CN107906672B - 冷媒量判断方法及系统 - Google Patents

冷媒量判断方法及系统 Download PDF

Info

Publication number
CN107906672B
CN107906672B CN201711043623.7A CN201711043623A CN107906672B CN 107906672 B CN107906672 B CN 107906672B CN 201711043623 A CN201711043623 A CN 201711043623A CN 107906672 B CN107906672 B CN 107906672B
Authority
CN
China
Prior art keywords
exhaust
preset
refrigerant quantity
deviation
judging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711043623.7A
Other languages
English (en)
Other versions
CN107906672A (zh
Inventor
许永锋
梁伯启
李洪生
卢健洪
马进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midea Group Co Ltd
GD Midea Heating and Ventilating Equipment Co Ltd
Original Assignee
Midea Group Co Ltd
GD Midea Heating and Ventilating Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midea Group Co Ltd, GD Midea Heating and Ventilating Equipment Co Ltd filed Critical Midea Group Co Ltd
Priority to CN201711043623.7A priority Critical patent/CN107906672B/zh
Publication of CN107906672A publication Critical patent/CN107906672A/zh
Application granted granted Critical
Publication of CN107906672B publication Critical patent/CN107906672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

本发明提供了一种冷媒量判断方法及系统、计算机设备、计算机可读存储介质,其中,冷媒量判断方法用于空调器,空调器包括室内机和室外机,空调器中充注有冷媒,冷媒量判断方法包括:在制热模式下检测室外机的排气参数;判断排气参数与预设排气参数之间的大小关系;根据判断结果确定空调器中的冷媒量是否达到标准冷媒量。本发明提供的冷媒量判断方法,通过在制热模式下检测室外机的排气的性能参数,并将检测到的排气参数与预设排气参数相比较,可以确定空调器中的冷媒量是否达到标准冷媒量。

Description

冷媒量判断方法及系统
技术领域
本发明涉及中央空调技术领域,具体而言,涉及一种冷媒量判断方法、一种冷媒量判断系统、一种计算机设备及一种计算机可读存储介质。
背景技术
空调系统冷媒量的准确性对于系统的安全性、可靠性及舒适性起到至关重要的作用。冷媒充注量过少会导致压缩机排气温度偏高,容易引起润滑油高温失效,造成压缩机损坏的严重后果。同时,系统冷媒量偏少是系统制热及制热能力不足的根本原因,进而造成空调效果不理想,影响客户使用的情况。
对多联式空调系统进行冷媒充注时,应以管路的直径和长度为基础数据,按照厂家规定的方法对冷媒量进行计算。然而,由于冷媒价格较高,实际充注量往往小于标准冷媒量,从而为系统的安全可靠性埋下隐患。
发明内容
本发明旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本发明的第一方面在于,提出一种冷媒量判断方法。
本发明的第二方面在于,提出一种冷媒量判断系统。
本发明的第三方面的在于,提出一种计算机设备。
本发明的第四方面在于,提出一种计算机可读存储介质。
有鉴于此,根据本发明的第一方面,提供了一种冷媒量判断方法,用于空调器,空调器包括室内机和室外机,空调器中充注有冷媒,冷媒量判断方法包括:在制热模式下检测室外机的排气参数;判断排气参数与预设排气参数之间的大小关系;根据判断结果确定空调器中的冷媒量是否达到标准冷媒量。
本发明提供的冷媒量判断方法,通过在制热模式下检测室外机的排气的性能参数,并将检测到的排气参数与预设排气参数相比较,可以确定空调器中的冷媒量是否达到标准冷媒量。由于冷媒量不足时,单位冷媒的换热负荷增大,可直接反映到室外机排气的物理性能参数上,而通过总结实验数据得到的预设排气参数可以反映冷媒的充注量达到标准冷媒量时空调器室外机的排气状态,因而通过充分检测当前室外机的排气情况并与预设排气参数比较,可以相应反映当前空调器中的冷媒量与标准冷媒量的关系,检测结果可靠,解决了判断结果精确度不足的问题,以达到保证空调系统安全可靠,提高用户体验的目的。此外,仅利用室外机的排气作为检测对象,传感器可集中设置在室外机的排气口,既易于检测,又便于维护和检修传感器。
另外,根据本发明提供的上述技术方案中的冷媒量判断方法,还可以具有如下附加技术特征:
在上述技术方案中,优选地,判断排气参数与预设排气参数之间的大小关系的步骤包括:计算排气参数与预设排气参数的差,作为排气偏差量;判断排气偏差量与预设偏差区间的关系。
在该技术方案中,先计算排气参数相对于预设排气参数的偏差量,再将排气偏差量与预设偏差区间相对比,与直接比较排气参数与预设排气参数的大小关系的方案相比,可以直观反映出排气参数与预设排气参数的差异情况,有助于提高判断结果的精度;与借助经验公式比较排气参数和预设排气参数的方案相比,计算过程更简单,即减小了计算压力,又出现大大降低了计算错误的概率。
在上述任一技术方案中,优选地,排气参数包括排气压力P、排气温度Tp和排气过热度SH;预设排气参数包括预设排气压力P0、预设排气温度Tp0和预设排气过热度SH0;排气偏差量包括排气压力偏差量△P=P-P0、排气温度偏差量△Tp=Tp-Tp0和排气过热度偏差量△SH=SH-SH0
在该技术方案中,通过选择室外机排气的压力、温度和过热度作为排气参数加以检测,可以提高检测的准确度。当冷媒量低于标准冷媒量时,由于单位冷媒的换热负荷增大,会引起室外机排气的各项物理性能参数发生变化,尤其是压力、温度和过热度,将三者同时纳入判断标准之中,可以避免检测单个参数时误差高的问题,使检测结果更可靠。
在上述任一技术方案中,优选地,预设偏差区间包括第一预设偏差区间和第二预设偏差区间,第一预设偏差区间包括第一预设压力偏差区间(-1.0,A]、第一预设温度偏差区间[B1,+∞)和第一预设过热度偏差区间[C1,+∞),第二预设偏差区间包括第二预设压力偏差区间(A,+∞)、第二预设温度偏差区间[B2,B1)、第二预设过热度偏差区间[C2,C1),其中,0>A>-1.0,B1>B2,C1>C2;根据判断结果确定空调器中的冷媒量是否达到标准冷媒量的步骤具体为:当三个排气偏差量中有至少两个落入第一预设偏差区间时,判定冷媒量与标准冷媒量的比值小于或等于第一比值;当三个排气偏差量中有至少两个落入第二预设偏差区间时,判定冷媒量与标准冷媒量的比值大于第一比值,且小于或等于第二比值;当三个排气偏差量中最多只有一个落入预设偏差区间时,判定冷媒量与标准冷媒量的比值大于第二比值;其中,第一比值小于第二比值。
在该技术方案中,针对排气压力P、排气温度Tp和排气过热度SH设置相应的预设偏差区间,并分别进行比较,可以得到冷媒量与标准冷媒量的比值,提高了判断结果的精度。借助第一比值和第二比值将冷媒量划分为三个等级,分别对应于冷媒量严重不足、冷媒量不足、冷媒量略有不足或足够,当冷媒量低于标准冷媒量时,会引起室外机排气压力下降、排气温度和排气过热度升高,且冷媒量越少,变化越大,通过将预设偏差区间划分为偏差较大的第一预设偏差区间和偏差较小的第二预设偏差区间,有助于区分偏差程度,提高判断结果的精度。当三个排气偏差量中的任意两个落入第一预设偏差区间时,就确定冷媒量处于第一等级,任意两个落入第二预设偏差区间时,就确定冷媒量处于第二等级,均不满足时,即排气偏差量很小,才确定冷媒量处于第三等级,判断结果准确度高。
在上述任一技术方案中,优选地,在检测室外机的排气参数的操作之前,还包括:判断空调器的连续运行时长是否达到预设时长。
在该技术方案中,待空调器连续运行预设时长后,空调系统进入稳定循环状态,此时再检测排气参数,可以减少检测值的误差,提高判断结果的准确度。
在上述任一技术方案中,优选地,在检测室外机的排气参数的操作之前,还包括:判断室外环境温度T1和室内环境温度T2是否满足-15℃≤T1≤25℃和10℃≤T2≤30℃。
在该技术方案中,经实验验证,在上述环境温度范围内,本发明限定的判断方法均有效,故而在检测室外机的排气参数之前,首先判断环境温度是否处于该温度范围内,有助于确保判断结果的准确度。
在上述任一技术方案中,优选地,当空调器为多联式空调器时,在检测室外机的排气参数的操作之前,还包括:判断室内机是否全部开机。
在该技术方案中,当空调器为多联式空调器时,其标准冷媒量是所有室内机均处于运行状态时所需的冷媒量,因而对于多联式空调器,在检测前需先保证所有室内机均开机,可确保运行中的空调器所需的冷媒量与标准冷媒量一致,避免了部分室内机运行时冷媒需求量减少造成的判断失效,提高了判断结果的准确度。
根据本发明的第二方面,提供了一种冷媒量判断系统,用于空调器,空调器包括室内机和室外机,空调器中充注有冷媒,冷媒量判断系统包括:检测模块,用于在制热模式下检测室外机的排气参数;第一判断模块,用于判断排气参数与预设排气参数之间的大小关系;审定模块,用于根据判断结果确定空调器中的冷媒量是否达到标准冷媒量。
本发明提供的冷媒量判断系统,检测模块在制热模式下检测室外机的排气的性能参数,第一判断模块将检测到的排气参数与预设排气参数相比较,审定模块可以确定空调器中的冷媒量是否达到标准冷媒量。由于冷媒量不足时,单位冷媒的换热负荷增大,可直接反映到室外机排气的物理性能参数上,而通过总结实验数据得到的预设排气参数可以反映冷媒的充注量达到标准冷媒量时空调器室外机的排气状态,因而通过充分检测当前室外机的排气情况并与预设排气参数比较,可以相应反映当前空调器中的冷媒量与标准冷媒量的关系,检测结果可靠,解决了判断结果精确度不足的问题,以达到保证空调系统安全可靠,提高用户体验的目的。此外,仅利用室外机的排气作为检测对象,传感器可集中设置在室外机的排气口,既易于检测,又便于维护和检修传感器。
另外,根据本发明提供的上述技术方案中的冷媒量判断系统,还可以具有如下附加技术特征:
在上述技术方案中,优选地,第一判断模块包括:计算单元,用于计算排气参数与预设排气参数的差,作为排气偏差量;判断单元,用于判断排气偏差量与预设偏差区间的关系。
在该技术方案中,计算单元先计算排气参数相对于预设排气参数的偏差量,判断单元再将排气偏差量与预设偏差区间相对比,与直接比较排气参数与预设排气参数的大小关系的方案相比,可以直观反映出排气参数与预设排气参数的差异情况,有助于提高判断结果的精度;与借助经验公式比较排气参数和预设排气参数的方案相比,计算过程更简单,即减小了计算压力,又出现大大降低了计算错误的概率。
在上述任一技术方案中,优选地,排气参数包括排气压力P、排气温度Tp和排气过热度SH;预设排气参数包括预设排气压力P0、预设排气温度Tp0和预设排气过热度SH0;排气偏差量包括排气压力偏差量△P=P-P0、排气温度偏差量△Tp=Tp-Tp0和排气过热度偏差量△SH=SH-SH0
在该技术方案中,通过选择室外机排气的压力、温度和过热度作为排气参数加以检测,可以提高检测的准确度。当冷媒量低于标准冷媒量时,由于单位冷媒的换热负荷增大,会引起室外机排气的各项物理性能参数发生变化,尤其是压力、温度和过热度,将三者同时纳入判断标准之中,可以避免检测单个参数时误差高的问题,使检测结果更可靠。
在上述任一技术方案中,优选地,预设偏差区间包括第一预设偏差区间和第二预设偏差区间,第一预设偏差区间包括第一预设压力偏差区间(-1.0,A]、第一预设温度偏差区间[B1,+∞)和第一预设过热度偏差区间[C1,+∞),第二预设偏差区间包括第二预设压力偏差区间(A,+∞)、第二预设温度偏差区间[B2,B1)、第二预设过热度偏差区间[C2,C1),其中,0>A>-1.0,B1>B2,C1>C2;审定模块具体执行为:当三个排气偏差量中有至少两个落入第一预设偏差区间时,判定冷媒量与标准冷媒量的比值小于或等于第一比值;当三个排气偏差量中有至少两个落入第二预设偏差区间时,判定冷媒量与标准冷媒量的比值大于第一比值,且小于或等于第二比值;当三个排气偏差量中最多只有一个落入预设偏差区间时,判定冷媒量与标准冷媒量的比值大于第二比值;其中,第一比值小于第二比值。
在该技术方案中,针对排气压力P、排气温度Tp和排气过热度SH设置相应的预设偏差区间,并分别进行比较,审定模块可以得到冷媒量与标准冷媒量的比值,提高了判断结果的精度。借助第一比值和第二比值将冷媒量划分为三个等级,分别对应于冷媒量严重不足、冷媒量不足、冷媒量略有不足或足够,当冷媒量低于标准冷媒量时,会引起室外机排气压力下降、排气温度和排气过热度升高,且冷媒量越少,变化越大,通过将预设偏差区间划分为偏差较大的第一预设偏差区间和偏差较小的第二预设偏差区间,有助于区分偏差程度,提高判断结果的精度。当三个排气偏差量中的任意两个落入第一预设偏差区间时,就确定冷媒量处于第一等级,任意两个落入第二预设偏差区间时,就确定冷媒量处于第二等级,均不满足时,即排气偏差量很小,才确定冷媒量处于第三等级,判断结果准确度高。
在上述任一技术方案中,优选地,还包括:第二判断模块,用于判断空调器的连续运行时长是否达到预设时长。
在该技术方案中,待第二判断模块判断出空调器连续运行预设时长后,认为空调系统进入稳定循环状态,此时检测模块再检测排气参数,可以减少检测值的误差,提高判断结果的准确度。
在上述任一技术方案中,优选地,还包括:第三判断模块,用于判断室外环境温度T1和室内环境温度T2是否满足-15℃≤T1≤25℃和10℃≤T2≤30℃。
在该技术方案中,经实验验证,在上述环境温度范围内,本发明限定的判断方法均有效,故而在检测室外机的排气参数之前,第三判断模块首先判断环境温度是否处于该温度范围内,有助于确保判断结果的准确度。
在上述任一技术方案中,优选地,当空调器为多联式空调器时,还包括:第四判断模块,用于判断室内机是否全部开机。
在该技术方案中,当空调器为多联式空调器时,其标准冷媒量是所有室内机均处于运行状态时所需的冷媒量,因而对于多联式空调器,在检测前需先由第四判断模块保证所有室内机均开机,可确保运行中的空调器所需的冷媒量与标准冷媒量一致,避免了部分室内机运行时冷媒需求量减少造成的判断失效,提高了判断结果的准确度。
根据本发明的第三方面,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上述任一技术方案所述的冷媒量判断方法的步骤。
本发明提供的计算机设备,在处理器执行计算机程序时可实现上述任一技术方案所述的冷媒量判断方法,因而具备上述任一技术方案所述的冷媒量判断方法的全部技术效果,在此不再赘述。
根据本发明的第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上述任一技术方案所述的冷媒量判断方法的步骤。
本发明提供的计算机可读存储介质,在计算机程序被处理器执行时可实现上述任一技术方案所述的冷媒量判断方法,因而具备上述任一技术方案所述的冷媒量判断方法的全部技术效果,在此不再赘述。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本发明的第一个实施例的冷媒量判断方法的示意流程图;
图2示出了根据本发明的第二个实施例的冷媒量判断方法的示意流程图;
图3示出了根据本发明的第三个实施例的冷媒量判断方法的示意流程图;
图4示出了根据本发明的第四个实施例的冷媒量判断方法的示意流程图;
图5示出了根据本发明的第五个实施例的冷媒量判断方法的示意流程图;
图6示出了根据本发明的第六个实施例的冷媒量判断方法的示意流程图;
图7示出了根据本发明的第一个实施例的冷媒量判断系统的示意框图;
图8示出了根据本发明的第二个实施例的冷媒量判断系统的示意框图;
图9示出了根据本发明的第三个实施例的冷媒量判断系统的示意框图;
图10示出了根据本发明的第四个实施例的冷媒量判断系统的示意框图;
图11示出了根据本发明的第五个实施例的冷媒量判断系统的示意框图;
图12示出了根据本发明的一个实施例的计算机设备的结构示意图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
本发明第一方面的实施例提供了一种冷媒量判断方法,用于空调器,空调器包括室内机和室外机,空调器中充注有冷媒。
图1示出了根据本发明的第一个实施例的冷媒量判断方法的示意流程图。
如图1所示,根据本发明的第一个实施例的冷媒量判断方法包括:
步骤S102,在制热模式下检测室外机的排气参数;
步骤S104,判断排气参数与预设排气参数之间的大小关系;
步骤S106,根据判断结果确定空调器中的冷媒量是否达到标准冷媒量。
本发明提供的冷媒量判断方法,通过在制热模式下将某些系统参数实际测量值与预设值相比较,对系统冷媒量进行判断。由于冷媒量不足时,单位冷媒的换热负荷增大,可直接反映到室外机排气的物理性能参数上,而通过总结实验数据得到的预设排气参数可以反映冷媒的充注量达到标准冷媒量时空调器室外机的排气状态,因而通过充分检测当前室外机的排气情况并与预设排气参数比较,可以相应反映当前空调器中的冷媒量与标准冷媒量的关系,检测结果可靠,解决了判断结果精确度不足的问题,以达到保证空调系统安全可靠,提高用户体验的目的。此外,仅利用室外机的排气作为检测对象,传感器可集中设置在室外机的排气口,既易于检测,又便于维护和检修传感器。
图2示出了根据本发明的第二个实施例的冷媒量判断方法的示意流程图。
如图2所示,根据本发明的第二个实施例的冷媒量判断方法包括:
步骤S202,在制热模式下检测室外机的排气参数;
步骤S204,计算排气参数与预设排气参数的差,作为排气偏差量;
步骤S206,判断排气偏差量与预设偏差区间的关系;
步骤S208,根据判断结果确定空调器中的冷媒量是否达到标准冷媒量。
在该实施例中,先计算排气参数相对于预设排气参数的偏差量,再将排气偏差量与预设偏差区间相对比,与直接比较排气参数与预设排气参数的大小关系的方案相比,可以直观反映出排气参数与预设排气参数的差异情况,有助于提高判断结果的精度;与借助经验公式比较排气参数和预设排气参数的方案相比,计算过程更简单,即减小了计算压力,又出现大大降低了计算错误的概率。
在本发明的一个实施例中,优选地,排气参数包括排气压力P、排气温度Tp和排气过热度SH;预设排气参数包括预设排气压力P0、预设排气温度Tp0和预设排气过热度SH0;排气偏差量包括排气压力偏差量△P=P-P0、排气温度偏差量△Tp=Tp-Tp0和排气过热度偏差量△SH=SH-SH0
在该实施例中,通过选择室外机排气的压力、温度和过热度作为排气参数加以检测,可以提高检测的准确度。当冷媒量低于标准冷媒量时,由于单位冷媒的换热负荷增大,会引起室外机排气的各项物理性能参数发生变化,尤其是压力、温度和过热度,将三者同时纳入判断标准之中,可以避免检测单个参数时误差高的问题,使检测结果更可靠。具体地,排气压力和排气温度由压力传感器和温度传感器检测,排气过热度由排气温度减去排气压力下的饱和温度计算得到。
图3示出了根据本发明的第三个实施例的冷媒量判断方法的示意流程图。
如图3所示,根据本发明的第三个实施例的冷媒量判断方法包括:
步骤S302,在制热模式下检测室外机的排气压力P和排气温度Tp,并计算排气过热度SH;
步骤S304,依据采集到的实测数据以及系统的预设排气参数P0、Tp0及SH0实时计算排气压力偏差量△P、排气温度偏差量△Tp及排气过热度偏差量△SH,其中△P=P-P0,△Tp=Tp-Tp0,△SH=SH-SH0
步骤S306,判断是否满足△P≤-0.4、△Tp≥25和△SH≥25中的至少两个,若是,则转到步骤S308,若否,则转到步骤S310;
步骤S308,判定冷媒量与标准冷媒量的比值k≤40%;
步骤S310,判断是否满足△P>-0.4、25>△Tp≥2和25>△SH≥2中的至少两个,若是,则转到步骤S312,若否,则转到步骤S314;
步骤S312,判定冷媒量与标准冷媒量的比值k为40%<k≤75%;
步骤S314,判定冷媒量与标准冷媒量的比值k>75%。
在该实施例中,针对排气压力P、排气温度Tp和排气过热度SH设置相应的预设偏差区间,并分别进行比较,可以得到冷媒量与标准冷媒量的比值,提高了判断结果的精度。借助第一比值40%和第二比值75%将冷媒量划分为三个等级,分别对应于冷媒量严重不足、冷媒量不足、冷媒量略有不足或足够,当冷媒量低于标准冷媒量时,会引起室外机排气压力下降、排气温度和排气过热度升高,且冷媒量越少,变化越大,通过将预设偏差区间划分为偏差较大的第一预设偏差区间和偏差较小的第二预设偏差区间,有助于区分偏差程度,提高判断结果的精度,在该实施例中,第一预设偏差区间包括第一预设压力偏差区间(-1.0,-0.4]、第一预设温度偏差区间[25,+∞)和第一预设过热度偏差区间[25,+∞),第二预设偏差区间包括第二预设压力偏差区间(-0.4,+∞)、第二预设温度偏差区间[2,25)、第二预设过热度偏差区间[2,25)。当三个排气偏差量中的任意两个落入第一预设偏差区间时,就确定冷媒量处于第一等级,任意两个落入第二预设偏差区间时,就确定冷媒量处于第二等级,均不满足时,即排气偏差量很小,才确定冷媒量处于第三等级,判断结果准确度高。具体地,总结实验数据发现,第一预设压力偏差区间和第二预设压力偏差区间的分界点取值往往大于-1.0,可作为参数设置参考,排气压力P的单位为MPa(兆帕)。
图4示出了根据本发明的第四个实施例的冷媒量判断方法的示意流程图。
如图4所示,根据本发明的第四个实施例的冷媒量判断方法包括:
步骤S402,在制热模式下,判断空调器的连续运行时长是否达到预设时长,若是,则转到步骤S404,若否,则结束;
步骤S404,检测室外机的排气参数;
步骤S406,判断排气参数与预设排气参数之间的大小关系;
步骤S408,根据判断结果确定空调器中的冷媒量是否达到标准冷媒量。
在该实施例中,待空调器连续运行预设时长后,空调系统进入稳定循环状态,此时再检测排气参数,可以减少检测值的误差,提高判断结果的准确度。可选地,从压缩机启动时刻开始计时,即以压缩机的连续运行时长作为空调器的连续运行时长。具体地,预设时长根据空调系统的大小可选择30分钟到60分钟不等。
图5示出了根据本发明的第五个实施例的冷媒量判断方法的示意流程图。
如图5所示,根据本发明的第五个实施例的冷媒量判断方法包括:
步骤S502,在制热模式下,判断室外环境温度T1和室内环境温度T2是否满足-15℃≤T1≤25℃和10℃≤T2≤30℃,若是,则转到步骤S504,若否,则结束;
步骤S504,检测室外机的排气参数;
步骤S506,判断排气参数与预设排气参数之间的大小关系;
步骤S508,根据判断结果确定空调器中的冷媒量是否达到标准冷媒量。
在该实施例中,经实验验证,在上述环境温度范围内,本发明限定的判断方法均有效,故而在检测室外机的排气参数之前,首先判断环境温度是否处于该温度范围内,有助于确保判断结果的准确度。
图6示出了根据本发明的第六个实施例的冷媒量判断方法的示意流程图。
如图6所示,根据本发明的第六个实施例的冷媒量判断方法包括:
步骤S602,当空调器为多联式空调器时,在制热模式下,判断室内机是否全部开机,若是,则转到步骤S604,若否,则结束;
步骤S604,检测室外机的排气参数;
步骤S606,判断排气参数与预设排气参数之间的大小关系;
步骤S608,根据判断结果确定空调器中的冷媒量是否达到标准冷媒量。
在该实施例中,当空调器为多联式空调器时,其标准冷媒量是所有室内机均处于运行状态时所需的冷媒量,因而对于多联式空调器,在检测前需先保证所有室内机均开机,可确保运行中的空调器所需的冷媒量与标准冷媒量一致,避免了部分室内机运行时冷媒需求量减少造成的判断失效,提高了判断结果的准确度。
本发明第二方面的实施例提供了一种冷媒量判断系统,用于空调器,空调器包括室内机和室外机,空调器中充注有冷媒。
图7示出了根据本发明的第一个实施例的冷媒量判断系统的示意框图。
如图7所示,根据本发明的第一个实施例的冷媒量判断系统10包括:
检测模块12,用于在制热模式下检测室外机的排气参数;
第一判断模块14,用于判断排气参数与预设排气参数之间的大小关系;
审定模块16,用于根据判断结果确定空调器中的冷媒量是否达到标准冷媒量。
本发明提供的冷媒量判断系统,检测模块12在制热模式下检测室外机的排气的性能参数,第一判断模块14将检测到的排气参数与预设排气参数相比较,审定模块16可以确定空调器中的冷媒量是否达到标准冷媒量。由于冷媒量不足时,单位冷媒的换热负荷增大,可直接反映到室外机排气的物理性能参数上,而通过总结实验数据得到的预设排气参数可以反映冷媒的充注量达到标准冷媒量时空调器室外机的排气状态,因而通过充分检测当前室外机的排气情况并与预设排气参数比较,可以相应反映当前空调器中的冷媒量与标准冷媒量的关系,检测结果可靠,解决了判断结果精确度不足的问题,以达到保证空调系统安全可靠,提高用户体验的目的。此外,仅利用室外机的排气作为检测对象,传感器可集中设置在室外机的排气口,既易于检测,又便于维护和检修传感器。
图8示出了根据本发明的第二个实施例的冷媒量判断系统的示意框图。
如图8所示,根据本发明的第二个实施例的冷媒量判断系统20包括:
检测模块22,用于在制热模式下检测室外机的排气参数;
第一判断模块24,用于判断排气参数与预设排气参数之间的大小关系,第一判断模块24包括:计算单元242,用于计算排气参数与预设排气参数的差,作为排气偏差量;判断单元244,用于判断排气偏差量与预设偏差区间的关系;
审定模块26,用于根据判断结果确定空调器中的冷媒量是否达到标准冷媒量。
在该实施例中,计算单元242先计算排气参数相对于预设排气参数的偏差量,判断单元244再将排气偏差量与预设偏差区间相对比,与直接比较排气参数与预设排气参数的大小关系的方案相比,可以直观反映出排气参数与预设排气参数的差异情况,有助于提高判断结果的精度;与借助经验公式比较排气参数和预设排气参数的方案相比,计算过程更简单,即减小了计算压力,又出现大大降低了计算错误的概率。
在本发明的一个实施例中,优选地,排气参数包括排气压力P、排气温度Tp和排气过热度SH;预设排气参数包括预设排气压力P0、预设排气温度Tp0和预设排气过热度SH0;排气偏差量包括排气压力偏差量△P=P-P0、排气温度偏差量△Tp=Tp-Tp0和排气过热度偏差量△SH=SH-SH0
在该实施例中,通过选择室外机排气的压力、温度和过热度作为排气参数加以检测,可以提高检测的准确度。当冷媒量低于标准冷媒量时,由于单位冷媒的换热负荷增大,会引起室外机排气的各项物理性能参数发生变化,尤其是压力、温度和过热度,将三者同时纳入判断标准之中,可以避免检测单个参数时误差高的问题,使检测结果更可靠。具体地,排气压力和排气温度由压力传感器和温度传感器检测,排气过热度由排气温度减去排气压力下的饱和温度计算得到。
在本发明的一个实施例中,优选地,预设偏差区间包括第一预设偏差区间和第二预设偏差区间,第一预设偏差区间包括第一预设压力偏差区间(-1.0,-0.4]、第一预设温度偏差区间[25,+∞)和第一预设过热度偏差区间[25,+∞),第二预设偏差区间包括第二预设压力偏差区间(-0.4,+∞)、第二预设温度偏差区间[2,25)、第二预设过热度偏差区间[2,25);
审定模块具体执行为:
对排气偏差量进行条件判断,包括:
条件一:△P≤-0.4,且△Tp≥25;
条件二:△P≤-0.4,且△SH≥25;
条件三:△Tp≥25,且△SH≥25;
条件四:△P>-0.4,且25>△Tp≥2;
条件五:△P>-0.4,且25>△SH≥2;
条件六:25>△Tp≥2,且25>△SH≥2;
当满足条件一、条件二和条件三中的任一个时,判定冷媒量与标准冷媒量的比值k≤40%;
当满足条件四、条件五和条件六中的任一个时,判定冷媒量与标准冷媒量的比值k为40%<k≤75%;
当上述条件均不满足时,判定冷媒量与标准冷媒量的比值k>75%。
在该技术方案中,针对排气压力P、排气温度Tp和排气过热度SH设置相应的预设偏差区间,并分别进行比较,审定模块可以得到冷媒量与标准冷媒量的比值,提高了判断结果的精度。借助第一比值40%和第二比值75%将冷媒量划分为三个等级,分别对应于冷媒量严重不足、冷媒量不足、冷媒量略有不足或足够,当冷媒量低于标准冷媒量时,会引起室外机排气压力下降、排气温度和排气过热度升高,且冷媒量越少,变化越大,通过将预设偏差区间划分为偏差较大的第一预设偏差区间和偏差较小的第二预设偏差区间,有助于区分偏差程度,提高判断结果的精度,在该实施例中,第一预设偏差区间包括第一预设压力偏差区间(-1.0,-0.4]、第一预设温度偏差区间[25,+∞)和第一预设过热度偏差区间[25,+∞),第二预设偏差区间包括第二预设压力偏差区间(-0.4,+∞)、第二预设温度偏差区间[2,25)、第二预设过热度偏差区间[2,25)。当三个排气偏差量中的任意两个落入第一预设偏差区间时,就确定冷媒量处于第一等级,任意两个落入第二预设偏差区间时,就确定冷媒量处于第二等级,均不满足时,即排气偏差量很小,才确定冷媒量处于第三等级,判断结果准确度高。具体地,总结实验数据发现,第一预设压力偏差区间和第二预设压力偏差区间的分界点取值往往大于-1.0,可作为参数设置参考,排气压力P的单位为MPa(兆帕)。
图9示出了根据本发明的第三个实施例的冷媒量判断系统的示意框图。
如图9所示,根据本发明的第三个实施例的冷媒量判断系统30包括:
第二判断模块32,用于在制热模式下,判断空调器的连续运行时长是否达到预设时长,若是,则激活检测模块34;
检测模块34,用于检测室外机的排气参数;
第一判断模块36,用于判断排气参数与预设排气参数之间的大小关系;
审定模块38,用于根据判断结果确定空调器中的冷媒量是否达到标准冷媒量。
在该实施例中,待第二判断模块32判断出空调器连续运行预设时长后,认为空调系统进入稳定循环状态,此时检测模块34再检测排气参数,可以减少检测值的误差,提高判断结果的准确度。可选地,从压缩机启动时刻开始计时,即以压缩机的连续运行时长作为空调器的连续运行时长。具体地,预设时长根据空调系统的大小可选择30分钟到60分钟不等。
图10示出了根据本发明的第四个实施例的冷媒量判断系统的示意框图。
如图10所示,根据本发明的第四个实施例的冷媒量判断系统40包括:
第三判断模块42,用于在制热模式下,判断室外环境温度T1和室内环境温度T2是否满足-15℃≤T1≤25℃和10℃≤T2≤30℃,若是,则激活检测模块44;
检测模块44,用于检测室外机的排气参数;
第一判断模块46,用于判断排气参数与预设排气参数之间的大小关系;
审定模块48,用于根据判断结果确定空调器中的冷媒量是否达到标准冷媒量。
在该实施例中,经实验验证,在上述环境温度范围内,本发明限定的判断方法均有效,故而在检测室外机的排气参数之前,第三判断模块首先判断环境温度是否处于该温度范围内,有助于确保判断结果的准确度。
图11示出了根据本发明的第五个实施例的冷媒量判断系统的示意框图。
如图11所示,根据本发明的第五个实施例的冷媒量判断系统50包括:
第四判断模块52,用于当空调器为多联式空调器时,在制热模式下,判断室内机是否全部开机,若是,则激活检测模块54;
检测模块54,用于检测室外机的排气参数;
第一判断模块56,用于判断排气参数与预设排气参数之间的大小关系;
审定模块58,用于根据判断结果确定空调器中的冷媒量是否达到标准冷媒量。
在该实施例中,当空调器为多联式空调器时,其标准冷媒量是所有室内机均处于运行状态时所需的冷媒量,因而对于多联式空调器,在检测前需先由第四判断模块保证所有室内机均开机,可确保运行中的空调器所需的冷媒量与标准冷媒量一致,避免了部分室内机运行时冷媒需求量减少造成的判断失效,提高了判断结果的准确度。
本发明第三方面的实施例提供了一种计算机设备。
图12示出了根据本发明的一个实施例的计算机设备的结构示意图。
如图12所示,本发明的一个实施例提供的计算机设备60包括存储器62、处理器64及存储在存储器62上并可在处理器64上运行的计算机程序,处理器64执行计算机程序时实现如上述任一实施例所述的冷媒量判断方法的步骤。
本发明提供的计算机设备60,在处理器64执行计算机程序时可实现上述任一实施例所述的冷媒量判断方法,因而具备上述任一实施例所述的冷媒量判断方法的全部技术效果,在此不再赘述。
本发明第四方面的实施例提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上述任一实施例所述的冷媒量判断方法的步骤。
本发明提供的计算机可读存储介质,在计算机程序被处理器执行时可实现上述任一实施例所述的冷媒量判断方法,因而具备上述任一实施例所述的冷媒量判断方法的全部技术效果,在此不再赘述。
以上结合附图详细说明了本发明的技术方案,本发明提出了一种在空调系统运行制热模式下,将系统排气压力偏差量△P、排气温度偏差量△Tp及排气过热度偏差量△SH相结合的冷媒量判断方法。与相关技术相比,本发明具有两项优势:其一,本发明具有较宽泛的适用范围,系统运行制热模式时,在室外环境温度-15℃至25℃,室内环境温度10℃至30℃的条件下均可应用。其二,本发明依据多个参数进行冷媒量判断,能够得到实际冷媒量与标准冷媒量的比例关系,判断结果精度得到提升。综上,本发明能够精确判断空调系统冷媒量,达到保证空调系统安全可靠,提高用户体验的目的。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

1.一种冷媒量判断方法,用于空调器,所述空调器包括室内机和室外机,所述空调器中充注有冷媒,其特征在于,包括:
在制热模式下检测所述室外机的排气参数;
判断所述排气参数与预设排气参数之间的大小关系;
根据判断结果确定所述空调器中的冷媒量是否达到标准冷媒量;
所述判断所述排气参数与预设排气参数之间的大小关系的步骤包括:
计算所述排气参数与所述预设排气参数的差,作为排气偏差量;
判断所述排气偏差量与预设偏差区间的关系;
其中,所述排气偏差量包括:排气压力偏差量、排气温度偏差量和排气过热度偏差量;
所述预设偏差区间包括第一预设偏差区间和第二预设偏差区间。
2.根据权利要求1所述的冷媒量判断方法,其特征在于,
所述排气参数包括排气压力P、排气温度Tp和排气过热度SH;
所述预设排气参数包括预设排气压力P0、预设排气温度Tp0和预设排气过热度SH0;
所述排气偏差量包括所述排气压力偏差量△P=P-P0、所述排气温度偏差量△Tp=Tp-Tp0和所述排气过热度偏差量△SH=SH-SH0。
3.根据权利要求2所述的冷媒量判断方法,其特征在于,
所述第一预设偏差区间包括第一预设压力偏差区间(-1.0,A]、第一预设温度偏差区间[B1,+∞)和第一预设过热度偏差区间[C1,+∞),所述第二预设偏差区间包括第二预设压力偏差区间(A,+∞)、第二预设温度偏差区间[B2,B1)、第二预设过热度偏差区间[C2,C1),其中,0>A>-1.0,B1>B2,C1>C2;
所述根据判断结果确定所述空调器中的冷媒量是否达到标准冷媒量的步骤具体为:
当三个所述排气偏差量中有至少两个落入所述第一预设偏差区间时,判定所述冷媒量与所述标准冷媒量的比值小于或等于第一比值;
当三个所述排气偏差量中有至少两个落入所述第二预设偏差区间时,判定所述冷媒量与所述标准冷媒量的比值大于所述第一比值,且小于或等于第二比值;
当三个所述排气偏差量中最多只有一个落入所述预设偏差区间时,判定所述冷媒量与所述标准冷媒量的比值大于所述第二比值;
其中,所述第一比值小于所述第二比值。
4.根据权利要求1至3中任一项所述的冷媒量判断方法,其特征在于,在所述检测所述室外机的排气参数的操作之前,还包括:
判断所述空调器的连续运行时长是否达到预设时长。
5.根据权利要求1至3中任一项所述的冷媒量判断方法,其特征在于,在所述检测所述室外机的排气参数的操作之前,还包括:
判断室外环境温度T1和室内环境温度T2是否满足-15℃≤T1≤25℃和10℃≤T2≤30℃。
6.根据权利要求1至3中任一项所述的冷媒量判断方法,其特征在于,当所述空调器为多联式空调器时,在所述检测所述室外机的排气参数的操作之前,还包括:
判断所述室内机是否全部开机。
7.一种冷媒量判断系统,用于空调器,所述空调器包括室内机和室外机,所述空调器中充注有冷媒,其特征在于,包括:
检测模块,用于在制热模式下检测所述室外机的排气参数;
第一判断模块,用于判断所述排气参数与预设排气参数之间的大小关系;
审定模块,用于根据判断结果确定所述空调器中的冷媒量是否达到标准冷媒量;
所述第一判断模块包括:
计算单元,用于计算所述排气参数与所述预设排气参数的差,作为排气偏差量;
判断单元,用于判断所述排气偏差量与预设偏差区间的关系;
其中,所述排气偏差量包括:排气压力偏差量、排气温度偏差量和排气过热度偏差量;
所述预设偏差区间包括第一预设偏差区间和第二预设偏差区间。
8.根据权利要求7所述的冷媒量判断系统,其特征在于,
所述排气参数包括排气压力P、排气温度Tp和排气过热度SH;
所述预设排气参数包括预设排气压力P0、预设排气温度Tp0和预设排气过热度SH0;
所述排气偏差量包括排气压力偏差量△P=P-P0、排气温度偏差量△Tp=Tp-Tp0和排气过热度偏差量△SH=SH-SH0。
9.根据权利要求8所述的冷媒量判断系统,其特征在于,
所述预设偏差区间包括第一预设偏差区间和第二预设偏差区间,所述第一预设偏差区间包括第一预设压力偏差区间(-1.0,A]、第一预设温度偏差区间[B1,+∞)和第一预设过热度偏差区间[C1,+∞),所述第二预设偏差区间包括第二预设压力偏差区间(A,+∞)、第二预设温度偏差区间[B2,B1)、第二预设过热度偏差区间[C2,C1),其中,0>A>-1.0,B1>B2,C1>C2;
所述审定模块具体执行为:
当三个所述排气偏差量中有至少两个落入所述第一预设偏差区间时,判定所述冷媒量与所述标准冷媒量的比值小于或等于第一比值;
当三个所述排气偏差量中有至少两个落入所述第二预设偏差区间时,判定所述冷媒量与所述标准冷媒量的比值大于所述第一比值,且小于或等于第二比值;
当三个所述排气偏差量中最多只有一个落入所述预设偏差区间时,判定所述冷媒量与所述标准冷媒量的比值大于所述第二比值;
其中,所述第一比值小于所述第二比值。
10.根据权利要求7至9中任一项所述的冷媒量判断系统,其特征在于,还包括:
第二判断模块,用于判断所述空调器的连续运行时长是否达到预设时长。
11.根据权利要求7至9中任一项所述的冷媒量判断系统,其特征在于,还包括:
第三判断模块,用于判断室外环境温度T1和室内环境温度T2是否满足-15℃≤T1≤25℃和10℃≤T2≤30℃。
12.根据权利要求7至9中任一项所述的冷媒量判断系统,其特征在于,当所述空调器为多联式空调器时,还包括:
第四判断模块,用于判断所述室内机是否全部开机。
13.一种计算机设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至6中任一项所述方法的步骤。
14.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6中任一项所述方法的步骤。
CN201711043623.7A 2017-10-31 2017-10-31 冷媒量判断方法及系统 Active CN107906672B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711043623.7A CN107906672B (zh) 2017-10-31 2017-10-31 冷媒量判断方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711043623.7A CN107906672B (zh) 2017-10-31 2017-10-31 冷媒量判断方法及系统

Publications (2)

Publication Number Publication Date
CN107906672A CN107906672A (zh) 2018-04-13
CN107906672B true CN107906672B (zh) 2020-03-10

Family

ID=61842270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711043623.7A Active CN107906672B (zh) 2017-10-31 2017-10-31 冷媒量判断方法及系统

Country Status (1)

Country Link
CN (1) CN107906672B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111006354B (zh) * 2019-11-25 2021-09-21 宁波奥克斯电气股份有限公司 一种空调器控制方法、装置、空调器及存储介质
CN111623473B (zh) * 2020-06-08 2021-09-14 珠海格力电器股份有限公司 空调的自适应调试方法
CN113865029B (zh) * 2021-09-30 2022-11-29 青岛海信日立空调系统有限公司 空调器
CN113970169A (zh) * 2021-11-29 2022-01-25 中国人民解放军陆军装甲兵学院士官学校 一种用于中央空调的电气节能控制方法
CN115899947A (zh) * 2022-06-21 2023-04-04 珠海格力电器股份有限公司 一种空调器制冷剂含量的检测方法、设备以及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201198A (ja) * 2000-01-20 2001-07-27 Fujitsu General Ltd 空気調和機の制御方法
CN201599899U (zh) * 2009-04-28 2010-10-06 欧威尔空调(中国)有限公司 空调制冷剂添加控制系统
CN105509242A (zh) * 2015-12-23 2016-04-20 宁波奥克斯电气股份有限公司 一种用于空调器的冷媒追加控制方法
CN106545973A (zh) * 2016-11-29 2017-03-29 广东美的暖通设备有限公司 多联机系统及其的冷媒量的判定方法
CN106594966A (zh) * 2016-11-09 2017-04-26 珠海格力电器股份有限公司 一种检测空调系统冷媒泄漏的方法及空调系统
CN106895557A (zh) * 2017-02-21 2017-06-27 广东美的暖通设备有限公司 空调系统及其膨胀阀控制方法和控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201198A (ja) * 2000-01-20 2001-07-27 Fujitsu General Ltd 空気調和機の制御方法
CN201599899U (zh) * 2009-04-28 2010-10-06 欧威尔空调(中国)有限公司 空调制冷剂添加控制系统
CN105509242A (zh) * 2015-12-23 2016-04-20 宁波奥克斯电气股份有限公司 一种用于空调器的冷媒追加控制方法
CN106594966A (zh) * 2016-11-09 2017-04-26 珠海格力电器股份有限公司 一种检测空调系统冷媒泄漏的方法及空调系统
CN106545973A (zh) * 2016-11-29 2017-03-29 广东美的暖通设备有限公司 多联机系统及其的冷媒量的判定方法
CN106895557A (zh) * 2017-02-21 2017-06-27 广东美的暖通设备有限公司 空调系统及其膨胀阀控制方法和控制装置

Also Published As

Publication number Publication date
CN107906672A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
CN107906672B (zh) 冷媒量判断方法及系统
CN107906671B (zh) 冷媒量判断方法及系统
CN110500708B (zh) 空调系统的制冷剂泄漏检测方法及系统
CN111006355B (zh) 空调机组及其运行状态监测方法、装置
CN106642584B (zh) 一种空调运行的控制方法及装置
CN106595152B (zh) 一种空调冷媒循环异常的确定方法、装置及空调
CN110895017B (zh) 一种空调器缺制冷剂的保护方法及空调器
CN109595741A (zh) 空调及其冷媒泄漏检测方法与装置
CN107514746B (zh) 除霜控制方法、装置、空调器和计算机可读存储介质
CN107702291B (zh) 一种冷媒充注的控制方法、控制系统及空调器
CN104819547A (zh) 一种变频空调系统开机时的缺氟检测及保护方法和系统
CN108518805A (zh) 运行控制方法、装置、空调器和计算机可读存储介质
CN110873434B (zh) 一种冷媒泄露的检测方法、装置及空调器
US20220412625A1 (en) Refrigerant leak detection system and method
CN112923507A (zh) 空调系统的控制方法及空调系统
CN111237977A (zh) 一种制冷剂缺氟状态自检方法及空调
CN110887165A (zh) 一种冷媒泄漏的检测方法、装置及空调器
CN111023412A (zh) 一种制冷剂加注装置及方法
CN110553343A (zh) 空调的冷媒泄漏检测方法、系统及空调
CN111457550B (zh) 空调缺冷媒检测方法、装置及空调器
CN110410943B (zh) 一种回油检测方法、系统及空调器
CN116928913A (zh) 一种汽车空调冷媒量检测方法及装置
CN107906807B (zh) 一种冷媒充注的控制方法、控制系统及空调器
CN114353260B (zh) 用于冷媒量判断的方法、装置、空调器和存储介质
CN114576793A (zh) 制冷系统及其冷媒泄漏检测方法与装置、设备、存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant