CN107899377A - 烟气中二氧化碳的捕集回收装置及方法 - Google Patents

烟气中二氧化碳的捕集回收装置及方法 Download PDF

Info

Publication number
CN107899377A
CN107899377A CN201711209179.1A CN201711209179A CN107899377A CN 107899377 A CN107899377 A CN 107899377A CN 201711209179 A CN201711209179 A CN 201711209179A CN 107899377 A CN107899377 A CN 107899377A
Authority
CN
China
Prior art keywords
gas
flue gas
high pressure
carbon dioxide
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711209179.1A
Other languages
English (en)
Inventor
吴倩
徐嘉信
时玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Ji Feng Ring Energy Technology Co Ltd
Original Assignee
Beijing Ji Feng Ring Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Ji Feng Ring Energy Technology Co Ltd filed Critical Beijing Ji Feng Ring Energy Technology Co Ltd
Priority to CN201711209179.1A priority Critical patent/CN107899377A/zh
Publication of CN107899377A publication Critical patent/CN107899377A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明提供了一种烟气中二氧化碳的捕集回收装置及方法。该装置包括烟气处理系统,第一膜分离单元,第二膜分离单元及高压能回收装置,烟气处理系统设置有处理进口和处理出口,烟气处理系统用于对烟气进行处理;第一膜分离单元设置有第一进气口、第一二氧化碳富集气出口及第一高压非渗透气出口,第一进气口与处理出口相连;第二膜分离单元设置有第二进气口、二氧化碳产品气出口和第二高压非渗透气出口,第二进气口与第一二氧化碳富集气出口相连;高压能回收装置与第一高压非渗透气出口相连,高压能回收装置用于回收第一高压非渗透气出口产出的高压气体的压力能。利用本发明提供的装置能够更有效捕集回收烟气中的CO2

Description

烟气中二氧化碳的捕集回收装置及方法
技术领域
本发明涉及气体回收技术领域,具体而言,涉及一种烟气中二氧化碳的捕集回收装置及方法。
背景技术
全球变暖是目前世界上主要的环境问题之一,在导致气候变化的各种温室气体中,CO2对地球升温影响最大,控制CO2排放已成为应对气候变暖的重要技术路线之一。人类活动产生的CO2排放最多的部分来自于燃煤发电,燃煤电厂的燃烧尾气中CO2排放具有浓度低、稳定、集中和量大等特点,是大规模减排CO2的最佳领域之一。
高纯度的CO2是一种重要的工业气体,分离捕集的CO2不仅可以注入石油和天然气田,提高油气采收率,也可以广泛用于合成有机化合物、制造碳酸饮料等,实现资源化利用。燃煤电厂CO2分离捕集技术应用前景广阔,具有显著的环保效益、经济效益和社会效益。因此,分离捕集CO2技术是关系到燃煤电厂温室气体减排的重要技术。
目前CO2的捕集回收方法中,膜分离法是较为有效的方法之一。膜分离法的主要原理是两种或两种以上的气体混合物通过高分子膜时,由于各种气体在膜中的溶解度和扩散系数的不同,导致不同气体在膜中相对渗透速率有差异。其中渗透速率相对快的气体,如二氧化碳、水蒸气、氢气、氦气、硫化氢等能够优先通过渗透膜而被富集;而渗透速率相对较慢的气体,如甲烷、氮气、一氧化碳等气体则在膜的滞留侧被富集,从而达到混合气体分离之目的。与其他方法相比,膜分离捕集CO2具有无化学反应、不会产生污染物,能耗低,设备结构紧凑、占地面积小,投资回收期短,开动灵活、维护及运行费用低等优点。
然而,对于燃煤电厂,由于其产生的烟气量巨大,要求捕集的CO2量也巨大,对于单个电厂,通常捕集量需要100万吨/年,导致现有技术工艺中利用膜分离法处理燃煤电厂烟气时仍旧存在富集程度低、工艺复杂的问题。且燃煤电厂烟气中固体颗粒杂质和液体杂质含量较高,容易对膜分离组件造成污染甚至损坏,影响了膜分离效率。此外,需要消耗一定的能量提供膜分离所需要的较高的压力,部分压力随着废气的排放而浪费。由于分离的气量巨大,导致能量浪费巨大。
发明内容
本发明的主要目的在于提供一种烟气中二氧化碳的捕集回收装置及方法,以解决现有技术中采用膜分离法捕集回收燃煤电厂烟气中的CO2时存在的富集程度低、工艺复杂、膜分离效率差,以及能量浪费的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种烟气中二氧化碳的捕集回收装置,其包括:烟气处理系统,烟气处理系统设置有处理进口和处理出口,烟气处理系统用于对烟气进行处理,以去除烟气中的液体杂质和固体杂质;第一膜分离单元,第一膜分离单元设置有第一进气口、第一二氧化碳富集气出口及第一高压非渗透气出口,第一进气口与处理出口相连;第二膜分离单元,第二膜分离单元设置有第二进气口、二氧化碳产品气出口和第二高压非渗透气出口,第二进气口与第一二氧化碳富集气出口相连;以及高压能回收装置,高压能回收装置与第一高压非渗透气出口相连,高压能回收装置用于回收第一高压非渗透气出口产出的高压气体的压力能。
进一步地,装置还包括:第三膜分离单元,第三膜分离单元设置有第三进气口、第三二氧化碳富集气出口及尾气出口,第三进气口与第二高压非渗透气出口相连;气体混合器,气体混合器设置在第一二氧化碳富集气出口与第二进气口连通的管路上,且气体混合器还设置有返回气进口,返回气进口与第三二氧化碳富集气出口相连。
进一步地,第一膜分离单元、第二膜分离单元及第三膜分离单元中的膜组件分别独立地选自中空纤维膜、卷式膜或板式膜。
进一步地,装置还包括:第一压缩机,第一压缩机与处理进口相连;第二压缩机,第二压缩机设置在气体混合器与第二进气口连通的管路上。
进一步地,烟气处理系统包括过滤器,过滤器的进口为处理进口,过滤器的出口为处理出口。
进一步地,烟气处理系统还包括:冷却机,冷却机的进口为处理进口,冷却机的出口与过滤器的进口相连。
进一步地,烟气处理系统还包括除雾器,除雾器的进口与冷却机的出口相连,除雾器的出口与过滤器的进口相连。
进一步地,装置还包括脱水装置,脱水装置上设置有烟气进口和脱水烟气出口,脱水烟气出口与第一压缩机的进口相连。
进一步地,高压能回收装置包括膨胀做功装置,膨胀做功装置与第一高压非渗透气出口相连。
进一步地,高压能回收装置还包括发电机,发电机与膨胀做功装置相连。
进一步地,发电机还设置有低温气排放口;高压能回收装置还包括冷量回收装置,冷量回收装置与低温气排放口相连,用以回收低温气排放口排放的低温气的冷量。
根据本发明的另一方面,还提供了一种烟气中二氧化碳的捕集回收方法,其包括:将烟气进行处理,以去除烟气中的液体杂质和固体杂质,得到处理烟气;将处理烟气进行第一次膜分离处理,得到第一二氧化碳富集气和第一高压非渗透气;将第一二氧化碳富集气进行第二次膜分离处理,得到二氧化碳产品气和第二高压非渗透气;以及对第一高压非渗透气的压力能进行回收。
进一步地,得到第二高压非渗透气的步骤之后,方法还包括以下步骤:对第二高压非渗透气进行第三次膜分离处理,得到第三二氧化碳富集气和尾气;以及将第三二氧化碳富集气返回并与第一二氧化碳富集气混合,以进行第二次膜分离处理。
进一步地,第一次膜分离处理、第二次膜分离处理及第三次膜分离处理的步骤中采用的膜组件分别独立地选自中空纤维膜、卷式膜或板式膜。
进一步地,将烟气进行处理以去除液体杂质和固体杂质的步骤之前,方法还包括对烟气进行一次压缩的步骤;优选一次压缩的步骤中,使气体压力大于0.3MPa。
进一步地,将第一二氧化碳富集气和可选的第三二氧化碳富集气进行第二次膜分离处理的步骤之前,方法还包括将第一二氧化碳富集气和可选的第三二氧化碳富集气进行二次压缩的步骤;优选地,二次压缩的步骤中,使气体压力大于0.3MPa。
进一步地,将烟气进行处理以去除液体杂质和固体杂质的步骤包括:对烟气进行过滤,得到处理烟气。
进一步地,在对烟气进行过滤的步骤之前,将烟气进行处理以去除液体杂质和固体杂质的步骤还包括:将烟气进行冷却,使液体杂质凝结,得到冷却烟气;对冷却烟气进行过滤,得到处理烟气。
进一步地,在对冷却烟气进行过滤的步骤之前,将烟气进行处理以去除液体杂质和固体杂质的步骤还包括:对冷却烟气进行除雾,得到除雾烟气;以及对除雾烟气进行过滤,得到处理烟气。
进一步地,将烟气进行一次压缩的步骤之前,上述方法还包括对烟气进行脱水处理的步骤。
进一步地,对第一高压非渗透气的压力能进行回收的步骤包括:使用第一高压非渗透气进行膨胀做功处理。
进一步地,使用第一高压非渗透气进行膨胀做功处理的步骤之后,对第一高压非渗透气的压力能进行回收的步骤还包括:利用膨胀做功产生的能量进行发电;优选地,发电过程中排放低温气,对第一高压非渗透气的压力能进行回收的步骤还包括:对低温气进行冷量回收。
应用本发明的技术方案,提供了一种烟气中二氧化碳的捕集回收装置,其包括烟气处理系统、第一膜分离单元、第二膜分离单元、以及高压能回收装置;烟气处理系统设置有处理进口和处理出口,烟气处理系统用于对烟气进行处理,以去除烟气中的液体杂质和固体杂质;第一膜分离单元设置有第一进气口、第一二氧化碳富集气出口及第一高压非渗透气出口,第一进气口与处理出口相连;第二膜分离单元设置有第二进气口、二氧化碳产品气出口和第二高压非渗透气出口,第二进气口与第一二氧化碳富集气出口相连;高压能回收装置与第一高压非渗透气出口相连,高压能回收装置用于回收第一高压非渗透气出口产出的高压气体的压力能。
利用上述装置,在对燃煤电厂燃烧烟气进行膜分离处理之前,先利用烟气处理系统能够去除烟气中的液体杂质(如水分和一些液体有机物)和固体杂质,以防止液体杂质和固体杂质的存在影响膜分离的效率。在处理之后,烟气进入第一膜分离单元和第二膜分离单元,利用先后两次膜分离过程对烟气中的二氧化碳进行富集。以上原因可以显著提高二氧化碳的富集程度。同时,本发明还利用了高压能回收装置回收第一高压非渗透气出口产出的高压气体的压力能,能够进一步降低工艺的能耗,在富集二氧化碳的同时使处理过程更为绿色。除此以外,利用本发明的装置捕集回收烟气中的二氧化碳,成本低廉,工艺简单,没有任何化学过程,不仅适合燃煤电厂烟气中二氧化碳的分离,也适用于钢铁厂、水泥厂等低浓度烟气中二氧化碳的分离捕集。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明一种实施例的烟气中二氧化碳的捕集回收装置示意图;
图2示出了根据本发明一种实施例的烟气中二氧化碳的捕集回收装置中烟气处理系统的示意图;以及
图3示出了根据本发明一种实施例的烟气中二氧化碳的捕集回收装置中高压能回收装置的示意图。
其中,上述附图包括以下附图标记:
10、烟气处理系统;11、冷却机;12、除雾器;13、过滤器;14、换热器;20、第一膜分离单元;30、第二膜分离单元;40、高压能回收装置;41、发电机;42、冷量回收装置;50、第三膜分离单元;60、气体混合器;70、第一压缩机;80、第二压缩机。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
正如背景技术部分所描述的,现有技术中采用膜分离法捕集回收燃煤电厂烟气中的CO2时存在富集程度低、工艺复杂、膜分离效率差的问题。
为了解决这一问题,本发明提供了一种燃煤电厂燃烧烟气中二氧化碳的捕集回收装置,如题1所示,其包括烟气处理系统10、第一膜分离单元20、第二膜分离单元30以及高压能回收装置40,烟气处理系统10设置有处理进口和处理出口,烟气处理系统10用于对烟气进行处理,以去除烟气中的液体杂质和固体杂质;第一膜分离单元20设置有第一进气口、第一二氧化碳富集气出口及第一高压非渗透气出口,第一进气口与处理出口相连;第二膜分离单元30设置有第二进气口、二氧化碳产品气出口和第二高压非渗透气出口,第二进气口与第一二氧化碳富集气出口相连;高压能回收装置40与第一高压非渗透气出口相连,高压能回收装置40用于回收第一高压非渗透气出口产出的高压气体的压力能。
利用本发明的上述装置,在对燃煤电厂燃烧烟气进行膜分离处理之前,先利用烟气处理系统10能够去除烟气中的液体杂质(如水分和一些液体有机物)和固体杂质,以防止液体杂质和固体杂质的存在影响膜分离的效率。在烟气处理之后,烟气进入第一膜分离单元20和第二膜分离单元30,利用先后两次膜分离过程对烟气中的二氧化碳进行富集。以上原因可以显著提高二氧化碳的富集程度。同时,本发明还利用了高压能回收装置40回收第一高压非渗透气出口产出的高压气体的压力能,能够在富集二氧化碳的同时使处理过程更为绿色,降低工艺能耗。除此以外,利用本发明的装置捕集回收烟气中的二氧化碳,成本低廉,工艺简单,没有任何化学过程,不仅适合燃煤电厂烟气中二氧化碳的分离,也适用于钢铁厂、水泥厂等烟气中低浓度且富含颗粒物的二氧化碳的分离捕集。
在具体的操作过程中,烟气(经除尘、脱硫脱硝处理后的燃烧烟气)进入烟气处理系统10去除液体杂质和固体杂质后,从第一进气口进入第一膜分离单元20,经第一次膜分离处理后得到第一段高压侧的非渗透气和低压侧的渗透气。第一段高压侧的非渗透气含CO2浓度较低,从第一高压非渗透气出口出来后经高压能回收装置40回收压力能。第一段低压侧的渗透气富含CO2,从第一二氧化碳富集气出口排出后进入第二进气口,利用第二膜分离单元30进行第二次膜分离处理,获得第二段非渗透气和渗透气。其中第二段渗透气中CO2的纯度较高,可以直接作为CO2产品气外送进行收集。
上述第二段非渗透气中携带了部分二氧化碳,为了进一步回收这部分二氧化碳,在一种优选的实施例中,如图1所示,上述装置还包括第三膜分离单元50和气体混合器60,第三膜分离单元50设置有第三进气口、第三二氧化碳富集气出口及尾气出口,第三进气口与第二高压非渗透气出口相连;气体混合器60设置在第一二氧化碳富集气出口与第二进气口连通的管路上,且气体混合器60还设置有返回气进口,返回气进口与第三二氧化碳富集气出口相连。这样可以将第二段非渗透气进行进一步膜分离处理,将其中的二氧化碳进一步富集后,返回至气体混合器60中,然后与第一二氧化碳富集气出口排出的气体混合后一起进入第二膜分离单元30进行处理。这样的多级膜分离与分离器循环回流的工艺相结合,能够进一步提高烟气中二氧化碳的富集程度,提高回收率,增大捕集量。
在一种优选的实施例中,上述第一膜分离单元20、第二膜分离单元30及第三膜分离单元50中的膜组件分别独立地选自中空纤维膜、卷式膜或板式膜。这里的“分别独立地选自”指的是第一膜分离单元20、第二膜分离单元30及第三膜分离单元50中的膜组件各自选自上述三种膜组件中的一种,三者相互之间可以相同,也可以不同。优选地,膜组件的材料是高分子聚合物有机材料。相比于无机膜作为膜组件,采用高分子聚合物有机材料形成的膜组件其加工工艺简单,制造成本较低,用于大规模分离回收燃煤电厂烟气中的CO2能够极大地减少项目投资成本。同时,燃煤电厂烟气浓度非常低(大约12%),有机膜的选择性更高,能够进一步提高CO2分离回收率和捕集量。特别说明的是,本发明通过利用烟气处理系统10有效解决了有机膜容易受到颗粒物等固体杂质污染、对湿度要求和温度要求较高的问题,使其能够更有效地发挥出自身优点。
在一种优选的实施例中,上述装置还包括第一压缩机70和第二压缩机80,第一压缩机70与处理进口相连;第二压缩机80设置在气体混合器60与第二进气口连通的管路上。利用第一压缩机70能够为第一膜分离单元20的CO2渗透进一步提供压力驱动;同理,利用第二压缩机80能够为第二膜分离单元30的CO2渗透进一步提供压力驱动。且需要说明的是,相比于在渗透侧利用抽真空或吹扫减压的方法,本发明利用第一压缩机70和第二压缩机80能够提供足够的压力差,以驱动足够多的CO2透过膜,特别是有机膜,从而进一步提高CO2的捕集回收率。
烟气处理系统10的作用是去除烟气中的液体杂质和固体杂质,避免其影响有机膜分离效率。在一种优选的实施方式中,如图2所示,烟气处理系统10包括过滤器13,过滤器13的进口为处理进口,且过滤器13的出口为处理出口。这样可以通过过滤处理去除烟气中的液体杂质和固体杂质。
更优选地,如图2所示,烟气处理系统10还包括:冷却机11,冷却机11的进口为处理进口,冷却机11的出口与过滤器13的进口相连。烟气经过冷却机11冷却可以将烟气中的,进入过滤器13可以液体进一步冷凝出来,然后经过滤器13去除,从而能够进一步去除杂质。
进一步优选地,烟气处理系统10包括顺次连接设置的冷却机11、除雾器12及过滤器13,冷却机11的进口为处理进口,且过滤器13的出口为处理出口。烟气进入冷却机11被冷冻后,进入除雾器12可以将烟气中可冷凝的液沫、雾滴及可能被夹带的固体粒子去除。然后进入过滤器13能够进一步除去原料气中可能夹带的细微液体等有害杂质。总之,利用该烟气处理系统10能够更为充分地去除烟气中的液体杂质、固体颗粒等杂质,从而进一步提高二氧化碳的捕集效果。同时,设置冷却机11还能够有效控制烟气温度,以进一步提高有机膜的运行稳定性。
优选地,上述过滤器13为凝结型过滤器。这样可以利用凝结过程进一步去除原料气中可能夹带的细微液体等有害杂质,同时还能将过滤后的烟气收集以备后续处理。
在一种优选的实施例中,烟气处理系统10还包括换热器14,换热器14设置有待加热进口和待加热出口,待加热进口与过滤器13的出口相连,且待加热出口为处理出口。这样可以将去除杂质后的烟气在换热器14中进行热交换而被加热,使其远离露点并恒定系统的操作温度。
在一种优选的实施例中,上述装置还包括第一压缩机70和第二压缩机80,第一压缩机70与处理进口相连,第二压缩机80设置在气体混合器60与第二进气口连通的管路上;第一压缩机70还设置有排气支路和进气支路,换热器14还设置有热介质进口和热介质出口,热介质进口与排气支路相连,热介质出口与进气支路相连。这样,经第一次压缩后的烟气分成两路,一路进入冷却机11进行处理,一路作为加热媒介进入换热器14,与完成除杂的烟气进行换热。换热完成后,作为加热媒介的高压烟气降温后重新返回冷却机11进行处理。这可以进一步利用烟气自身的热量,降低工艺能耗,使捕集过程更为绿色环保。具体地,冷却机11的冷却方式为水冷,也可以利用冷量回收装置的冷量冷却。
为了进一步去除烟气中携带的液体杂质,在一种优选的实施例中,上述装置还包括脱水装置,脱水装置上设置有烟气进口和脱水烟气出口,脱水烟气出口与第一压缩机70的进口相连。这样可以在烟气进入烟气处理系统10之前先进行脱水处理。
在一种优选的实施例中,高压能回收装置40包括膨胀做功装置,膨胀做功装置与第一高压非渗透气出口相连。利用该膨胀做功装置可以将高压能转化为机械能。更优选地,如图3所示(图中未示出膨胀做功装置),高压能回收装置40还包括发电机41,发电机41与膨胀做功装置相连。这样可以将机械能进一步转化为电能。更优选地,发电机41还设置有低温气排放口;高压能回收装置40还包括冷量回收装置42,冷量回收装置42与低温气排放口相连,用以回收低温气排放口排放的低温气的冷量。利用冷量回收装置42可以回收低温气排放口排放的低温气的冷量。优选冷量回收装置42为冷量回收换热器,更优选冷量回收换热器用于冷却冷却机11的出水。优选地,当上述装置不包括第三膜分离单元50时,上述高压能回收装置40还与第二高压非渗透气出口相连,用以回收第二高压非渗透气出口产出的高压气体的压力能。
根据本发明的另一方面,还提供了一种烟气中二氧化碳的捕集回收方法,其包括:将烟气进行处理,以去除烟气中的液体杂质和固体杂质,得到处理烟气;将处理烟气进行第一次膜分离处理,得到第一二氧化碳富集气和第一高压非渗透气;将第一二氧化碳富集气进行第二次膜分离处理,得到二氧化碳产品气和第二高压非渗透气;以及对第一高压非渗透气的压力能进行回收。
利用本发明的上述方法,在对燃煤电厂燃烧烟气进行膜分离处理之前,先利用烟气处理系统10能够去除烟气中的液体杂质(如水分和一些液体有机物)和固体杂质,以防止液体杂质和固体杂质的存在影响膜分离的效率。在烟气处理之后,利用先后两次膜分离过程对烟气中的二氧化碳进行富集。以上原因可以显著提高二氧化碳的富集程度。同时,本发明还回收了第一高压非渗透气出口产出的高压气体的压力能,能够在富集二氧化碳的同时使处理过程更为绿色,降低工艺能耗。除此以外,利用本发明的方法捕集回收烟气中的二氧化碳,成本低廉,工艺简单,没有任何化学过程,不仅适合燃煤电厂烟气中二氧化碳的分离,也适用于钢铁厂、水泥厂等烟气中低浓度且富含颗粒物的二氧化碳的分离捕集。
在一种优选的实施方式中,得到第二高压非渗透气的步骤之后,方法还包括以下步骤:对第二高压非渗透气进行第三次膜分离处理,得到第三二氧化碳富集气和尾气;以及将第三二氧化碳富集气返回并与第一二氧化碳富集气混合,以进行第二次膜分离处理。这样可以将第二高压非渗透气进行进一步膜分离处理,将其中的二氧化碳进一步富集后,返回与第一二氧化碳富集气出口排出的气体混合后一起进入第二次膜分离处理。这样的多级膜分离与分离器循环回流的工艺相结合,能够进一步提高烟气中二氧化碳的富集程度,提高回收率,增大捕集量。
在一种优选的实施方式中,第一次膜分离处理、第二次膜分离处理及第三次膜分离处理的步骤中采用的膜组件分别独立地选自中空纤维膜、卷式膜或板式膜。更优选地,膜组件的材料是高分子聚合物有机材料。相比于无机膜作为膜组件,采用高分子聚合物有机材料形成的膜组件其加工工艺简单,制造成本较低,用于大规模分离回收燃煤电厂烟气中的CO2能够极大地减少项目投资成本。同时,燃煤电厂烟气浓度非常低(大约12%),有机膜的选择性更高,能够进一步提高CO2分离回收率和捕集量。特别说明的是,本发明通过利用烟气处理系统10有效解决了有机膜容易受到颗粒物等固体杂质污染、对湿度要求和温度要求较高的问题,使其能够更有效地发挥出自身优点。
在一种优选的实施方式中,将烟气进行处理以去除液体杂质和固体杂质的步骤之前,方法还包括对烟气进行一次压缩的步骤;优选一次压缩的步骤中,使气体压力大于0.3MPa。优选地,将第一二氧化碳富集气和可选的第三二氧化碳富集气进行第二次膜分离处理的步骤之前,方法还包括将第一二氧化碳富集气和可选的第三二氧化碳富集气进行二次压缩的步骤;优选地,二次压缩的步骤中,使气体压力大于0.3MPa。
利用一次压缩能够为第一次膜分离的CO2渗透进一步提供压力驱动;同理,利用二次压缩能够为第二次膜分离的CO2渗透进一步提供压力驱动。且需要说明的是,相比于在渗透侧利用抽真空或吹扫减压的方法,本发明利用压缩的方式能够提供足够的压力差,以驱动足够多的CO2透过膜,特别是有机膜,从而进一步提高CO2的捕集回收率。
在一种优选的实施方式中,将烟气进行处理以去除液体杂质和固体杂质的步骤包括:对烟气进行过滤,得到所述烟气。这样可以将液体杂质和固体杂质过滤去除。更优选地,在对烟气进行过滤的步骤之前,将烟气进行处理以去除液体杂质和固体杂质的步骤还包括:将烟气进行冷却,使液体杂质凝结,得到冷却烟气;对冷却烟气进行过滤,得到处理烟气。这样能够利用冷却过程进一步将烟气中夹带的液体凝结出来以过滤去除。
进一步优选地,对冷却烟气进行过滤的步骤之前,将烟气进行处理以去除液体杂质和固体杂质的步骤还包括:将冷却烟气进行除雾,得到除雾烟气;以及对除雾烟气进行过滤,得到处理烟气。烟气先被冷却后,通过除雾可以将烟气中可冷凝的液沫、雾滴及可能被夹带的固体粒子去除。然后通过过滤处理能够进一步除去原料气中可能夹带的细微液体等有害杂质。总之,利用上述烟气处理方式能够更为充分地去除烟气中的液体杂质、固体颗粒等杂质,从而进一步提高二氧化碳的捕集效果。同时,通过对烟气进行冷却还能够有效控制烟气温度,以进一步提高有机膜的运行稳定性。
在一种优选的实施方式中,将烟气进行一次压缩的步骤之前,方法还包括对烟气进行脱水处理的步骤。这样可以在烟气进入烟气处理阶段之前先进行脱水处理,更有利于去除水分杂质,控制烟气湿度,相应进一步提高有机膜的膜分离效率。
在一种优选的实施方式中,对第一高压非渗透气的压力能进行回收的步骤包括:使用第一高压非渗透气进行膨胀做功处理。这样可以将高压能转化为机械能。更优选地,使用第一高压非渗透气进行膨胀做功处理的步骤之后,对第一高压非渗透气的压力能进行回收的步骤还包括:利用膨胀做功产生的能量进行发电。这样,可以将机械能进一步转化为电能。进一步优选地,发电过程中排放低温气,对第一高压非渗透气的压力能进行回收的步骤还包括:对低温气进行冷量回收。这样就能够更为有效地回收高压气体的压力能。
采用这几种膜组件进行烟气的二氧化碳分离捕集,均是利用压力为驱动,且具有较高的分离效果。
实施例1
对某燃煤电厂烟道气进行测试,衡算本发明图1至3中所示的装置对于烟道气中低浓度CO2工艺的捕集回收处理效果。物料衡算结果如表1所示:
表1烟气中二氧化碳的捕集回收装置处理某燃煤电厂烟道气中CO2的物料衡算表
由表1可知,当处理的某电厂经除尘脱硫后的烟道气流量为10000Nm3/h,CO2含量为12.37%时,本实施例中的膜分离工艺获得的第二段膜分离单元渗透气(产品气)流量为699Nm3/h,CO2含量为97.11%。
对于高压能量回收,表2给出了利用透平膨胀机回收烟气中二氧化碳的捕集回收装置处理某燃煤电厂烟道气中CO2的高压能量回收计算。
表2烟气中二氧化碳的捕集回收装置处理某燃煤电厂烟道气中CO2的高压能量回收计算
由表2可知,当处理的某电厂经除尘脱硫后的烟道气流量为10000Nm3/h,CO2含量为12.37%时,本实施例中的膜分离工艺获得的第一高压和第二高压非渗透气的总气量为8844Nm3/h,以年运行时间4000小时计算,利用透平发电机可以产生64.73104kWh的电量,可以用于压缩机的驱动。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
利用本发明提供的烟气中二氧化碳捕集回收装置,在对烟气进行膜分离处理之前,先利用烟气处理系统能够去除烟气中的液体杂质和固体杂质,以防止液体杂质和固体杂质的存在影响膜分离的效率。在处理之后,烟气进入第一膜分离单元和第二膜分离单元,利用先后两次膜分离过程对烟气中的二氧化碳进行富集。以上原因可以显著提高二氧化碳的富集程度。此后利用膨胀装置发电和冷量利用,充分回收了能量。而且,利用本发明的装置捕集回收烟气中的二氧化碳,工艺简单,无需后续的化学吸收或吸附等进一步富集过程,无污染,不仅适合燃煤电厂烟气中二氧化碳的分离,也适用于钢铁厂、水泥厂等低浓度烟气中二氧化碳的分离捕集。
更优选地,在对烟气进行膜分离处理之前,通过增压,克服有机材料制成的膜渗透量小的缺点、先利用烟气处理系统能够去除烟气中的水分和固体杂质以及控制温度,克服有机材料制成的膜的耐温性差、湿度要求高、以及容易受到颗粒物等固体杂质的污染等缺点。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

1.一种烟气中二氧化碳的捕集回收装置,其特征在于,包括:
烟气处理系统(10),所述烟气处理系统(10)设置有处理进口和处理出口,所述烟气处理系统(10)用于对烟气进行处理,以去除所述烟气中的液体杂质和固体杂质;
第一膜分离单元(20),所述第一膜分离单元(20)设置有第一进气口、第一二氧化碳富集气出口及第一高压非渗透气出口,所述第一进气口与所述处理出口相连;
第二膜分离单元(30),所述第二膜分离单元(30)设置有第二进气口、二氧化碳产品气出口和第二高压非渗透气出口,所述第二进气口与所述第一二氧化碳富集气出口相连;以及
高压能回收装置(40),所述高压能回收装置(40)与所述第一高压非渗透气出口相连,所述高压能回收装置(40)用于回收所述第一高压非渗透气出口产出的高压气体的压力能。
2.根据权利要求1所述的装置,其特征在于,所述装置还包括:
第三膜分离单元(50),所述第三膜分离单元(50)设置有第三进气口、第三二氧化碳富集气出口及尾气出口,所述第三进气口与所述第二高压非渗透气出口相连;
气体混合器(60),所述气体混合器(60)设置在所述第一二氧化碳富集气出口与所述第二进气口连通的管路上,且所述气体混合器(60)还设置有返回气进口,所述返回气进口与所述第三二氧化碳富集气出口相连。
3.根据权利要求2所述的装置,其特征在于,所述第一膜分离单元(20)、所述第二膜分离单元(30)及所述第三膜分离单元(50)中的膜组件分别独立地选自中空纤维膜、卷式膜或板式膜。
4.根据权利要求2所述的装置,其特征在于,所述装置还包括:
第一压缩机(70),所述第一压缩机(70)与所述处理进口相连;
第二压缩机(80),所述第二压缩机(80)设置在所述气体混合器(60)与所述第二进气口连通的管路上。
5.根据权利要求1至4中任一项所述的装置,其特征在于,所述烟气处理系统(10)包括过滤器(13),所述过滤器(13)的进口为所述处理进口,且所述过滤器(13)的出口为所述处理出口。
6.根据权利要求5所述的装置,其特征在于,所述烟气处理系统(10)还包括:冷却机(11),所述冷却机(11)的进口为所述处理进口,所述冷却机(11)的出口与所述过滤器(13)的进口相连。
7.根据权利要求6所述的装置,其特征在于,所述烟气处理系统(10)还包括:除雾器(12),所述除雾器(12)的进口与所述冷却机(11)的出口相连,所述除雾器(12)的出口与所述过滤器(13)的进口相连。
8.根据权利要求4所述的装置,其特征在于,所述装置还包括:
脱水装置,所述脱水装置上设置有烟气进口和脱水烟气出口,所述脱水烟气出口与所述第一压缩机(70)的进口相连。
9.根据权利要求1至4中任一项所述的装置,其特征在于,所述高压能回收装置(40)包括:膨胀做功装置,所述膨胀做功装置与所述第一高压非渗透气出口相连。
10.根据权利要求9所述的装置,其特征在于,所述高压能回收装置(40)还包括:发电机(41),所述发电机(41)与所述膨胀做功装置相连。
11.根据权利要求10所述的装置,其特征在于,所述发电机(41)还设置有低温气排放口;
所述高压能回收装置(40)还包括:冷量回收装置(42),所述冷量回收装置(42)与所述低温气排放口相连,用以回收所述低温气排放口排放的低温气的冷量。
12.一种烟气中二氧化碳的捕集回收方法,其特征在于,包括:
将所述烟气进行处理,以去除所述烟气中的液体杂质和固体杂质,得到处理烟气;
将所述处理烟气进行第一次膜分离处理,得到第一二氧化碳富集气和第一高压非渗透气;
将所述第一二氧化碳富集气进行第二次膜分离处理,得到二氧化碳产品气和第二高压非渗透气;以及
对所述第一高压非渗透气的压力能进行回收。
13.根据权利要求12所述的方法,其特征在于,得到所述第二高压非渗透气的步骤之后,所述方法还包括以下步骤:
对所述第二高压非渗透气进行第三次膜分离处理,得到第三二氧化碳富集气和尾气;以及
将所述第三二氧化碳富集气返回并与所述第一二氧化碳富集气混合,以进行所述第二次膜分离处理。
14.根据权利要求13所述的方法,其特征在于,所述第一次膜分离处理、所述第二次膜分离处理及所述第三次膜分离处理的步骤中采用的膜组件分别独立地选自中空纤维膜、卷式膜或板式膜。
15.根据权利要求12至14中任一项所述的方法,其特征在于,将所述烟气进行处理以去除液体杂质和固体杂质的步骤之前,所述方法还包括对所述烟气进行一次压缩的步骤;优选所述一次压缩的步骤中,使气体压力大于0.3MPa。
16.根据权利要求15所述的方法,其特征在于,将所述第一二氧化碳富集气和可选的所述第三二氧化碳富集气所述进行第二次膜分离处理的步骤之前,所述方法还包括将所述第一二氧化碳富集气和可选的所述第三二氧化碳富集气进行二次压缩的步骤;优选地,所述二次压缩的步骤中,使气体压力大于0.3MPa。
17.根据权利要求12至16中任一项所述的方法,其特征在于,将所述烟气进行处理以去除液体杂质和固体杂质的步骤包括:对所述烟气进行过滤,得到所述烟气。
18.根据权利要求17所述的方法,其特征在于,在对所述烟气进行过滤的步骤之前,将所述烟气进行处理以去除液体杂质和固体杂质的步骤还包括:
将所述烟气进行冷却,使液体杂质凝结,得到冷却烟气;以及
对所述冷却烟气进行过滤,得到所述处理烟气。
19.根据权利要求18所述的方法,其特征在于,在对所述冷却烟气进行过滤的步骤之前,将所述烟气进行处理以去除液体杂质和固体杂质的步骤还包括:
对所述冷却烟气进行除雾,得到除雾烟气;以及
对所述除雾烟气进行过滤,得到所述处理烟气。
20.根据权利要求15所述的方法,其特征在于,将所述烟气进行所述一次压缩的步骤之前,所述方法还包括对所述烟气进行脱水处理的步骤。
21.根据权利要求12至16中任一项所述的方法,其特征在于,对所述第一高压非渗透气的压力能进行回收的步骤包括:使用所述第一高压非渗透气进行膨胀做功处理。
22.根据权利要求21所述的方法,其特征在于,使用所述第一高压非渗透气进行膨胀做功处理的步骤之后,对所述第一高压非渗透气的压力能进行回收的步骤还包括:利用膨胀做功产生的能量进行发电;
优选地,所述发电过程中排放低温气,对所述第一高压非渗透气的压力能进行回收的步骤还包括:对所述低温气进行冷量回收。
CN201711209179.1A 2017-11-27 2017-11-27 烟气中二氧化碳的捕集回收装置及方法 Pending CN107899377A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711209179.1A CN107899377A (zh) 2017-11-27 2017-11-27 烟气中二氧化碳的捕集回收装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711209179.1A CN107899377A (zh) 2017-11-27 2017-11-27 烟气中二氧化碳的捕集回收装置及方法

Publications (1)

Publication Number Publication Date
CN107899377A true CN107899377A (zh) 2018-04-13

Family

ID=61848976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711209179.1A Pending CN107899377A (zh) 2017-11-27 2017-11-27 烟气中二氧化碳的捕集回收装置及方法

Country Status (1)

Country Link
CN (1) CN107899377A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272046A (zh) * 2019-07-08 2019-09-24 中国能源建设集团广东省电力设计研究院有限公司 一种二氧化碳分离捕集及冷却干燥系统
CN113413736A (zh) * 2021-06-25 2021-09-21 安徽碳零环保科技有限公司 一种水泥窑尾烟低浓度co2提纯装置及提纯方法
US20210402345A1 (en) * 2020-06-24 2021-12-30 Dalian University Of Technology Separation and purification coupled process with high helium yield and diversified products
CN114558428A (zh) * 2022-04-18 2022-05-31 中化(浙江)膜产业发展有限公司 烟气中二氧化碳的捕集装置以及方法
CN114904372A (zh) * 2022-05-30 2022-08-16 中化(浙江)膜产业发展有限公司 一种节能的二氧化碳捕集系统及其方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230798A (zh) * 2006-11-07 2008-07-30 通用电气公司 具有二氧化碳分离的发电系统和方法
US20120272657A1 (en) * 2010-09-13 2012-11-01 Membrane Technology And Research, Inc Membrane technology for use in a power generation process
CN103068466A (zh) * 2010-07-01 2013-04-24 赢创纤维有限公司 分离气体的方法
CN103418235A (zh) * 2013-08-31 2013-12-04 雷学军 捕捉大气圈中碳资源的装置及方法
CN104001408A (zh) * 2013-02-26 2014-08-27 乔治洛德方法研究和开发液化空气有限公司 由天然气回收氦
CN104587804A (zh) * 2015-01-28 2015-05-06 甘焱生 运用气体分离膜进行提纯的装置系统
CN105597497A (zh) * 2014-09-25 2016-05-25 气体产品与化学公司 具有能量回收的二氧化碳与天然气的膜分离
CN106914116A (zh) * 2017-04-18 2017-07-04 长沙紫宸科技开发有限公司 一种适应于水泥窑烟气中二氧化碳捕集与发电的方法
CN107115776A (zh) * 2017-04-18 2017-09-01 长沙紫宸科技开发有限公司 一种适用于水泥窑烟气中co2连续捕集的装备系统
CN207805334U (zh) * 2017-11-27 2018-09-04 北京集封环能科技有限责任公司 烟气中二氧化碳的捕集回收装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230798A (zh) * 2006-11-07 2008-07-30 通用电气公司 具有二氧化碳分离的发电系统和方法
CN103068466A (zh) * 2010-07-01 2013-04-24 赢创纤维有限公司 分离气体的方法
US20120272657A1 (en) * 2010-09-13 2012-11-01 Membrane Technology And Research, Inc Membrane technology for use in a power generation process
CN104001408A (zh) * 2013-02-26 2014-08-27 乔治洛德方法研究和开发液化空气有限公司 由天然气回收氦
CN103418235A (zh) * 2013-08-31 2013-12-04 雷学军 捕捉大气圈中碳资源的装置及方法
CN105597497A (zh) * 2014-09-25 2016-05-25 气体产品与化学公司 具有能量回收的二氧化碳与天然气的膜分离
CN104587804A (zh) * 2015-01-28 2015-05-06 甘焱生 运用气体分离膜进行提纯的装置系统
CN106914116A (zh) * 2017-04-18 2017-07-04 长沙紫宸科技开发有限公司 一种适应于水泥窑烟气中二氧化碳捕集与发电的方法
CN107115776A (zh) * 2017-04-18 2017-09-01 长沙紫宸科技开发有限公司 一种适用于水泥窑烟气中co2连续捕集的装备系统
CN207805334U (zh) * 2017-11-27 2018-09-04 北京集封环能科技有限责任公司 烟气中二氧化碳的捕集回收装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272046A (zh) * 2019-07-08 2019-09-24 中国能源建设集团广东省电力设计研究院有限公司 一种二氧化碳分离捕集及冷却干燥系统
US20210402345A1 (en) * 2020-06-24 2021-12-30 Dalian University Of Technology Separation and purification coupled process with high helium yield and diversified products
US11697092B2 (en) * 2020-06-24 2023-07-11 Dalian University Of Technology Separation and purification coupled process with high helium yield and diversified products
CN113413736A (zh) * 2021-06-25 2021-09-21 安徽碳零环保科技有限公司 一种水泥窑尾烟低浓度co2提纯装置及提纯方法
CN114558428A (zh) * 2022-04-18 2022-05-31 中化(浙江)膜产业发展有限公司 烟气中二氧化碳的捕集装置以及方法
CN114904372A (zh) * 2022-05-30 2022-08-16 中化(浙江)膜产业发展有限公司 一种节能的二氧化碳捕集系统及其方法

Similar Documents

Publication Publication Date Title
CN107899377A (zh) 烟气中二氧化碳的捕集回收装置及方法
CN107899376A (zh) 烟气中二氧化碳和氮气的联合捕集回收装置及方法
CN102026702B (zh) 利用膜及渗透吹扫从燃烧气体中除去二氧化碳的气体分离工艺
CN207805334U (zh) 烟气中二氧化碳的捕集回收装置
CN103228339B (zh) 使用具有渗透吹扫的膜从气体燃料燃烧排气除去co2的气体分离工艺
CN103249466B (zh) 使用基于吹扫的膜分离和吸收步骤从烟气分离二氧化碳的工艺
CN101235752B (zh) 用燃气涡轮机发电的动力设备和降低二氧化碳排放的方法
AU2012357358B2 (en) Method for capturing carbon dioxide in power station flue gas and device therefor
EP2089138B1 (en) Improved absorbent regeneration
CN101201171B (zh) 用于减少燃烧流中的co2排放的方法和系统
US20090199566A1 (en) Co2 emission-free energy production by gas turbine
CN102133499A (zh) 一种烟气中酸性气体捕集系统和方法
CN207562639U (zh) 烟气中二氧化碳捕集回收装置
AU2008297653A1 (en) Improved method for regeneration of absorbent
CN101925781A (zh) 在压缩前进行烟气过滤的含碳燃料燃烧工艺
US9409120B2 (en) Hybrid process using a membrane to enrich flue gas CO2 with a solvent-based post-combustion CO2 capture system
CN106914117B (zh) 适应于水泥窑烟气中二氧化碳连续捕集及发电的装置
CA2964096A1 (en) Energy efficient solvent regeneration process for carbon dioxide capture
CN103421565B (zh) 气体膜分离同步回收液态co2的沼气脱碳工艺和装置
CN207628185U (zh) 烟气中二氧化碳和氮气的联合捕集回收装置
CN110156016A (zh) 烟气中二氧化碳、氮气和氧气的联合回收装置及方法
CN103359731A (zh) 用于生产二氧化碳的系统和方法
CN110127700A (zh) 烟气中二氧化碳、氮气和氧气的联合回收装置及方法
CN210915955U (zh) 提高高炉煤气燃烧热值的装置
CN112588088B (zh) 一种抑制膜分离捕集二氧化碳工艺腐蚀装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination