CN107904246B - 水稻高光合效率的基因及其应用 - Google Patents

水稻高光合效率的基因及其应用 Download PDF

Info

Publication number
CN107904246B
CN107904246B CN201711469003.XA CN201711469003A CN107904246B CN 107904246 B CN107904246 B CN 107904246B CN 201711469003 A CN201711469003 A CN 201711469003A CN 107904246 B CN107904246 B CN 107904246B
Authority
CN
China
Prior art keywords
gene
rice
mutant
application
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711469003.XA
Other languages
English (en)
Other versions
CN107904246A (zh
Inventor
马伯军
袁俊杰
陈析丰
傅小进
顾志敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN201711469003.XA priority Critical patent/CN107904246B/zh
Publication of CN107904246A publication Critical patent/CN107904246A/zh
Application granted granted Critical
Publication of CN107904246B publication Critical patent/CN107904246B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8269Photosynthesis

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Physiology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及促进水稻光合效率的基因及其应用,属于作物分子遗传领域。具体而言:本发明对水稻品种日本晴的Os05g0462000基因进行敲除突变,获得了该基因的2个敲除突变体mutant‑1与mutant‑2;其对应的序列分别为SEQ ID NO:2、SEQ ID NO:3。敲除Os05g0462000基因能增加水稻叶片的叶绿素含量,从而有效提高水稻的光合作用,具有重要的高产育种应用价值。

