CN107915262A - 一种二维超薄氢氧化物的制备方法 - Google Patents
一种二维超薄氢氧化物的制备方法 Download PDFInfo
- Publication number
- CN107915262A CN107915262A CN201711089579.3A CN201711089579A CN107915262A CN 107915262 A CN107915262 A CN 107915262A CN 201711089579 A CN201711089579 A CN 201711089579A CN 107915262 A CN107915262 A CN 107915262A
- Authority
- CN
- China
- Prior art keywords
- transition metal
- hydroxide
- preparation
- dimensional ultrathin
- simple substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/04—Oxides; Hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本发明公开了一种二维超薄氢氧化物的制备方法,所述氢氧化物材料是将新鲜制备的过渡金属单质,在温和条件下在水溶液中氧化得到的。该氢氧化物具有二维超薄层状结构。在制备的过程中,可以在该材料中原位掺杂一种或多种异相原子。该方法成本低、制备工艺简单、生产周期短、溶剂可重复利用,适用于工业生产。
Description
技术领域
本发明属于无机纳米材料的制备和合成领域,涉及一种二维超薄氢氧化物的制备方法,具体说,就是在温和条件下将新鲜制备得到的过渡金属单质氧化,得到具有二维超薄结构的过渡金属氢氧化物。
背景技术
二维层状材料具有横向尺寸大,厚度小等特点,在催化、储能、电化学、离子交换、药物递送等诸多方面都表现出良好的应用前景。传统的二维层状氢氧化物主要以类水滑石化合物(LDHs)为主。其结构类似于Mg(OH)2,由金属-氧八面体共边连接而成层状主体,层间包括一些能够平衡正电荷的阴离子和溶剂分子。
二维层状氢氧化物的制备主要通过剥离LDHs来实现。该方法需要先合成LDHs,然后通过离子交换与层板间结合力较弱的阴离子插层LDH,再进行剥离得到产物。整个制备过程步骤繁琐,所需时间较长,且需要高温水热(专利CN201410475989.1 ,专利CN201710111634.8)。
如何在温和条件下,直接制备二维层状氢氧化物材料尚未见文献报道。
发明内容
本发明的目的是针对现有技术所存在的不足而提供的一种二维超薄氢氧化物制备方法,该方法简单易行,成本低廉,无需高温或水热过程;所得到的材料具有二维超薄的结构。
为实现上述发明目的,本发明采用的技术方案如下:
一种二维超薄氢氧化物的制备方法,该方法包括以下具体步骤:
步骤1:将过渡金属盐分散在水或者有机溶剂中,置于三口反应容器中;
步骤2:在搅拌条件下,通惰性气体15-20分钟;
步骤3:滴加还原剂的水溶液或者有机溶液,反应25-30分钟;
步骤4:离心,收集固体,得过渡金属单质;
步骤5:将收集得到的过渡金属单质分散在去离子水中,或者再加入过量氧化剂,并于20~50℃搅拌反应2~96小时;所述固体与液体的质量比为1:10~100;
步骤6:离心,收集固体,冷冻、干燥,得到所述二维超薄氢氧化物;其中:
所述过渡金属盐为过渡金属卤化物、硝酸盐、硫酸盐或碳酸盐;
所述有机溶剂为甲醇、乙醇、正丙醇和正丁醇中的一种或数种;
所述还原剂为水合肼、硼氢化钠、硼氢化钾或草酸;还原剂溶液的浓度为0.1~1 mol L-1;
所述氧化剂为过氧化氢、氧气、臭氧或次氯酸钠;氧化剂与过渡金属盐的摩尔比为5:1~10:1。
所述的过渡金属单质为铁、钴、镍、铜、锰。
本发明提供的二维超薄氢氧化物的制备方法,该方法简单易行,成本低廉,无需高温或水热过程。所得到的材料具有二维超薄的结构。
附图说明
图1为本发明实施例1制备得到材料的TEM图;
图2为本发明实施例2制备得到材料的TEM图;
图3为本发明实施例3制备得到材料的TEM图。
具体实施方式
下面通过实施例来进一步说明本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
实施例1
按照技术方案和工艺流程所述。向三颈烧瓶中加入2 mmol CoCl2·H2O, 20 mL去离子水,超声溶解。向三颈烧瓶通Ar气20 min。将含有4 mmol NaBH4的水溶液逐滴加入到三颈烧瓶中,并反应20 min。将烧瓶中的固体离心洗涤,并分散在100 mL水中。缓慢滴加过氧化氢溶液5 mL,并反应24 h。将固体离心洗涤并冷冻干燥,即可得到具有二维超薄层状结构的Co(OH)2材料。所得材料的TEM照片如图1所示。
实施例2
按照技术方案和工艺流程所述。向三颈烧瓶中加入2 mmol CoCl2·H2O和0.05 mmolCuCl2,20 mL去离子水,超声溶解。向三颈烧瓶通Ar气20 min。将含有4 mmol NaBH4的乙醇溶液逐滴加入到三颈烧瓶中,并反应20 min。将烧瓶中的固体离心洗涤,并分散在100 mL水中。缓慢滴加过氧化氢溶液5 mL,并反应24 h。将固体离心洗涤并冷冻干燥,即可得到具有二维超薄层状结构的Cu掺杂的Co(OH)2材料。所得材料的TEM照片如图2所示。
实施例3
按照技术方案和工艺流程所述。向三颈烧瓶中加入2 mmolCoCl2·H2O和0.05 mmolMnCl2, 20 mL去离子水,超声溶解。向三颈烧瓶通Ar气20 min。将含有4 mmol NaBH4的水溶液逐滴加入到三颈烧瓶中,并反应20 min。将烧瓶中的固体离心洗涤,并分散在100 mL水中,反应24 h。将固体离心洗涤并冷冻干燥,即可得到具有二维超薄层状结构的Mn掺杂的Co(OH)2材料。所得材料的TEM照片如图3所示。
最后有必要说明的是,以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。
Claims (2)
1.一种二维超薄氢氧化物的制备方法,其特征在于,该方法包括以下具体步骤:
步骤1:将过渡金属盐分散在水或者有机溶剂中,置于三口反应容器中;
步骤2:在搅拌条件下,通惰性气体15-20分钟;
步骤3:滴加还原剂的水溶液或者有机溶液,反应25-30分钟;
步骤4:离心,收集固体,得过渡金属单质;
步骤5:将收集得到的过渡金属单质分散在去离子水中,或者再加入过量氧化剂,并于20~50℃搅拌反应2~96小时;所述固体与液体的质量比为1:10~100;
步骤6:离心,收集固体,冷冻、干燥,得到所述二维超薄氢氧化物;其中:
所述过渡金属盐为过渡金属卤化物、硝酸盐、硫酸盐或碳酸盐;
所述有机溶剂为甲醇、乙醇、正丙醇和正丁醇中的一种或几种;
所述还原剂为水合肼、硼氢化钠、硼氢化钾或草酸;还原剂溶液的浓度为0.1~1 mol L-1;
所述氧化剂为过氧化氢、氧气、臭氧或次氯酸钠;氧化剂与过渡金属盐的摩尔比为5:1~10:1。
2.根据权利要求1所述的二维超薄氢氧化物的制备方法,其特征在于,所述的过渡金属单质为铁、钴、镍、铜、锰。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711089579.3A CN107915262A (zh) | 2017-11-08 | 2017-11-08 | 一种二维超薄氢氧化物的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711089579.3A CN107915262A (zh) | 2017-11-08 | 2017-11-08 | 一种二维超薄氢氧化物的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107915262A true CN107915262A (zh) | 2018-04-17 |
Family
ID=61895271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711089579.3A Pending CN107915262A (zh) | 2017-11-08 | 2017-11-08 | 一种二维超薄氢氧化物的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107915262A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110339838A (zh) * | 2019-06-28 | 2019-10-18 | 华东师范大学 | 一种过渡金属掺杂纳米α-氢氧化钴材料的制备方法及应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102796999A (zh) * | 2012-08-02 | 2012-11-28 | 黑龙江大学 | 一种二维自支持过渡金属超薄片的制备方法 |
CN103433044A (zh) * | 2013-08-27 | 2013-12-11 | 安徽大学 | 一种钴-镍双金属氢氧化物纳米复合物的制备方法 |
CN103911646A (zh) * | 2014-03-28 | 2014-07-09 | 燕山大学 | 一种氢氧化钴薄膜的制备方法 |
CN105460984A (zh) * | 2014-09-05 | 2016-04-06 | 中国科学院兰州化学物理研究所 | 一种制备氢氧化镍量子点的方法 |
CN105536814A (zh) * | 2015-12-08 | 2016-05-04 | 北京有色金属研究总院 | 一种核壳结构催化剂的制备方法 |
-
2017
- 2017-11-08 CN CN201711089579.3A patent/CN107915262A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102796999A (zh) * | 2012-08-02 | 2012-11-28 | 黑龙江大学 | 一种二维自支持过渡金属超薄片的制备方法 |
CN103433044A (zh) * | 2013-08-27 | 2013-12-11 | 安徽大学 | 一种钴-镍双金属氢氧化物纳米复合物的制备方法 |
CN103911646A (zh) * | 2014-03-28 | 2014-07-09 | 燕山大学 | 一种氢氧化钴薄膜的制备方法 |
CN105460984A (zh) * | 2014-09-05 | 2016-04-06 | 中国科学院兰州化学物理研究所 | 一种制备氢氧化镍量子点的方法 |
CN105536814A (zh) * | 2015-12-08 | 2016-05-04 | 北京有色金属研究总院 | 一种核壳结构催化剂的制备方法 |
Non-Patent Citations (4)
Title |
---|
刘正超: "《染化药剂》", 31 March 1974, 轻工业出版社 * |
化学工业部天津化工研究院等编: "《化工产品手册 无机化工产品》", 31 August 1983 * |
杨保祥等: "《钛基材料制造》", 31 January 2015, 冶金工业出版社 * |
武志刚等: "室温下肼还原法制备纳米镍的研究", 《中北大学学报(自然科学版)》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110339838A (zh) * | 2019-06-28 | 2019-10-18 | 华东师范大学 | 一种过渡金属掺杂纳米α-氢氧化钴材料的制备方法及应用 |
CN110339838B (zh) * | 2019-06-28 | 2022-02-11 | 华东师范大学 | 一种过渡金属掺杂纳米α-氢氧化钴材料的制备方法及应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | Engineering pristine 2D metal–organic framework nanosheets for electrocatalysis | |
Li et al. | Chemical properties, structural properties, and energy storage applications of Prussian blue analogues | |
Gao et al. | Recent development of Ni/Fe‐based micro/nanostructures toward photo/electrochemical water oxidation | |
Li et al. | Advances in CoP electrocatalysts for water splitting | |
Zhang et al. | Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction | |
Wang et al. | Insights into efficient transition metal-nitrogen/carbon oxygen reduction electrocatalysts | |
Gao et al. | Nanostructured heterogeneous catalysts for electrochemical reduction of CO2 | |
Bunker et al. | Nanoparticles for hydrogen generation | |
Zou et al. | Defective metal–organic framework derivative by room-temperature exfoliation and reduction for highly efficient oxygen evolution reaction | |
Xu et al. | Novel urchin-like Co5Mn-LDH hierarchical nanoarrays: Formation mechanism and its performance in PMS activation and norfloxacin degradation | |
Nabid et al. | Hydrogen release from sodium borohydride by Fe2O3@ nitrogen-doped carbon core-shell nanosheets as reasonable heterogeneous catalyst | |
CN107486233A (zh) | 一种氮化碳掺杂碳基钴氧化物纳米催化剂的制备方法和应用 | |
Liu et al. | 3D freestanding flower-like nickel-cobalt layered double hydroxides enriched with oxygen vacancies as efficient electrocatalysts for water oxidation | |
Gao et al. | Defect-rich cobalt pyrophosphate hybrids decorated Cd0. 5Zn0. 5S for efficient photocatalytic hydrogen evolution: Defect and interface engineering | |
CN101780414A (zh) | 一种PtRuNi/C三元合金纳米催化剂及其制备方法 | |
Wang et al. | Metal–organic framework composites from a mechanochemical process | |
Behera et al. | Critical role of interface design in acceleration of overall water splitting and hybrid electrolysis process: state of the art and perspectives | |
Wang et al. | Porous Co–P–Pd nanotube arrays for hydrogen generation by catalyzing the hydrolysis of alkaline NaBH 4 solution | |
Zhao et al. | Borate-modulated amorphous NiFeB nanocatalysts as highly active and stable electrocatalysts for oxygen evolution reaction | |
Chen et al. | Improving oxygen evolution reaction activity by constructing core-shell structure of Co/N-doped carbon polyhedron@ NiCo layered double hydroxides | |
Du et al. | Recent progress in electrochemical synthesis of carbon-free hydrogen carrier ammonia and ammonia fuel cells: A review | |
Li et al. | Co–N2 Bond Precisely Connects the Conduction Band and Valence Band of g‐C3N4/CoCo‐LDH to Enhance Photocatalytic CO2 Activity by High‐Efficiency S‐Scheme | |
CN107915262A (zh) | 一种二维超薄氢氧化物的制备方法 | |
Jin et al. | Trace Cr (OH) 3 modified α-MnO2 electrocatalyst intercalated by Ag+ with superior activity and stability for oxygen reduction reaction | |
Li et al. | An in-depth understanding of fast interfacial electron transfer in amide-bonded photocatalyst for boosting photoreduction of CO2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180417 |
|
RJ01 | Rejection of invention patent application after publication |