CN107907965B - 一种调节微透镜阵列焦距的方法及装置 - Google Patents

一种调节微透镜阵列焦距的方法及装置 Download PDF

Info

Publication number
CN107907965B
CN107907965B CN201711204830.6A CN201711204830A CN107907965B CN 107907965 B CN107907965 B CN 107907965B CN 201711204830 A CN201711204830 A CN 201711204830A CN 107907965 B CN107907965 B CN 107907965B
Authority
CN
China
Prior art keywords
micro
array
lens array
focal length
micro lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711204830.6A
Other languages
English (en)
Other versions
CN107907965A (zh
Inventor
马文英
汪为民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu University of Information Technology
Original Assignee
Chengdu University of Information Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu University of Information Technology filed Critical Chengdu University of Information Technology
Priority to CN201711204830.6A priority Critical patent/CN107907965B/zh
Publication of CN107907965A publication Critical patent/CN107907965A/zh
Application granted granted Critical
Publication of CN107907965B publication Critical patent/CN107907965B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens

Abstract

本发明涉及微光学元件技术领域,具体涉及一种调节微透镜阵列焦距的方法及装置,包括设有微透镜阵列,微透镜阵列设有微透镜,其特征在于:还设有微镜阵列,微镜阵列设有微镜,所述微镜阵列的每个微镜沿光轴前后移动,从而改变聚焦光斑的位置,实现对与之对应的微透镜焦距的调节和改变。应用本方法的装置中包括一个微透镜阵列和一个微镜阵列,二者具有相同的单元间距。入射平行光将首先穿过微透镜阵列,继而被微镜阵列反射,反向穿过微透镜阵列,最终汇聚为一个光斑阵列,且其单元间距同样与微透镜阵列的单元间距相等。本发明解决了微透镜阵列无法调焦的问题,且方法简单、操作方便。

Description

一种调节微透镜阵列焦距的方法及装置
技术领域
本发明涉及微光学元件技术领域,具体涉及一种调节微透镜阵列焦距的方法及装置。
背景技术
用于将光束进行分割并分别聚焦的微透镜阵列是微光学领域的重要器件之一,在光通信、光计算、光互连、光电探测阵列、成像、光束整形与控制、光显示、传感等诸多领域有广泛应用。
微透镜阵列是由通光孔径及浮雕深度为微米级的透镜组成的阵列,即相同的透镜按一定的周期排列在一个平面上,便构成了透镜阵列,它不仅具有传统透镜的聚焦、成像等基本功能,而且具有单元尺寸小、集成度高的特点,使得它能够完成传统光学元件无法完成的功能,并能构成许多新型的光学系统。
目前大多数微透镜阵列在加工制作完成后其焦距是固定的,因而光学性能与功能也就完全确定,不能进行调控。由于控制的需要,近年来可调焦微透镜逐渐出现,但是目前的可调焦微透镜是通过力、热、电等手段改变镜面形状实现对焦点的调节,如液体型可调焦微透镜,结构复杂且体积大;另外,采用热膨胀方式改变镜面曲率的方案实施中有通电、发热、膨胀、散热、收缩的过程,其中尤其散热过程速度较慢,且受环境温度影响很大;采用液晶空间光调制器等方案的微镜由于液晶分子的极慢响应速度因而调节速度更慢。
发明内容
为了解决以上技术问题,本发明提供一种调节微透镜阵列焦距的方法及装置,调焦方法简单、方便,解决目前可调焦微透镜结构复杂且不存在可调焦微透镜阵列的问题。
解决以上技术问题的本发明中的一种调节微透镜阵列焦距的方法,包括设有微透镜阵列,微透镜阵列设有微透镜,其特征在于:还设有微镜阵列,微镜阵列设有微镜,所述微镜阵列的每个微镜沿光轴前后移动,从而改变聚焦光斑的位置,实现对与之对应的微透镜焦距的调节和改变。
所述前后移动的微镜数量≥1。
所述微镜同时调节焦距,调节量可相等或不等。
所述微镜数量为1时,即整体一块,通过改变微镜的位置达到同时调节微透镜阵列中所有微透镜焦距的目的。
所述微透镜为折射型或衍射型。
本发明中调节微透镜阵列焦距的装置包括一个微透镜阵列和一个微镜阵列,微透镜阵列和微镜阵列具有相同的单元间距,入射光经过微透镜阵列后被分割并汇聚,然后入射到微镜阵列表面并被反射,从而重新穿过微透镜阵列并最终在微透镜阵列前方汇聚为一个光斑阵列。
所述的微透镜阵列既可以是折射型微透镜阵列,也可以是衍射型微透镜阵列。
本发明中调节方法通过沿着光轴方向改变微镜阵列中若干个微镜的位置,即可改变与这些微镜相对应的汇聚光斑的位置,从而实现对相应微透镜的焦距的调节。如果每次调节微透镜阵列的焦距时,都不需要单独调节某个微透镜的焦距,而只需要同时调节所有微透镜的焦距,且调节量相等,则也可以使用一整块独立的微镜来代替微镜阵列,通过改变微镜位置来达到同时调节微透镜阵列中所有微透镜焦距的效果。
本发明通过增加一个微镜阵列器件,解决了微透镜阵列无法调焦的问题,且结构简单、操作方便。
本发明的有益效果:
A、结构简单:与现有技术相比,没有液体型可调焦微透镜所需的密闭空间,整个方法可采用现成的微透镜阵列和微镜阵列搭建而成,不涉及加工、驱动、封装等问题;
B、可以实现阵列化:本发明所提出的方法可实现多单元可调焦微透镜阵列,这是目前其他方案所不具备的优势;
C、调节速度更快:本发明采用的微镜阵列一般利用MEMS工艺加工,并利用静电驱动方式工作,而静电场的产生和消逝速度很快,因而体积小、响应快、固有频率高。
附图说明
下面结合附图及具体实施方式对本发明做更进一步详细说明:
图1为本发明中调节微透镜阵列焦距装置示意图
图2为本发明中当移动若干微镜,使相应的微透镜焦距产生改变的原理示意图
图3为本发明中当移动所有微镜,使所有微透镜焦距同时发生同样大小的改变的原理示意图
图4为本发明中使用单独一块微镜调节微透镜阵列焦距的方法的示意图
图5为本发明中当移动单独一块微镜,从而使得所有微透镜焦距同时发生同样大小的改变的原理示意图
图6为本发明中微透镜阵列采用衍射型微透镜阵列的示意图
图中标记具体为:1.微透镜阵列,2.微镜阵列,3.微透镜,4、微镜,11.衍射型微透镜阵列,21.单独一块微镜
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
调节微透镜阵列焦距的装置,包括一个微透镜阵列和一个微镜阵列,微透镜阵列和微镜阵列具有相同的单元间距,入射光经过微透镜阵列后被分割并汇聚,然后入射到微镜阵列表面并被反射,从而重新穿过微透镜阵列并最终在微透镜阵列前方汇聚为一个光斑阵列。微镜阵列的每个微镜均可以沿光轴前后移动,从而改变聚焦光斑的位置,实现对微透镜阵列焦距的调节和改变。前后移动的微镜个数为1或几个,改变个别或几个微透镜焦距;微镜为透射式。
如图1解释了本发明调节微透镜阵列焦距的方法,即采用一块微镜阵列2与微透镜阵列1搭配使用,这两个阵列具有完全相同的单元间距,入射平行光首先穿过微透镜阵列1,被分割为与微透镜阵列1具有同样单元数量的汇聚光束,每道光束分别与阵列中的每个单元共轴。这些光束经过微透镜后继而照射到微镜阵列表面,并被各个微镜单元反射,重新穿过微透镜,反射回原先入射方向。由于微透镜的汇聚作用,这些汇聚光束将进一步汇聚,并最终在微透镜阵列1前面特定位置汇聚为光斑。当沿着光轴方向移动某一块微镜的位置时,显然就可以相应改变汇聚光斑的位置,实现调焦功能,如图2所示。
微透镜阵列既可以是折射型微透镜阵列,也可以是衍射型微透镜阵列。
实施例2
其它内容如实施例1中的内容,本发明也可通过同时将所有微镜都移动同样大小的距离,来同时以同样大小改变所有微透镜的焦距,如图3所示。微透镜阵列为折射型微透镜阵列。
实施例3
其它内容如实施例1中的内容,本发明也可通过同时将所有微镜都移动同样大小的距离,来同时以同样大小改变所有微透镜的焦距,如图3所示。微透镜阵列为也可以是衍射型微透镜阵列来完成相同的功能,如图6所示。折射型微透镜和衍射型微透镜各有优缺点,可根据不同情况及应用领域选用。
实施例4
其它内容如实施例1中的内容,本发明也可通过同时将所有微镜都移动同样大小的距离,来同时以同样大小改变所有微透镜的焦距,如图3所示。
如果不需要单独改变个别微透镜焦距,而只需要同时以同样大小改变所有微透镜焦距,则微镜阵列2也可为一整块微镜21。如图4和图5所示,使用一整块微镜时微透镜焦距改变前和改变后的示意图。这一整块微镜实际上就相当于将微镜阵列中的所有微镜单元都连接起来,形成了一个整体。采用整块微镜相对于微镜阵列来说结构更加简单、成本更加低廉、可靠性和一致性更高。图3~图5中的微透镜阵列1均为折射型微透镜,本发明还可采用衍射型微透镜阵列。
本发明中调节焦距使微镜阵列的微镜移动,既可以是只移动若干个微镜,也可以是同时移动所有微镜,相对应的,产生的效果为既可以只调节若干个微透镜的焦距,也可以同时调节所有微透镜的焦距。该方法中包括一个微透镜阵列和一个微镜阵列,二者具有相同的单元间距。入射平行光将首先穿过微透镜阵列,继而被微镜阵列反射,反向穿过微透镜阵列,最终汇聚为一个光斑阵列,且其单元间距同样与微透镜阵列的单元间距相等。通过沿着光轴方向改变微镜阵列中若干个微镜的位置,即可改变与这些微镜相对应的汇聚光斑的位置,从而实现对相应微透镜的焦距的调节。微镜阵列也可改用一块大的反射镜代替,此时移动反射镜可以同时调节所有微透镜焦距。微透镜可以是折射型的,也可以是衍射型的。本发明通过增加一个微镜阵列器件,解决了微透镜阵列无法调焦的问题,且结构简单、操作方便。
以上所述仅为本发明的优选实施例,对本发明而言仅是说明性的,而非限制性的;本领域普通技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效变更,但都将落入本发明的保护范围内。

Claims (4)

1.一种调节微透镜阵列焦距的方法,包括设有微透镜阵列,微透镜阵列设有微透镜,其特征在于:还设有微镜阵列,微镜阵列设有微镜,所述微镜阵列的每个微镜沿光轴前后移动,从而改变聚焦光斑的位置,实现对与之对应的微透镜焦距的调节和改变;所述微镜同时调节焦距,调节量相等或不等。
2.根据权利要求1所述的一种调节微透镜阵列焦距的方法,其特征在于:所述微透镜为折射型或衍射型。
3.根据权利要求1所述的一种调节微透镜阵列焦距的装置,其特征在于:所述微镜阵列包括一个微透镜阵列和一个微镜阵列,微透镜阵列和微镜阵列具有相同的单元间距,入射光经过微透镜阵列后被分割并汇聚,然后入射到微镜阵列表面并被反射,从而重新穿过微透镜阵列并最终在微透镜阵列前方汇聚为一个光斑阵列。
4.根据权利要求3所述的一种调节微透镜阵列焦距的装置,其特征在于:所述微透镜阵列为折射型微透镜阵列或衍射型微透镜阵列。
CN201711204830.6A 2017-11-27 2017-11-27 一种调节微透镜阵列焦距的方法及装置 Expired - Fee Related CN107907965B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711204830.6A CN107907965B (zh) 2017-11-27 2017-11-27 一种调节微透镜阵列焦距的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711204830.6A CN107907965B (zh) 2017-11-27 2017-11-27 一种调节微透镜阵列焦距的方法及装置

Publications (2)

Publication Number Publication Date
CN107907965A CN107907965A (zh) 2018-04-13
CN107907965B true CN107907965B (zh) 2020-08-28

Family

ID=61848608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711204830.6A Expired - Fee Related CN107907965B (zh) 2017-11-27 2017-11-27 一种调节微透镜阵列焦距的方法及装置

Country Status (1)

Country Link
CN (1) CN107907965B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110441290B (zh) * 2019-08-16 2020-08-07 吉林大学 一种基于数字微镜的icp-aes及元素检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101023386A (zh) * 2004-07-16 2007-08-22 立体播放有限公司 变焦透镜及包括离散受控微镜的透镜阵列
CN101371573A (zh) * 2006-04-12 2009-02-18 韩国科学技术院 利用微透镜的显示装置
CN103837981A (zh) * 2014-03-19 2014-06-04 中国科学院光电技术研究所 一种提高分立式微变形镜填充因子的方法
CN105093472A (zh) * 2015-08-25 2015-11-25 华为技术有限公司 成像装置和成像方法
CN105842847A (zh) * 2016-06-02 2016-08-10 湖北三江航天万峰科技发展有限公司 一种利用微透镜阵列进行扫描的激光成像光学系统
WO2017198873A1 (en) * 2016-05-20 2017-11-23 Barco Nv Direction selective projection display screen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352511B2 (en) * 2006-04-24 2008-04-01 Micron Technology, Inc. Micro-lenses for imagers
CN100592214C (zh) * 2007-11-30 2010-02-24 北京理工大学 一种基于微透镜阵列调焦调平的装置与方法
JP5315711B2 (ja) * 2008-02-08 2013-10-16 ソニー株式会社 照明装置及び画像投影装置
CN101794080B (zh) * 2010-03-10 2012-10-10 中国科学院光电技术研究所 一种利用微透镜列阵成像光刻的装置
WO2012003529A1 (en) * 2010-07-05 2012-01-12 Newsouth Innovations Pty Limited Piezo-electric based micro-electro-mechanical lens actuation system
CN202253335U (zh) * 2011-08-03 2012-05-30 广州市雅江光电设备有限公司 一种led混色灯光学系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101023386A (zh) * 2004-07-16 2007-08-22 立体播放有限公司 变焦透镜及包括离散受控微镜的透镜阵列
CN101371573A (zh) * 2006-04-12 2009-02-18 韩国科学技术院 利用微透镜的显示装置
CN103837981A (zh) * 2014-03-19 2014-06-04 中国科学院光电技术研究所 一种提高分立式微变形镜填充因子的方法
CN105093472A (zh) * 2015-08-25 2015-11-25 华为技术有限公司 成像装置和成像方法
WO2017198873A1 (en) * 2016-05-20 2017-11-23 Barco Nv Direction selective projection display screen
CN105842847A (zh) * 2016-06-02 2016-08-10 湖北三江航天万峰科技发展有限公司 一种利用微透镜阵列进行扫描的激光成像光学系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Retroreflecting Optical Modulator Using an MEMS Deformable Micromirror Array";Trevor K.Chan et al.;《Journal of Lightwave Technology》;20060131;第24卷(第1期);第516-525页 *
"用于并行共焦测量的DMD控制方法研究";余卿 等;《自动化仪表》;20130831;第34卷(第8期);第61-66页 *

Also Published As

Publication number Publication date
CN107907965A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
US5541774A (en) Segmented axial gradient lens
CN109324388B (zh) 投影镜头系统、投影装置、感测模块及电子装置
Maekawa et al. Transmissive optical imaging device with micromirror array
Toshiyoshi et al. A Surface Micromachined Optical Scanner ArrayUsing Photoresist Lenses Fabricated by aThermal Reflow Process
JP2018533033A (ja) ビーム偏向素子を有する光学部品、その製造方法及び当該部品に適したビーム偏向素子
US5703722A (en) Segmented axial gradinet array lens
US8824880B2 (en) Integrated imaging system
CN105093472A (zh) 成像装置和成像方法
CN105637389A (zh) 采用两个倍率可调透镜的扩束器
WO2007134264A3 (en) Micro mirror array lens with micro mirror adjustments to vary lens focal length
CN101988984B (zh) 自动对焦镜头模块
CN105700145A (zh) 一种头戴式图像显示装置
CN113219438A (zh) 一种高精度mems激光雷达发射装置和方法
CN107907965B (zh) 一种调节微透镜阵列焦距的方法及装置
US20090040586A1 (en) Micromirror arry with iris function
CN210514694U (zh) 一种2xn的mems光开关
CN103837981B (zh) 一种提高分立式微变形镜填充因子的方法
CN103975266A (zh) 光学连接器
CN106772822B (zh) 一种高速光开关器件
CN107783207A (zh) 一种可调焦微透镜阵列
JP2000284217A (ja) 正立変倍アレイレンズ装置
CN104777539A (zh) 微镜阵列可编程菲涅尔波带片
CN107764413B (zh) 一种波前传感器
Garza-Rivera et al. Gabor superlens with variable focus
US4865426A (en) Variable aberration imaging optical system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200828

Termination date: 20211127

CF01 Termination of patent right due to non-payment of annual fee