Description

水稻高光合效率的基因及其应用
技术领域
本发明涉及促进水稻光合效率的基因及其应用,属于作物分子遗传领域。
背景技术
水稻是全世界最重要的粮食作物之一。光合作用利用光能将二氧化碳和水转化为有机物, 是水稻生长过程中生物量合成的重要因素。因此,鉴定具有高光效功能的水稻基因具有重要 的应用前景。
CRISPR(clustered regularly interspaced short palindromic repeats)/Cas9技术是基因功 能鉴定中一个非常有效的工具。该技术通过产生一条单链导向RNA(sgRNA)指导Cas9核 酸酶对目标基因组中特定的靶基因序列进行双链断裂及修复。但是,修复过程容易出错而导 致在修复的序列中插入/缺失碱基,从而造成基因移码突变,破坏目标基因的功能。因此, CRISPR/Cas9可以有效地目敲除的基因的,已广泛地用于基因的功能研究和育种应用。
发明内容
本发明要解决的技术问题是提供一种能有效提高水稻光合效率的基因及其用途。
为了解决上述技术问题,本发明提供一种水稻高光合效率的基因,该基因的核苷酸序列 如SEQ ID NO:2或者SEQ ID NO:3所示。
本发明还同时提供了上述基因的用途:促进水稻的光合作用。
作为本发明的基因的用途的改进:促进水稻叶片中叶绿素a(Chl a)与叶绿素b(Chl b) 增加。
本发明利用水稻Os05g0462000基因在促进水稻光合效率中的应用,即,敲除Os05g0462000基因能有效促进水稻光合效率的应用。
本发明的技术方案具体如下:
利用CRISPR/Cas9技术,设计特异性靶向Os05g0462000基因(SEQ ID NO:1)的sgRNA, 对水稻品种日本晴的Os05g0462000基因进行敲除突变,获得了该基因的2个敲除突变体 mutant-1与mutant-2。对这些突变体的PCR扩增及测序分析,表明突变位点发生在Os05g0462000基因的不同位置(图1),但是都导致了该基因发生移码突变,而造成该基因的功能缺失。
上述2个敲除突变体的序列分别为:mutant-1(SEQ ID NO:2),mutant-2(SEQ IDNO:3)。 将以上获得的Os05g0462000基因两种突变体与野生型对照日本晴种植在水稻大田,发现突变 体的植株明显比野生型对照更绿,在抽穗期对其叶片的叶绿素含量进行测定,发现突变体的 叶绿素含量都显著高于野生型对照(图2)。由于研究表明植物叶片中叶绿素的含量在一定程 度上与光合作用效率成正比,因此又对其叶片的光合作用进行了分析,发现突变体的净光合 速率、气孔导度和蒸腾作用都显著高于对照品种。这些结果表明,敲除Os05g0462000基因能 增加水稻叶片的叶绿素含量,从而有效提高水稻的光合作用,具有重要的高产育种应用价值。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细说明。
图1为水稻Os05g0462000基因突变体的突变位点序列分析。日本晴:野生型对照品种; mutant-1与mutant-2:Os05g0462000基因2种不同敲除突变体。
图2为水稻Os05g0462000基因突变体与野生型对照日本晴的叶片叶绿素含量测定。
图2中的数值为平均值±标准差,**表示在水稻Os05g0462000基因突变体与野生型对 照日本晴比较中,t检验存在极显著性(P<0.01)差异。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
步骤1、Os05g0462000基因的CRISPR/Cas9载体构建
根据Os05g0462000基因的核苷酸序列(SEQ ID NO:1),设计两个CRISPR/Cas9编辑的 靶点序列sgRNA(可通过CRISPR Design程序(http://crispr.mit.edu/)进行设计),其序列为 sgRNA-1:5'-GAACAAGGAGGAGTGCATGG-3',sgRNA-2: 5'-GATGTTGGCATGCTTCTCCAGGG-3';并在生物技术公司(如上海Invitrogen)合成sgRNA 的序列。
采用CRISPR/Cas9试剂盒(Biogle,Cat#BGK03)分别构建了2个相应的载体,方法按照产品说明。
步骤2、CRISPR/Cas9载体构建的水稻遗传转化
将以上构建的两个CRISPR/Cas9载体,采用Nishimura等的方法(Nishimura etal,Nat Protoc,2006)分别转化水稻野生型品种日本晴,获得两种转基因水稻植株。
步骤3、转基因水稻中sgRNA靶位点的测序分析
采用SDS法提取水稻叶片的总DNA:取水稻叶片0.1g,用液氮研磨后,加600μl提取液(0.1mol/L Tris-Cl pH8.0,500mmol/L NaCl,1.25g/L SDS),65℃温育60min。加200μl5mol/L KAC,混匀后,冰浴10min。再加500μl氯仿,混匀,10000r/min离心5min,取上 清,加入500μl异丙醇,混匀,12000r/min离心3min,弃去上清;用75%乙醇洗涤沉淀,12000 r/min离心3min,弃去上清;倒置干燥DNA 15min后,加30μl纯水溶解DNA。
Figure BDA0001531645000000031
Master Mix(Promega,USA)试剂,PCR体系按照产品说明操作,在水稻DNA 中PCR扩增Os05g0462000基因序列,引物序列为F:5’-AGATAGATAAGTAAGCAGTGAG-3’ 和R:5’-AGCTAGCTCTCGTCGTCGTC-3’,在生物技术公司(如上海Invitrogen)合成。
PCR扩增程序为:94℃预变性5min;94℃变性30sec,55℃退火30sec,72℃延伸60sec, 35个循环;72℃延伸5min。PCR产物在1%琼脂糖凝胶中电泳30min,用溴化乙锭(EB)进 行染色。
所有转基因植株及对照品种日本晴经过以上PCR扩增,其PCR产物都寄到生物技术公 司(如上海Invitrogen)进行测序分析,测序结果经SeqMan软件将转基因植株与对照品种日 本晴的Os05g0462000基因序列进行一一比较,鉴定了Os05g0462000基因2种纯合突变体 mutant-1(来自sgRNA-1)与mutant-2(来自sgRNA-2),两个突变体在不同位点分别缺失了 一个碱基“A”(图1;序列表中野生型基因序列中方框标出),都导致了Os05g0462000基因发生移码突变,而造成该基因的功能缺失。
突变体mutant-1的核苷酸序列如SEQ ID NO:2所述,突变体mutant-2的核苷酸序列如 SEQ ID NO:3所述。
步骤4、转基因水稻叶片的叶绿素含量测定
将以上鉴定出的Os05g0462000基因突变体mutant-1、mutant-2与野生型对照日本晴种植 在水稻大田,每株水稻按照30cm×15cm的间距种植。待水稻分蘖期,每个品种随机选取6株, 每株取一张完全展开的剑叶,去主脉,剪成小碎片,称取0.1g浸泡于3mL 80%(v/w)丙酮, 28℃黑暗萃取48小时。取萃取溶液用紫外分光光度计(NanoDrop 2000C)分别测定664nm、 647nm、470nm三种波长下的数值。然后根据Amon(1949)的方法计算叶绿素a(Chl a)与 叶绿素b(Chl b)的含量,计算公式如下:
Chl a=(12.7×OD664-2.69×OD647)×V/W
Chl b=(22.9×OD647-4.68×OD664)×V/W
其中:V为提取液体积(3mL),W为叶片质量0.1g,OD664、OD647及OD470为在紫外分 光光度计读出的数值,单位mg/g。测定结果采用t检验分析突变体与野生型对照之间的显著性差异。
所得结果为Os05g0462000基因突变体mutant-1与mutant-2的叶绿素a、叶绿素b含量都 显著性高于野生型对照日本晴(图2)。
步骤5、转基因水稻叶片的光合作用测定
按照步骤4的方式种植,待水稻分蘖期,每个品种随机选取6株,用Li-6400(Li-COR,USA) 光合测定仪测定其剑叶的净光合速率、气孔导度、胞间CO2浓度和蒸腾作用。测定方法安装 仪器的使用说明。测定结果采用t检验分析突变体与野生型对照之间的显著性差异。
所得结果为Os05g0462000基因突变体mutant-1与mutant-2的净光合速率、气孔导度和 蒸腾作用都显著性高于野生型对照日本晴(表1)。
表1、为水稻Os05g0462000基因突变体与野生型对照日本晴的叶片光合作用测定
Figure BDA0001531645000000041
表1中的数值为平均值±标准差,*和**表示在水稻Os05g0462000基因突变体与野生型 对照日本晴比较中,t检验存在显著性(P<0.05)和极显著性(P<0.01)差异。
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不 限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导 出或联想到的所有变形,均应认为是本发明的保护范围。
序列表
<110> 浙江师范大学
<120> 水稻高光合效率的基因及其应用
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 309
<212> DNA
<213> 水稻(Oryza sativa)
<400> 1
atgggagact catcatcctc agcttcgtac atcagaatgg ttcaccacct gatagagaag 60
tgcatttgct tcaacctgaa caaggaggag tgcatggagg ccctggagaa gcatgccaac 120
atcaaccctg tcgtcacttc cacagtatgg aaggagctgg agaaggagaa caaggagttc 180
ttcgagacct acaacaagga cagggcggag cgcaacatcg aggcggagac gatgcagcgg 240
atccagaaga tgctctccga cgccgcggca tccaagggct ccgacgacga cgacgacgac 300
gagagctag 309
<210> 2
<211> 308
<212> DNA
<213> 水稻(Oryza sativa)
<400> 2
atgggagact catcatcctc agcttcgtac atcagaatgg ttcaccacct gatagagaag 60
tgcatttgct tcaacctgaa caaggaggag tgctggaggc cctggagaag catgccaaca 120
tcaaccctgt cgtcacttcc acagtatgga aggagctgga gaaggagaac aaggagttct 180
tcgagaccta caacaaggac agggcggagc gcaacatcga ggcggagacg atgcagcgga 240
tccagaagat gctctccgac gccgcggcat ccaagggctc cgacgacgac gacgacgacg 300
agagctag 308
<210> 3
<211> 308
<212> DNA
<213> 水稻(Oryza sativa)
<400> 3
atgggagact catcatcctc agcttcgtac atcagaatgg ttcaccacct gatagagaag 60
tgcatttgct tcaacctgaa caaggaggag tgcatggagg ccctgggaag catgccaaca 120
tcaaccctgt cgtcacttcc acagtatgga aggagctgga gaaggagaac aaggagttct 180
tcgagaccta caacaaggac agggcggagc gcaacatcga ggcggagacg atgcagcgga 240
tccagaagat gctctccgac gccgcggcat ccaagggctc cgacgacgac gacgacgacg 300
agagctag 308

Claims (3)

1.水稻高光合效率的基因,其特征是:所述基因的核苷酸序列如SEQ ID NO:2或者SEQID NO:3所示。
2.如权利要求1所述基因的用途,其特征是:促进水稻的光合作用。
3.根据权利要求2所述的基因用途,其特征是:促进水稻叶片中叶绿素a含量与叶绿素b含量增加。
CN201711469003.XA 2017-12-29 2017-12-29 水稻高光合效率的基因及其应用 Active CN107904246B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711469003.XA CN107904246B (zh) 2017-12-29 2017-12-29 水稻高光合效率的基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711469003.XA CN107904246B (zh) 2017-12-29 2017-12-29 水稻高光合效率的基因及其应用

Publications (2)

Publication Number Publication Date
CN107904246A CN107904246A (zh) 2018-04-13
CN107904246B true CN107904246B (zh) 2020-10-27

Family

ID=61872101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711469003.XA Active CN107904246B (zh) 2017-12-29 2017-12-29 水稻高光合效率的基因及其应用

Country Status (1)

Country Link
CN (1) CN107904246B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109400689B (zh) * 2018-12-10 2022-04-15 扬州大学 水稻转录因子OsHRS1突变体构建方法及其在水稻干旱胁迫中的应用
CN110129330A (zh) * 2019-04-08 2019-08-16 浙江师范大学 基因在促进水稻籽粒产量上的应用
CN110106199B (zh) * 2019-05-10 2021-10-19 浙江师范大学 基因LOC_Os05g38680在增加水稻有效分蘖数中的应用
CN110527689A (zh) * 2019-09-20 2019-12-03 武汉大学 一种水稻光调控基因psb27的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709237A (zh) * 2013-11-22 2014-04-09 中国农业科学院生物技术研究所 植物光合作用相关蛋白OsPSF1及其编码基因和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7834146B2 (en) * 2000-05-08 2010-11-16 Monsanto Technology Llc Recombinant polypeptides associated with plants
WO2014102774A1 (en) * 2012-12-26 2014-07-03 Evogene Ltd. Isolated polynucleotides and polypeptides, construct and plants comprising same and methods of using same for increasing nitrogen use efficiency of plants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709237A (zh) * 2013-11-22 2014-04-09 中国农业科学院生物技术研究所 植物光合作用相关蛋白OsPSF1及其编码基因和应用

Also Published As

Publication number Publication date
CN107904246A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
CN107904246B (zh) 水稻高光合效率的基因及其应用
Wang et al. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system
US10920286B2 (en) Plants with useful traits and related methods
EP3978613A1 (en) Parthenogenetic haploid induction gene dmp and application thereof
Karunarathne et al. CRISPR/Cas9 gene editing and natural variation analysis demonstrate the potential for HvARE1 in improvement of nitrogen use efficiency in barley
US20220090118A1 (en) Powdery mildew resistant cannabis plants
CN108026540A (zh) 抗白粉病的小麦植物
Singer et al. The CRISPR/Cas9-mediated modulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 in alfalfa leads to distinct phenotypic outcomes
CN108251550B (zh) 一种HRM检测烟草镉转运基因NtHMA4突变的方法
Mancia et al. Distribution of various types of repetitive DNAs in Allium cepa L. based on dual color FISH
Kang et al. A robust genome-editing method for wild plant species Nicotiana attenuata
CN106868036A (zh) 一种定点突变创制玉米紧凑株型种质的方法及其应用
Singha et al. Novel approaches and advanced molecular techniques for crop improvement
CN115552038A (zh) 通过4号染色体上的qtl增强玉米对玉米大斑病的抗病性
CN104059930A (zh) 水稻抗病相关基因pal4
Pucker et al. Next generation sequencing to investigate genomic diversity in Caryophyllales
CN106701895A (zh) 与玉米抗旱性相关的单体型及其分子标记
WO2022185312A1 (en) Domestication and improvement of cocoa plant
IL295293A (en) Methods for increasing resistance to the fungus in cannabis
EP3969607A1 (en) Drought tolerance in corn
CN115942868A (zh) 产量提高的大麻植物
Kumar et al. Targeted genome editing for cotton improvement: prospects and challenges
US10308951B2 (en) Application of IPS1 gene in improving photosynthesis of rice
CN107904323B (zh) 一种鉴定烟草低镉突变体杂交后代基因型的引物对及方法
US20220186243A1 (en) Cannabis plants with improved yield

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant