系及方法
CN112410233A (zh) * 2019-08-21 2021-02-26 远东新世纪股份有限公司 重组型假丝酵母菌菌株及其制备方法与用途
CN114410672A (zh) * 2022-01-12 2022-04-29 天津大学(青岛)海洋工程研究院有限公司 希瓦氏菌中木糖和葡萄糖共利用代谢的构建方法
CN114540395A (zh) * 2022-01-10 2022-05-27 天津大学(青岛)海洋工程研究院有限公司 希瓦氏菌中木糖利用代谢的构建方法
CN115725490A (zh) * 2022-10-19 2023-03-03 天津大学 一种合成与分泌高效电子传递载体吩嗪-1-羧酸的重组希瓦氏菌株构建方法及用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060217A (zh) * 2012-11-29 2013-04-24 天津大学 一株高效代谢木糖的重组酵母菌株及用途
CN105087407A (zh) * 2015-08-20 2015-11-25 天津大学 一种酿酒酵母工程菌株及其制备方法、应用、发酵培养方法
CN106754456A (zh) * 2015-11-20 2017-05-31 天津大学 含有该混合菌群的微生物产电体系和微生物燃料电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060217A (zh) * 2012-11-29 2013-04-24 天津大学 一株高效代谢木糖的重组酵母菌株及用途
CN105087407A (zh) * 2015-08-20 2015-11-25 天津大学 一种酿酒酵母工程菌株及其制备方法、应用、发酵培养方法
CN106754456A (zh) * 2015-11-20 2017-05-31 天津大学 含有该混合菌群的微生物产电体系和微生物燃料电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI FENG ET AL: "Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell", 《BIOTECHNOLOGY FOR BIOFUELS》 *
LIN TONG ET AL: "Synthetic saccharomyces cerevisiae-shewanella oneidensis consortium enables glucose-fed high-performance microbial fuel cell", 《AMERICAN INSTITUTE OF CHEMICAL ENGINEERS》 *
YANG YUN ET AL: "Enhancing bidrectional electron transfer of shewanella oneidensis by a synthetic flavin pathway", 《AMERICAN CHEMICAL SOCIETY》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550882A (zh) * 2018-04-02 2018-09-18 南京工业大学 一种利用酵母产海藻糖制备生物燃料电池的方法
CN112410233A (zh) * 2019-08-21 2021-02-26 远东新世纪股份有限公司 重组型假丝酵母菌菌株及其制备方法与用途
CN112410233B (zh) * 2019-08-21 2021-11-02 远东新世纪股份有限公司 重组型假丝酵母菌菌株及其制备方法与用途
CN111320266A (zh) * 2020-02-28 2020-06-23 江苏大学 一种低碳源成本的染料厌氧生物脱色体系及方法
CN114540395A (zh) * 2022-01-10 2022-05-27 天津大学(青岛)海洋工程研究院有限公司 希瓦氏菌中木糖利用代谢的构建方法
CN114410672A (zh) * 2022-01-12 2022-04-29 天津大学(青岛)海洋工程研究院有限公司 希瓦氏菌中木糖和葡萄糖共利用代谢的构建方法
CN114410672B (zh) * 2022-01-12 2023-11-07 天津大学(青岛)海洋工程研究院有限公司 希瓦氏菌中木糖和葡萄糖共利用代谢的构建方法
CN115725490A (zh) * 2022-10-19 2023-03-03 天津大学 一种合成与分泌高效电子传递载体吩嗪-1-羧酸的重组希瓦氏菌株构建方法及用途

Also Published As

Publication number Publication date
CN107916235B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
CN107916235A (zh) 一种重组酵母菌株以及微生物混菌产电的方法
Hassan et al. Electricity generation from rice straw using a microbial fuel cell
Jafary et al. Assessment of bioelectricity production in microbial fuel cells through series and parallel connections
Marshall et al. Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica
Sharma et al. Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC)
Mohan et al. Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia
Hassan et al. Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell
Miran et al. Sustainable electricity generation by biodegradation of low-cost lemon peel biomass in a dual chamber microbial fuel cell
CN108531500B (zh) 一种重组质粒以及重组希瓦氏菌和mfc产电的方法
CN103290425B (zh) 产氢微生物电解池及其生物阴极驯化方法
CN106754589B (zh) 混合菌群及其用途、含有该混合菌群的微生物产电体系和微生物燃料电池
Klein et al. Microbe–Anode Interactions: Comparing the impact of genetic and material engineering approaches to improve the performance of microbial electrochemical systems (MES)
Bai et al. Engineering synthetic microbial consortium for efficient conversion of lactate from glucose and xylose to generate electricity
CN106754456B (zh) 含有该混合菌群的微生物产电体系和微生物燃料电池
Li et al. A high performance xylose microbial fuel cell enabled by Ochrobactrum sp. 575 cells
Gupta et al. Design of a microbial fuel cell and its transition to microbial electrolytic cell for hydrogen production by electrohydrogenesis
Pal et al. Production of biofuels in a microbial electrochemical reactor
CN106754457B (zh) 混合菌群及其用途、含有该混合菌群的微生物产电体系和微生物燃料电池
CN208328042U (zh) 利用可再生能源和生物质耦合制取可燃性气体的系统
Siagian et al. The influence of biofilm formation on electricity production from tempe wastewater using tubular membraneless microbial fuel cell reactor
CN113249373A (zh) 一种直流电场刺激重组大肠杆菌提高氢气效率的方法
Chen et al. Improving conversion efficiency of solar energy to electricity in cyanobacterial PEMFC by high levels of photo-H2 production
CN105655598B (zh) 一种原位固定化微生物燃料电池阳极微生物的方法
CN115976089B (zh) 一种工程强化希瓦氏菌囊泡分泌提高电能输出的方法
Hu et al. Study on reduction of carbon dioxide to produce acetic acid and butyric acid by microbial electrosynthesis with response surface analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201218