CN103249466B - 使用基于吹扫的膜分离和吸收步骤从烟气分离二氧化碳的工艺 - Google Patents

使用基于吹扫的膜分离和吸收步骤从烟气分离二氧化碳的工艺 Download PDF

Info

Publication number
CN103249466B
CN103249466B CN201080070130.2A CN201080070130A CN103249466B CN 103249466 B CN103249466 B CN 103249466B CN 201080070130 A CN201080070130 A CN 201080070130A CN 103249466 B CN103249466 B CN 103249466B
Authority
CN
China
Prior art keywords
stream
carbon dioxide
gas
technique
exhaust stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080070130.2A
Other languages
English (en)
Other versions
CN103249466A (zh
Inventor
J·G·威耶曼斯
R·W·贝克
T·C·梅克尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Membrane Technology and Research Inc
Original Assignee
Membrane Technology and Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Membrane Technology and Research Inc filed Critical Membrane Technology and Research Inc
Publication of CN103249466A publication Critical patent/CN103249466A/zh
Application granted granted Critical
Publication of CN103249466B publication Critical patent/CN103249466B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种用于处理来自燃烧工艺(112)的烟气(117)的气体分离工艺,以及包括这种气体分离的燃烧工艺。本发明涉及将要被处理的烟气料流的第一部分(106)路由至基于吸收的二氧化碳捕集步骤(113),同时使所述烟气的第二部分(103)流过膜(118)的供料侧,使吹扫气体料流(101)(通常为空气)流过渗透侧,然后将所述渗透/吹扫气体通至燃烧器(112)。

Description

使用基于吹扫的膜分离和吸收步骤从烟气分离二氧化碳的工艺
技术领域
本发明涉及基于膜的气体分离工艺,并且具体地,涉及在膜的渗透侧使用吹扫气体从烟气除去二氧化碳的工艺。特别地,本发明涉及将基于吹扫的膜分离连同吸收一起来捕集二氧化碳的应用。
背景技术
许多燃烧工艺产生被二氧化碳污染的烟气,而二氧化碳导致全球变暖和环境破坏。
这种气体料流以在技术上和在经济上二者都可行的方式处理是困难的,因而仍有对更好的处理技术的需求。
借助于膜的气体分离是一项完善的技术。在工业成套设备中,典型地通过压缩供料流或维持膜的渗透侧为部分真空,总压力差通常被施加在供料侧和渗透侧之间。
根据文献可知,通过使吹扫气体通过膜的渗透侧,可以提供针对跨膜渗透的驱动力,由此将期望的渗透物在该侧上的分压降低到比其在供料侧上的分压低的水平。在这种情况下,膜两侧上的总压力可能是相同的,渗透侧上的总压力可能高于供料侧上的总压力,或者可能存在由保持总供料压高于总渗透压提供的额外的驱动力。
当与制备氮或富氧空气的空气分离相关或与脱水相关时,最经常建议使用吹扫气体。教导在渗透侧上使用吹扫气体促进空气分离的专利的实施例包括美国专利5,240,471、5,500,036和6,478,852。教导在脱水工艺中使用吹扫气体的专利的实施例包括4,931,070、4,981,498和5,641,337。
在膜模块内配置流径使得供料气体和吹扫料流尽可能远地彼此逆向流动也为人所知,并且在例如美国专利5,681,433和5,843,209中被教导。
在于2010年6月2日递交的共同所有并且共同在审的专利申请序列号12/734,941中教导了包括用于处理烟气以除去二氧化碳的在吹扫模式下运行的膜分离步骤的工艺的用途。
发明内容
本发明是涉及用于控制来自燃烧工艺的二氧化碳排放的基于膜的气体分离工艺,以及其中二氧化碳排放被如此控制的燃烧工艺。特别地,本发明包括三个步骤:燃烧步骤、基于吹扫的膜分离步骤和吸收步骤,所述膜分离步骤和吸收步骤并联进行。
燃烧排气料流或尾气典型地被称为烟气,并且从工业的各个部门中的烤炉(oven)、加热炉(furnace)、加热器(heater)和锅炉中大量产生。特别是发电厂生成庞大数量的烟气。一个中等规模的100兆瓦的基于煤的发电厂可以产生超过300MMscfd(百万标准立方英尺/日)的烟气。
燃烧排气的主要组分通常为氮、二氧化碳和水蒸气。可能典型地仅以少量存在的其他组分包括氧、氢、SOx、NOx和未燃碳氢化合物。烟气中二氧化碳的浓度一般高达约20vol%。
除气体组分以外,燃烧烟气还包含飞灰(fly ash)或烟灰(soot)形式的悬浮颗粒物质。在将气体送到烟囱之前,该材料通常通过数级过滤被除去。本文中假定,在实施本发明的工艺之前,如果期望,烟气已经按这样的方式被处理。
本发明的工艺涉及处理排气或烟气,以除去二氧化碳。在优选的实施方案中,排气气体中二氧化碳的水平被降低到低至5vol%或更低,且最优选降低到3vol%或更低。向环境排出这样的料流比排出未处理的排气造成的损害要小得多。
从中提取排气的燃烧工艺可以是任何类型的。燃料可以是化石燃料,如煤、油类(oils)或天然气,或者可来自任何其他来源,如合成气、填埋气体、生物质或其他可燃废弃物。所述燃料可以通过与空气、富氧空气或纯氧混合而被燃烧。
在燃烧步骤本身之后,所述烟气的第一部分经历基于吸收的二氧化碳捕集步骤。所述二氧化碳捕集步骤优选使用胺洗涤来进行(将在下文的“具体实施方式”中讨论)。该捕集步骤从排放料流中除去一部分二氧化碳,并且优选地以浓缩料流的形式(例如大于60、70或80vol%的二氧化碳)提供二氧化碳,且最优选地以超临界流体或液态高纯度产品。浓缩的二氧化碳产品料流可送至封存(sequestration),或用于任何其他用途。
来自捕集步骤的被排空的排气料流仍含有二氧化碳,但其浓度通常低于原始排气料流。典型地,该浓度为多至约10vol%的二氧化碳。
所述烟气的第二部分被送至膜分离单元中处理。所述单元包含就二氧化碳对氮以及就二氧化碳对氧是选择性可渗透的膜。在所述工艺的运行条件下,优选地,膜提供至少约300gpu,更优选地至少约500gpu,而最优选地至少约1,000gpu的二氧化碳渗透性。在所述工艺的运行条件下,至少为约10,或更优选地为20的二氧化碳/氮的选择性也是符合期望的。
尾气流过所述膜的供料侧,而空气、富氧空气或氧的吹扫气体流过渗透侧,为跨膜渗透提供或增加驱动力。
吹扫料流拾取(pick up)优先渗透的二氧化碳。然后,吹扫/渗透料流从膜单元被提取并被返回燃烧器,以形成进料给燃烧步骤的至少部分空气、富氧空气或氧。
通过使用指定用于燃烧器的含氧料流作为吹扫气体,膜分离步骤以非常高效的方式被实施,并且没有向燃烧区引入任何额外的不需要的组分。
所述工艺对能源敏感的应用特别有用,当来自发电厂等的非常大量的料流要被处理时,情况几乎总是如此。
正如下文将更详细地说明的,所述工艺在受到压力比限制的分离中也特别有用。
膜分离步骤可使用一个或更多个单独的膜模块而实施。可以使用能够在渗透吹扫条件下运行的任何模块。优选地,模块采用中空纤维型模块、板框型模块或螺旋缠绕型模块的形式。所有三种模块类型都为已知的,并且其配置以及在吹扫中的操作(包括逆流吹扫模式)在文献中被描述。
所述工艺可使用一个膜模块,但在大多数情况下,正如在本领域中公知的,所述分离将使用以串联或并联流动布置排列的多个膜模块。可以使用任意数量的膜模块。
通过在供料侧的总压力高于渗透侧来运行所述膜单元可以增强该工艺,由此增大渗透的跨膜驱动力。
高度优选的是,在供料侧上通过膜的供料气体流动方向与在渗透侧上通过膜的的吹扫气体流动方向为基本上逆向于彼此。可选择地,相对流动方向可以基本上为横流,或者在次优选的情况时,为并流。
残余物料流中二氧化碳的含量被降低至小于约5vol%,更优选至小于3vol%,而最优选至小于2vol%。该料流典型地,尽管非必需,被排出到环境中。原始排气中二氧化碳含量的实质性降低极大地减少排出料流对环境的影响。
在一个基本实施方案中,本发明包括三个步骤:燃烧步骤、基于吸收的二氧化碳捕集步骤和基于吹扫的膜分离步骤,其中所述二氧化碳捕集步骤和基于吹扫的膜分离步骤并联进行。即,来自燃烧工艺的排气料流的一部分被路由(route)至基于吸收的二氧化碳捕集步骤,而另一部分则被路由至基于吹扫的膜分离步骤。
该类型工艺的一个基本实施方案包括以下步骤:
(a)通过燃烧燃料与空气、富氧空气或氧的混合物进行燃烧工艺,由此建立包括二氧化碳和氮的排气料流;
(b)进行基于吸收的二氧化碳捕集步骤从所述排气料流的第一部分除去一部分浓缩形式的二氧化碳;
(c)提供具有供料侧和渗透侧的膜,并且所述膜就二氧化碳对氮以及就二氧化碳对氧是选择性可渗透的;
(d)使所述排气料流的第二部分通过所述供料侧;
(e)使作为吹扫料流的空气、富氧空气或氧通过所述渗透侧;
(f)从所述供料侧提取二氧化碳贫化的排空料流;
(g)从所述渗透侧提取包括氧和二氧化碳的渗透料流;
(h)将所述渗透料流通至步骤(a),作为至少部分在步骤(a)中所使用的空气、富氧空气或氧。
本发明的一个目标是基本上增加来自燃烧器或锅炉的排气料流中的二氧化碳的浓度,以使得被送至基于吸收的二氧化碳捕集步骤的所述排气料流的所述部分本身,相较于使用其他方法可能得到的,被更高效地浓缩和捕集。这是通过将来自膜分离步骤的富含二氧化碳的渗透料流返回到燃烧器中实现的。所述排气料流优选地包括至少15vol%的CO2;更优选地,至少20vol%的CO2;而最优选地,至少25vol%的CO2
如果所述气体需要被运送到达实施二氧化碳捕集步骤的设备,如胺装置运送所述富含二氧化碳的排气气体与运送来自常规发电厂的低浓度的原始烟气相比远更简单并且成本更低。典型地,必须被用管道运输或以其他方法运送到二氧化碳捕集设备的气体的量被减少数倍,如被减少至为如果缺少膜分离步骤时需要被运送的量的50%、30%,或者甚至25%或更少。这是本发明的显著优势。
被送至二氧化碳捕集步骤的所述排气料流的所述部分(即所述“第一部分”)优选地构成在约10vol%和约75vol%之间。这也可以表述为分流比(split ratio),其中所述比率定义被送至二氧化碳捕集步骤和膜分离步骤的烟气的相对比例。因此,一般而言,我们优选以在1:10和3:1之间的分流比来运行。
所述排气料流的另一(“第二”)部分被送至基于吹扫的膜分离步骤。所述排气料流的第二部分可以不被压缩或者可以被压缩而送至膜单元。优选的是略微压缩至从在约1.5巴直至约5巴之间的压力,如2巴。所述吹扫料流优选地沿着吹扫流方向通过所述渗透侧,所述尾气料流沿供料流方向通过所述供料侧,并且所述吹扫流方向基本上逆向于所述供料流方向。在工艺运行条件下,所述膜优选地呈现至少500gpu的二氧化碳渗透性,以及至少10的有利于二氧化碳对氮的选择性。
本发明的另一个目标是最小化常被直接释放到环境中的排空料流中的CO2的量。这样,所述排空料流优选地包括少于5vol%的CO2;更优选地,少于4vol%的CO2;而最优选地,少于3vol%的CO2
附图简要说明
图1为当本发明涉及典型的燃烧工艺时,本发明的一个基本实施方案的流程图的示意图。
图2为不包括基于吹扫的膜分离步骤的燃烧工艺的流程图的示意图(未按照本发明)。
图3为其中基于胺的二氧化碳捕集步骤和基于吹扫的膜分离步骤串联进行而非并联的燃烧工艺的流程图的示意图(未按照本发明)。
图4为其中燃烧排气料流的一部分被路由至胺洗涤装置,而另一部分被路由回到燃烧器的燃烧工艺的流程图的示意图(未按照本发明)。
图5为其中燃烧排气料流被压缩,并且被压缩的料流的一部分被路由至胺洗涤装置,而另一部分被路由回到燃烧器的燃烧工艺的流程图的示意图。随后,来自胺洗涤工艺的被压缩的富含氮的排气料流被路由返回以向压缩机提供动力(未按照本发明)。
图6为按照本发明的燃烧工艺的流程图的示意图,其中所述燃烧排气料流被压缩,并且所述被压缩料流的一部分被路由至胺洗涤装置,而另一部分被路由至基于吹扫的膜分离步骤。然后,来自所述膜分离步骤的吹扫料流被路由回到燃烧器。
具体实施方式
除非另外说明,本文所给出的气体百分数为按体积计。
除非另外说明,本文所给出的压力为以巴为单位的绝对值。
术语排气气体、尾气、烟气和排放料流在本文中可以互换使用。
术语吸收、吸附和洗涤在本文中可以互换使用。
本发明为通过基于膜的气体分离而控制来自燃烧工艺的二氧化碳排放的工艺,以及包括这种气体分离的燃烧工艺。本发明包含三个单元操作:燃烧步骤、基于吸收的二氧化碳捕集步骤和基于吹扫的膜分离步骤,其中所述二氧化碳捕集步骤和所述基于吹扫的膜分离步骤并联进行。所述工艺通过将所述膜分离步骤与所述燃烧步骤整合,达到了良好的效率和性能,从而向吸收或洗涤步骤提供相对高浓度的供料,以捕集二氧化碳。
图1中示出了本发明的一个优选实施方案的简单的流程图。从图1可见,来自燃烧工艺的排气料流的一部分被路由至基于吸收的二氧化碳捕集步骤,而另一部分则被路由至基于吹扫的膜分离步骤。
参照图1,燃料料流103与空气、富氧空气或氧的料流104被引入燃烧步骤或区域112。料流104由吹扫料流102(在下文讨论)和可选的附加的空气或氧供给料流115构成。所述工艺可以在大气压力或提升的压力下实施。
燃烧步骤可以以仅在以下方面被限制的任何方式实施:其导致含有二氧化碳的尾气、排气或烟气。这种燃烧工艺出现于整个工业化社会。代表性的工艺包括那些工艺,其中燃烧步骤被用来为烤炉或加热炉,如鼓风炉或回转窑(例如石灰或水泥窑)提供热量。其他重要的工艺为燃烧步骤在其中被用来生成蒸汽来运行涡轮机或其他设备以做机械功或产生电力的那些工艺。在另一些其他工艺中,燃烧气体本身被用作驱动涡轮机等的动力源,并且在其已被用于涡轮机之前或之后可以被处理。燃烧工艺的进一步实施例是用来为精炼操作供热的那些工艺,如某些类型的裂化(crack)或重整(reform)。
用于燃烧步骤的燃料可以是能够与氧气一起燃烧的任何燃料,包括但不限于煤、焦炭、木材、生物质、固体废弃物、油类和所有等级和类型的其他天然或合成液体燃料,以及任何类型的含有碳氢化合物的气体,如天然气、合成气、填埋气体、煤矿气体等等。
与燃料一起燃烧的氧可以以高纯氧、富氧空气、普通空气或任何其他合适的含氧混合物的形式提供。
提取燃烧排气料流117——优选地含有至少15vol%;更优选地,至少20vol%;而最优选地,至少25vol%的二氧化碳。该料流通常含有至少二氧化碳、水蒸汽、氮和氧,以及在上文概述部分中提到的其他组分。燃烧排气料流117,可选地,但典型地被路由通过冷凝器114,所述料流在其中被冷却,除去额外的水119。然后,脱水的排气料流105被路由通过分流器116,所述料流在其中以期望的比率被分为第一部分106和第二部分109。
排气料流105的第一部分106被路由至基于吸收的二氧化碳捕集步骤113,从而获得浓缩的二氧化碳产品料流107,优选地包含大于60、70或80vol%或更多的二氧化碳。该料流可以是气相或液相,或者可以为超临界流体。浓缩料流107可被送至封存步骤(未示出)进行进一步处理,以获得例如液态的二氧化碳产品,但可选择地可以采用任何其他适当的方式被使用或处置。剩余的排气料流108富含氮,并且典型地被排向环境。
吸收步骤可以以任何方式、并且使用任何吸附剂来实施,以使得大部分二氧化碳从排气的第一部分被除去。优选地,吸收步骤通过胺洗涤来进行,所述方法从二十世纪三十年代起被用于将二氧化碳从天然气和氢气中分离出来。该技术是为人熟知并广泛应用的工艺,涉及将二氧化碳吸收进入胺的水溶液,随后通过汽提(strip)将溶液再生。所述基本工艺于1930年以美国专利1,783,901被授权给R.R.Bottoms,其公开的内容以整体引用的方式并入本文。
二氧化碳在近环境温度下被从烟气或燃烧气体中吸收进入低挥发性的胺的水溶液。胺吸附剂可包括单一种烷醇胺或多种胺的混合物。吸附剂溶液可通过蒸汽汽提进行再生,并且可以通过将水冷却和冷凝从汽提汽中回收二氧化碳。可以使用的这种类型的代表性的工艺为Fluor Daniel Econamine FGTM工艺,该工艺使用基于一乙醇胺(MEA)的吸附剂系统。关于这种工艺的非常详细的说明可在文献中找到,例如在A.Kohl和R.Nielsen的GasPurification(气体提纯)(德克萨斯州,休斯敦,Gulf Publishing Co.,1997年第五版)第1188-1237页。
可以使用冷冻氨的吸收工艺作为胺洗涤的一种可能的代表性的替代方式。在这种工艺中,烟气在其进入二氧化碳吸收器(absorber)之前,首先被冷却以冷凝并除去水汽和残余污染物。在该处,二氧化碳被基于氨的溶液吸收,从烟气中分离出来。
胺吸收的其他可能的替代方式是用碳酸钾吸收,有时被称为Benfield工艺或“干锅(HotPot)”工艺。这些系统被称为“活化热碳酸钾(activated hot potassium carbonate,AHPC)”系统。在这种工艺中,凉的碳酸钾与二氧化碳反应形成碳酸氢钾。当溶液在解吸(desorption)塔中被加热时,所吸收的二氧化碳被释放。
其他供替代的工艺包括工艺,所述工艺两者在化工工业中广为人知。Rectisol和Selexol均为通过物理吸附来分离酸性气体(如二氧化碳和硫化氢)的溶剂的商品名称。由于不涉及化学反应,这些工艺典型地比基于胺或氨的工艺需要更少的能量。
Rectisol使用甲醇溶剂,并且已经被普遍用来处理由煤或重质烃的气化所产生的合成气,因为该溶剂可以除去典型地在这些气体中所发现的痕量污染物,如氨、水银和氰化氢。
在Rectisol工艺中,冷甲醇在大约-40℉(-40℃)从相对高的压力下的供料气体中(通常为400至1,000磅/平方英寸(psia)(2.76至6.89Mpa))溶解/吸收酸性气体。然后富含酸性气体的溶剂被降压以释放和回收酸性气体。Rectisol工艺可以运行来选择性回收二氧化碳和硫化氢作为独立的料流。
Selexol溶剂是聚乙二醇的二甲醚的混合物。Selexol工艺也是在加压条件下运行,典型地为大约300至2,000磅/平方英寸(psia)(2.07至13.8Mpa)。同Rectisol工艺一样,富含酸性气体的溶剂随后被降压和/或汽提,以释放和回收酸性气体,所述酸性气体可被作为单独料流选择性回收。
若期望,胺洗涤或其他吸附可以与一种或更多种其他已知的气体分离技术在此步骤中组合。这些技术的实施例包括但不限于,膜分离、压缩/低温浓缩以及吸附。
在二氧化碳捕集步骤进行的同时,燃烧排气料流105的第二部分109被送至基于吹扫的膜分离步骤或单元111进行处理。膜分离单元111包含对二氧化碳呈现高度渗透性以及就二氧化碳对氮呈现高选择性的膜118。
可以使用具有合适性能属性的任何膜。许多聚合材料,特别是弹性体材料,对二氧化碳的渗透性很强。用于从氮或其他惰性气体中分离二氧化碳的优选膜具有基于聚醚的选择性层。一些膜被认为具有高的二氧化碳/氮选择性,如30、40、50或更高,尽管所述选择性在实际运行条件下可能低得多。选择性层的代表性优选材料为在美国专利4,963,165中详细描述的一种聚酰胺-聚醚嵌段共聚物材料。我们已经发现使用作为选择性聚合物的膜可在工艺条件下保持10或更大的选择性。
膜可以采用均质膜、整体不对称膜、多层复合膜、并入凝胶或液体层或颗粒的膜的形式,或者本领域已知的任何其他形式。如果使用了弹性体膜,优选的形式是包括针对机械强度的微孔支撑层和对分离属性负责的橡胶状盖覆层的复合膜。
膜可以被制造为平片或纤维并且被容纳在任何方便的模块形式中,包括螺旋缠绕型模块、板框型模块和封装的中空纤维型模块。所有这些类型的膜和模块的制作在本领域中是公知的。为提供吹扫气体料流的逆向流动,模块优选地采用中空纤维型模块、板框型模块或螺旋缠绕型模块的形式。
螺旋缠绕型模块中的平片膜是膜/模块配置的最优选选择。已经发明了一些使得螺旋缠绕型模块能够在逆流模式(无论在渗透侧上有或者没有吹扫)中使用的设计。代表性的实施例在授予Dow Chemical的美国专利5,034,126中被描述。
膜步骤或单元111可以包含单一膜模块或膜模块排(bank)或模块阵列。包含一个膜模块或一排膜模块的单一单元或阶段(stage)足够用于许多应用。如果残余物料流需要进一步纯化,其可以被通入膜模块的第二排进行第二处理步骤。如果渗透料流需要进一步浓缩,其可以被通入膜模块的第二排进行第二阶段处理。这种多阶段或多步骤工艺及其变体将为本领域的技术人员所熟悉,他们将会理解,膜分离步骤可以按照许多可能的方式配置,包括单阶段、多阶段、多步骤或者两个或多个单元以串联或级联布置的更复杂阵列。
尽管膜模块典型地被水平排列,然而在一些情况下,垂直配置可被优选以降低膜供料表面的颗粒沉积的风险。
膜单元获得的组分分离不仅取决于膜对要被分离的组分的选择性,还取决于压力比。就压力比而言,我们意指总供料压力/总渗透压力的比率。在压力驱动工艺中,从数学上可以示出,组分的富集(即组分渗透分压/组分供料分压的比率)绝对不会大于该压力比。无论膜的选择性有多高,这种关系都是正确的。
此外,压力比和选择性之间的数学关系预示,数值较小的属性将主导分离。因此,如果压力比的数值远高于选择性,则工艺中可获得的分离将不受压力比的限制,却将取决于膜的选择性能力。反之,如果膜的选择性的数值远远高于压力比,压力比将限制分离。在这种情况下,渗透浓度变得基本上独立于膜的选择性,并且仅由压力比所决定。
可以通过将供料气体压缩至高压力或通过使用真空泵在渗透侧产生降低的压力,或二者的组合来获得高的压力比。然而,选择性越高,要获得与选择性数值可比的或更大的压力比,在资金和能源上的成本就变得越高。
从上文可以看出,使用对要被分离的组分具有高选择性的膜的压力驱动工艺,可能受到压力比的限制。例如,其中膜选择性可能达到40、50或之上的工艺(例如许多二氧化碳/氮分离的情况)将仅在压力比是可比的或更大的量值时,才能受益于高的选择性。
本发明人已经克服了此问题并且使通过用吹扫气体(料流101)稀释渗透,更多地利用膜的固有选择性能力,从而防止渗透侧的浓度累积到受限水平成为可能。
该运行模式可以例如在压力比为1(即供料和渗透侧之间无总压力差)、压力比小于1(即渗透侧的总压力高于供料侧)或者在小于10或小于5的相对中等压力比下使用。
通过将在渗透侧上的期望的渗透物的分压力降低到在供料侧上的分压力以下的水平来供给跨膜渗透的驱动力。使用吹扫气体料流101维持在渗透侧上的低的二氧化碳分压,由此提供驱动力。
通过将吹扫料流的流速调整到期望值来控制渗透侧的分压。从原理上说,吹扫气流对供料气流的比率可以是提供期望结果的任意值,尽管吹扫气流:供料气流的比率很少小于0.1或大于10。高比率(即高吹扫流速)达成从供料除去最大量的二氧化碳,但却是相对的二氧化碳稀释渗透料流(即在离开模块的吹扫气体中相对低的二氧化碳富集)。低比率(即低吹扫流速)达成在所述渗透中高的二氧化碳浓度,但相对低的从供料除去二氧化碳的水平。
使用太低的吹扫速率可能不足以为良好分离提供驱动力,而使用过高的吹扫流速率可能导致渗透侧上的压力降低或其他问题,或可能严重影响反应器中的化学计量。典型地并且优选地,吹扫料流的流速应在膜供料料流流速的约50%和200%之间,最优选地在约80%和120%之间。通常,约1:1的比率为方便和恰当的。
膜的每侧的总气体压力可以相同或不同,并且每个可以高于或低于大气压。如上文所述,如果压力大约相同,整个驱动力则由吹扫模式操作提供。
然而,在大多数情况下,烟气在大气压下是可获得的,并且所涉及的料流的体积太大,以致于在供料侧使用显著的压缩或在渗透侧使用真空都不是优选的。然而,略微的压缩(如从大气压到2或3巴)可以是有帮助的并能够提供相对节能的总二氧化碳捕集和回收工艺的一部分,如下文的实施例所示。
再回到图1,燃烧排气料流105的第二部分109流经膜的供料侧;作为吹扫气体的空气、富氧空气或氧气料流101流经渗透侧。吹扫料流拾取(pick up)优先渗透的二氧化碳,而所产生的渗透料流102被从膜单元提取,并被与料流115组合以形成通往燃烧器的空气或氧供料104。可替代地,料流115可以被省略,并且进入燃烧器的含氧供料的全部可以由渗透料流102提供。
如先前所讨论的,将燃烧空气或氧供给用于渗透吹扫的额外的好处之一是被除去进入吹扫气体中的渗透二氧化碳会被再循环(recycle)回到燃烧室。这提高了离开燃烧器的排气中的二氧化碳浓度,促进了下游对二氧化碳的捕集。
膜吹扫步骤111产生的残余物料流110中二氧化碳含量被减少至少于约5vol%,更优选的,至少于4vol%;而最优选的,至少于3vol%。残余物料流110典型地被作为处理过的烟气而排向环境。
通入二氧化碳捕集步骤和基于吹扫的膜分离步骤的烟气的比例可以连同其他运行参数一起被调整,以使本发明的工艺适合于具体情况。
所述工艺的目的之一是提高进入二氧化碳捕集步骤中的进料料流的二氧化碳浓度,因为胺洗涤具有与要被捕集的组分的浓度成比例的资金和/或运行成本。所述膜分离步骤优选地渗透二氧化碳,并且将其返回至燃烧器,从而在燃烧器和膜单元之间形成可增加二氧化碳浓度的环路。
膜单元中通入的排气越多,换言之,分流比越低,在环路中增加二氧化碳浓度的潜力就越大。然而,所需膜面积的量将会与通入膜单元的气体的体积流量成比例增加。此外,多数膜材料具有略微的就氧对氮的选择性,因此,来自空气吹扫料流中的少量氧将倾向于反渗透到膜的供料侧,并且被损失在残余物料流中。因此,燃烧器中的氧浓度可能会降低,产生不完全燃烧、在锅炉部件中形成焦炭或其他问题的可能性。如在下文实施例部分中给出的计算所阐释的,我们已经发现了在可通过膜分离步骤获得的二氧化碳的富集程度、被损失在残余物料流中的氧的量以及膜面积和运行膜分离步骤的压缩要求之间存在的权衡(trade-offs)。
鉴于这些权衡,我们相信以介于1:10和3:1之间的分流比运行所述工艺是优选的。1:1的分流比意指分流器116将来自燃烧器的总烟气流按体积分为两个相等的部分,所以,50vol%通过所述二氧化碳捕集步骤,50vol%通过所述膜分离步骤。同样地,1:10的分流比意指9vol%通过所述二氧化碳捕集步骤,而91vol%通过所述膜分离步骤,以此类推。更优选地,我们更倾向于以介于1:4到2:1之间的分流比运行;即,其中排气的20vol%和65vol%之间被通入所述二氧化碳捕集步骤。我们已经发现,在这个范围内运行将对于大多数工艺都提供效率和成本之间的良好平衡。
最佳分流比的选择将取决于许多情况依赖因素。例如,燃天然气的联合循环电厂典型地产生在某些情况下可能仅会含有4-6vol%的二氧化碳的烟气。这样低的二氧化碳浓度使得捕集用于封存的二氧化碳的成本昂贵。如下面的实施例中所示的,通过使用有大分流比(1:5或甚至1:10)的膜工艺,该浓度可以被提高至30vol%(六倍的增加)或更多。大的分流比暗示着图5中单元118具有大的膜面积(资金成本),但这会被二氧化碳捕集单元115的较小的尺寸所抵消。
现在,通过以下实施例进一步描述本发明,所述实施例意图阐明本发明,而非意图以任何方式限制其范围或基本原理。
实施例
实施例1.其他实施例的计算基础
(a)膜渗透实验:使用具有基于聚醚的选择性层的复合膜进行以下计算,所述基于聚醚的选择性层具有表1所示的属性。
表1
气体 渗透率(gpu)* CO2/气体选择性
二氧化碳 1,000 -
30 33
60 17
100 10
5000** -
*气体渗透单位;1gpu=1×10-6cm3(STP)/cm2·s·cmHg
**预测值,未测量
(b)计算方法:所有计算都使用建模程序ChemCad5.6(ChemStations,Inc.,Houston,TX)进行,包含由MTR工程团队所开发的膜运行代码。针对计算,假定所有的压缩机和真空泵的效率为75%。在每种情况下,进行建模计算以达到从烟气料流回收约80-90%的二氧化碳。
为便于计算软件的运算,与通入500兆瓦(MW)的燃煤发电厂的约1.8百万m3/h的典型空气流量相比,对于实施例1到3,假定经由膜的渗透侧向燃烧器提供的基本状况下的空气流量为约700m3/h(900kg/h)。换言之,针对实施例1到3的计算规模为一个典型燃煤发电厂的规模的约1/2,400。这成比例地减少了膜面积,但不影响相对流速或料流所包含的组成。
(c)“无膜”实施例:进行计算机计算以确定来自胺装置的尾气料流的化学组成,所述胺装置被单独使用以处理来自燃烧工艺的原始烟气。图2为不包括基于吹扫的膜分离步骤的燃烧工艺的流程图的示意图。
参照图2,燃料料流202和空气料流201被引入燃烧步骤或区域204。(所述燃烧步骤和与燃料结合的氧同上文具体实施方式中所描述的。)
提取燃烧排气料流205,然后将其路由至胺洗涤装置206。然后,计算所产生的尾气料流207、由胺再生步骤回收的浓缩二氧化碳料流以及未吸收的排空气体208的化学组成。该计算结果示于表2。
表2
胺装置处理二氧化碳浓度为14vol%、总流量为955kg/h的原始烟气料流。所述工艺回收原始排空料流的约96%的二氧化碳含量。来自洗涤器的未吸收的排气料流中的二氧化碳浓度为0.7vol%。从500兆瓦的发电厂排放这样的料流将每天释放约500吨二氧化碳到大气中。
实施例2.串联二氧化碳捕集/膜吹扫(未按照本发明)
进行计算机计算以确定来自煤燃烧工艺的排气的化学组成,其中,基于胺的二氧化碳捕集步骤和基于膜的分离步骤串联进行。图3为这样的串联燃烧工艺的流程图的示意图。
参照图3,煤303和空气料流304被引入燃烧步骤或区域312。料流304由再循环的排气料流302和附加的空气或氧供给料流315构成。
提取燃烧排气料流305,然后将其路由至冷凝器(未示出),水在所述冷凝器中被从料流中除掉。随后,脱水排气料流305被路由至胺洗涤装置314,富含二氧化碳的料流307在其中被提取,而二氧化碳贫化的料流306被路由至基于吹扫的膜分离步骤。膜分离单元311含有呈现上表1中所示属性的膜318。吹扫料流301以900kg/h的流速流经膜的渗透侧。排气料流309被释放到环境中,而渗透料流302被路由回到燃烧器312。
然后,计算被路由回到燃烧器312的气体料流302的化学组成。计算结果示于表3。
表3
提取自胺洗涤步骤314的富含二氧化碳的料流307含有88.9vol%的二氧化碳浓度,而来自胺洗涤步骤的膜供料料流306含有6.7vol%的二氧化碳浓度。被再循环至燃烧器的气体料流302含有非常低浓度的二氧化碳0.4vol%和相对高的氧浓度18.9vol%。所述工艺回收原始排空料流的约99%的二氧化碳。排气料流中的二氧化碳浓度是0.2vol%。由500兆瓦的发电厂排放这样的料流将每天释放约150吨二氧化碳到大气中。相比于实施例1的“无膜”情况,胺洗涤器的装载量(load)略微增加至960kg/h。
实施例3.本发明的工艺
使用上文图1中所示的流程图以及具体实施方案中的描述进行对本实施例的计算。该流程图包括胺洗涤装置113及与之并联进行的基于吹扫的膜分离步骤111。
在这组计算中,膜面积被假定为700m2,且燃烧排气料流的分流被设定为1:1(流入二氧化碳捕集步骤:流入基于吹扫的膜分离步骤)。空气流101为900kg/h。结算结果示于表4。
表4
来自胺洗涤步骤的富含二氧化碳的料流107含有99.6vol%的二氧化碳。被路由回到燃烧器的料流102含有11.3vol%的二氧化碳和16.5vol%的氧。所述工艺回收原始排空料流的约96.5vol%的二氧化碳。来自胺单元的尾气料流中的二氧化碳浓度为0.3vol%,而在膜残余物料流中为0.8vol%。由500兆瓦的发电厂排放这两种料流每天将释放约380吨二氧化碳到大气中,并且向胺设备运送的气体体积将减少一半。
实施例4.仅通过胺洗涤处理来自联合循环燃气电厂的烟气(未按照本发明)
进行计算机计算以确定来自天然气燃烧工艺的排气气体的化学组成,其中,基于胺的二氧化碳捕集步骤被进行,而未使用基于吹扫的膜分离步骤。假设来自燃烧器的排气的一部分被再循环回到燃烧步骤,作为用于温度控制的稀释剂。图4为这样的燃烧工艺的流程图的示意图。
为了便于计算软件的运算,相比于通入500兆瓦发电厂的约1.8百万m3/h的典型空气流量,对于实施例4到7,假设经由膜渗透侧向燃烧器提供的基本状况下的空气流量为约975m3/h(1,250kg/h)。换言之,针对实施例4到7的计算规模为典型燃天然气发电厂规模的约1/1,200。这成比例地减少了膜面积,但不影响相对流速或料流所含有的组成。
参照图4,天然气403和空气料流404被引入燃烧步骤或区域412。料流404由再循环的排气料流402和附加的空气或氧供给料流415构成。
提取燃烧排气料流405,然后将其路由通过冷凝器414,水407在其中从料流中被除掉。脱水排气料流406随后被路由至分流器408,排气料流的第一部分409从所述分流器408被路由至胺洗涤装置410,富含二氧化碳的料流411在其中被提取,而二氧化碳贫化的料流413作为经处理的烟气流向环境。排气料流的另一部分402作为料流402被路由回到燃烧器412。在本实施例中,分流比为3:2,意指所述排气料流的60vol%被路由至基于胺的二氧化碳捕集步骤410,而所述排气料流剩余的40vol%被路由回到燃烧器412。
然后,计算被路由回到燃烧器412的气体料流402的化学组成。计算结果示于表5。
表5
提取自胺洗涤步骤410的富含二氧化碳的料流411含有98.2vol%的二氧化碳浓度,基本上回收了来自燃烧器的全部二氧化碳。再循环至燃烧器的气体料流402含有8.2vol%的二氧化碳浓度和5.4vol%的氧浓度。
实施例5.本发明处理来自联合循环燃气发电厂的烟气的工艺
使用上文图1中所示的流程图和具体实施方式中的描述进行对本实施例中的计算。该流程图包括胺洗涤步骤113及与之并联进行的基于吹扫的膜分离步骤111。
在这组计算中,假设膜面积为2,800m2,并且将燃烧排气料流分流设定为1:5(流入二氧化碳捕集步骤:流入基于吹扫的膜分离步骤),这些参数被设定为达到回收约90vol%的二氧化碳。空气流101为1,250kg/h。该计算结果示于表6。
表6
来自胺洗涤步骤的富含二氧化碳的料流107含有99.7vol%的二氧化碳。被路由回到燃烧器的料流102含有相对高浓度的二氧化碳和氧二者,分别为24.4vol%和12.3vol%。释放到环境中的烟气110含有1.2vol%的二氧化碳。
通入胺单元的供料流中的二氧化碳浓度为约32vol%,相比之下实施例4中只有8vol%。被路由至胺装置的气体流量由约1,200kg/h被降低到304kg/h,这将使所需要的胺装置的容量降低到相应的现有技术的需求量的胺装置约四分之一。
实施例6.通过加压的胺洗涤处理来自联合循环燃气发电厂的烟气(未按照本发明)
进行计算机计算以确定来自天然气燃烧工艺的排气的化学组成,其中,基于胺的二氧化碳捕集步骤被进行,而未使用基于吹扫的膜分离步骤。该计算与实施例4的计算的不同在于假设排气在被路由至胺洗涤装置之前被压缩成10巴。在联合循环发电厂中,进入燃烧器的空气通常被压缩至高压,如10巴或更高。压缩所述排气意指由烟气料流转变而来要被再循环至燃烧器的稀释气体将为高压,并且可以被返回而不再压缩,从而节约在燃烧/发电步骤中使用的压缩机容量。胺装置也在加压下运行。图5是这样的燃烧工艺的流程图的示意图。
参照图5,天然气503和空气料流504被引入燃烧步骤或区域512。料流504由再循环的排气料流502与附加空气或氧供给料流515构成。
提取燃烧排气料流505,然后将其路由通过冷凝器514,水507在其中被从料流中除掉。脱水的排气料流506随后被路由至压缩机508,在那里所述脱水的排气料流506被压缩成10巴。被压缩的排气料流510通过二次冷却器/分离器511,获得水料流521,和压缩料流513。然后,料流513经过分流器516,排气料流的第一部分517从所述分流器516被路由至胺洗涤装置518,所述胺洗涤装置518在加压下运行以产生随后被提取的富含二氧化碳的料流519以及压缩的富含氮的尾气料流520。该料流保持加压并被路由至涡轮膨胀机(turbo-expander)522,所述涡轮膨胀机522与压缩机508以能量转移关系连接。驱动压缩机508所需要的相当大部分动力可用这种方法产生。
排气料流的另一部分502作为料流502被路由回到燃烧器512。该料流保持10巴,从而该料流可以基本上以这个压力回到联合循环燃烧/发电步骤。在本实施例中,排气料流的60vol%被路由至胺洗涤步骤518,并且排气料流的剩余的40vol%被路由回到燃烧器512。
随后,计算被路由回到燃烧器512的气体料流502的化学组成。该计算结果示于表7。
表7
提取自胺洗涤步骤518的富含二氧化碳的料流519含有98.2vol%的二氧化碳的浓度。再循环至燃烧器的气体料流502含有相对低的二氧化碳浓度8.2vol%,和氧浓度5.4vol%。
实施例7.本发明在加压下处理来自联合循环燃气发电厂的烟气的工艺
进行计算机计算以确定来自天然气燃烧工艺的排气的化学组成,其中,基于胺的二氧化碳捕集步骤和基于吹扫的膜分离步骤并联进行。该计算与实施例5的计算的不同在于假设排气被压缩到10巴,如实施例6中一样。如上文所讨论的,在联合循环发电厂中,进入燃烧器的空气通常被压缩至高压,如10巴或更高。压缩所述排气意指由烟气料流转变而来的要被再循环至燃烧器的稀释气体将为高压,并且可以被返回而不再压缩,从而节约在燃烧发电步骤中使用的压缩机容量。胺装置也在加压下运行。图6是这样的燃烧工艺的流程图的示意图。
参照图6,天然气603和空气料流604被引入燃烧步骤或区域612。料流604由再循环的排气料流602和附加的空气或氧供给料流615构成。
提取燃烧排气料流605,然后将其路由通过冷凝器614,水607在冷凝器614中被从料流中除掉。随后,脱水排气料流606被路由至压缩机608,脱水排气料流606在其中被压缩至10巴。被压缩的排气料流610通过二次冷却器/分离器611,获得水料流625。料流613经过分流器616,排气料流的第一部分617从所述分流器616被路由至胺洗涤装置618,所述胺洗涤装置618在加压下运行以产生被提取的富含二氧化碳的料流619,以及压缩的富含氮的尾气料流620。该料流保持加压并被路由至涡轮膨胀机626,所述涡轮膨胀机626与压缩机608以能量转移关系连接。驱动压缩机608所需要的相当大部分动力可用这种方法产生。
排气料流的另一部分621被路由至基于吹扫的膜分离步骤622。膜单元622含有呈现对二氧化碳的高渗透性以及就二氧化碳对氮的高选择性的膜623。压缩的浓缩排气料流621的第二部分621流经所述膜的供料侧,空气吹扫气体601流经渗透侧。吹扫料流拾取优先渗透的二氧化碳,而所产生的渗透料流602由膜单元被提取,并被与料流615组合形成通往燃烧器的空气或氧气供料604。来自膜分离步骤622的富含氮的排气料流624保持加压,并被与来自胺洗涤步骤的尾气料流620组合形成料流628,随后,所述料流628被路由至涡轮膨胀机626为驱动压缩机608供能。所产生的经处理的烟气料流627被释放到环境中。
在本实施例中,排气料流的约17vol%被路由至基于胺的二氧化碳捕集步骤618,而排气料流的剩余83vol%被路由至基于吹扫的膜分离步骤622。
然后,计算被路由回到燃烧器612的气体料流602的化学组成。该计算结果示于表8。
表8
来自胺洗涤步骤的富含二氧化碳的料流619含有99.7vol%的二氧化碳。被路由回到燃烧器的料流602含有相对高浓度的二氧化碳和氧,分别为25.4vol%和14.5vol%。,被释放到环境中的烟气627含有0.2vol%的二氧化碳,所述烟气627为料流620和624的组合。
通入胺单元的供料流中的二氧化碳浓度为约32vol%,相比之下实施例6只有8vol%。被路由至胺装置的气体流量由约1,200kg/h被降低至349kg/h,这将使所需要的胺装置的容量降低到相应的现有技术的需求量的略微多于四分之一胺装置。

Claims (21)

1.一种用于控制来自燃烧工艺的二氧化碳排气的工艺,所述工艺包括:
(a)通过燃烧燃料与空气、富氧空气或氧的混合物进行燃烧工艺,由此建立包括二氧化碳和氮的排气料流;
(b)将所述排气料流分为第一部分和第二部分,其中所述排气料流的第一部分和第二部分的二氧化碳浓度为至少23.4vol%;
(c)进行基于吸收的二氧化碳捕集步骤从所述排气料流的所述第一部分除去一部分浓缩形式的二氧化碳,由此从所述捕集步骤建立尾气料流,所述尾气料流的二氧化碳浓度比所述排气料流的二氧化碳浓度低;
(d)通过提供具有供料侧和渗透侧的膜,并且所述膜就二氧化碳对氮以及就二氧化碳对氧是选择性可渗透的,在进行步骤(c)的同时,进行基于吹扫的膜分离步骤;
(e)使所述排气料流的所述第二部分通过所述供料侧;
(f)使作为吹扫料流的空气、富氧空气或氧通过所述渗透侧;
(g)从所述供料侧提取二氧化碳贫化的排空料流;
(h)从所述渗透侧提取包括氧和二氧化碳的渗透料流;
(i)将所述渗透料流通至步骤(a),作为至少部分在步骤(a)中所使用的空气、富氧空气或氧。
2.如权利要求1所述的工艺,其中所述排气料流包括来自燃煤发电厂的烟气。
3.如权利要求1所述的工艺,其中所述排气料流包括来自燃气发电厂的烟气。
4.如权利要求1所述的工艺,其中所述排气料流的第一部分和第二部分的二氧化碳浓度为至少25vol%。
5.如权利要求1所述的工艺,其中所述排气料流包括至少3vol%的氧。
6.如权利要求1所述的工艺,其中所述排气料流的第一部分构成10vol%和75 vol%之间的所述排气料流。
7.如权利要求6所述的工艺,其中所述排气料流的第一部分构成20vol%和65 vol%之间的所述排气料流。
8.如权利要求7所述的工艺,其中所述排气料流的第一部分构成40vol%和60vol%之间的所述排气料流。
9.如权利要求1所述的工艺,其中所述排气料流的第二部分在通过所述膜的所述供料侧之前,被压缩到直至5巴的压力。
10.如权利要求1所述的工艺,其中所述排气料流在步骤(b)和(d)之前被压缩。
11.如权利要求1所述的工艺,其中所述吹扫料流沿吹扫流方向通过所述渗透侧,所述尾气料流沿供料流方向通过所述供料侧,并且所述吹扫流方向逆向于所述供料流方向。
12.如权利要求1所述的工艺,其中所述膜在工艺操作条件下显示至少500 gpu的二氧化碳渗透量。
13.如权利要求1所述的工艺,其中所述膜在工艺操作条件下显示至少10的有利于二氧化碳对氮的选择度。
14.如权利要求1所述的工艺,其中所述排空料流包括3vol%或更少的二氧化碳。
15.如权利要求14所述的工艺,其中所述排空料流包括2vol%或更少的二氧化碳。
16.如权利要求1所述的工艺,其中所述膜包括两个或更多个膜,所述两个或更多个膜排列于一个或更多个模块中,且其中所述一个或更多个模块以纵向配置排列。
17.如权利要求1所述的工艺,其中所述基于吸收的二氧化碳捕集步骤包括化学吸收工艺。
18.如权利要求17所述的工艺,其中所述化学吸收工艺是胺洗涤。
19.如权利要求17所述的工艺,其中所述基于吸收的二氧化碳捕集步骤包括使用基于氨的试剂吸收。
20.如权利要求1所述的工艺,其中所述基于吸收的二氧化碳捕集步骤包括物理吸收工艺。
21.如权利要求1所述的工艺,其中所述基于吸收的二氧化碳捕集步骤包括活化的热碳酸钾工艺。
CN201080070130.2A 2010-09-13 2010-09-13 使用基于吹扫的膜分离和吸收步骤从烟气分离二氧化碳的工艺 Active CN103249466B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2010/002481 WO2012036652A1 (en) 2010-09-13 2010-09-13 Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

Publications (2)

Publication Number Publication Date
CN103249466A CN103249466A (zh) 2013-08-14
CN103249466B true CN103249466B (zh) 2016-09-14

Family

ID=44065482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080070130.2A Active CN103249466B (zh) 2010-09-13 2010-09-13 使用基于吹扫的膜分离和吸收步骤从烟气分离二氧化碳的工艺

Country Status (6)

Country Link
US (1) US8246718B2 (zh)
EP (1) EP2616162B1 (zh)
CN (1) CN103249466B (zh)
PL (1) PL2616162T3 (zh)
RU (1) RU2534075C1 (zh)
WO (1) WO2012036652A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016015A1 (de) * 2009-04-02 2010-10-07 Forschungszentrum Jülich GmbH Vorrichtung und Verfahren zur Entfernung von Kohlendioxid (CO2) aus dem Rauchgas einer Feuerungsanlage nach der Energieumwandlung
US9732675B2 (en) * 2010-07-02 2017-08-15 Exxonmobil Upstream Research Company Low emission power generation systems and methods
US9140186B2 (en) 2010-09-13 2015-09-22 Membrane Technology And Research, Inc Sweep-based membrane gas separation integrated with gas-fired power production and CO2 recovery
US9856769B2 (en) 2010-09-13 2018-01-02 Membrane Technology And Research, Inc. Gas separation process using membranes with permeate sweep to remove CO2 from combustion exhaust
US9005335B2 (en) * 2010-09-13 2015-04-14 Membrane Technology And Research, Inc. Hybrid parallel / serial process for carbon dioxide capture from combustion exhaust gas using a sweep-based membrane separation step
US9457313B2 (en) 2010-09-13 2016-10-04 Membrane Technology And Research, Inc. Membrane technology for use in a power generation process
US8535418B2 (en) * 2010-11-22 2013-09-17 General Electric Company Gaseous byproduct removal from synthesis gas
US20120152362A1 (en) * 2010-12-17 2012-06-21 Fluor Technologies Corporation Devices and methods for reducing oxygen infiltration
US8829059B2 (en) 2012-06-27 2014-09-09 Membrane Technology And Research, Inc. Processes for the production of methanol using sweep-based membrane separation steps
US8845940B2 (en) 2012-10-25 2014-09-30 Carboncure Technologies Inc. Carbon dioxide treatment of concrete upstream from product mold
CA2832248C (en) * 2012-12-28 2019-05-21 Agrinol Inc. Methods and systems for gas filtering and carbon dioxide capture
BR112015018518A2 (pt) 2013-02-04 2017-07-18 Coldcrete Inc sistema e método para aplicar dióxido de carbono durante a produção de concreto
CN103267304B (zh) * 2013-04-02 2015-03-11 国家电网公司 大型火电机组的燃烧控制系统
US20140366446A1 (en) * 2013-06-14 2014-12-18 Uop Llc Methods and systems for gas separation
US10927042B2 (en) 2013-06-25 2021-02-23 Carboncure Technologies, Inc. Methods and compositions for concrete production
US9376345B2 (en) 2013-06-25 2016-06-28 Carboncure Technologies Inc. Methods for delivery of carbon dioxide to a flowable concrete mix
JP2016026860A (ja) * 2013-08-19 2016-02-18 富士フイルム株式会社 酸性ガス分離モジュール
WO2015076859A1 (en) * 2013-11-22 2015-05-28 Eliot Gerber Production of electric power from fossil fuel with almost zero air pollution
CA2943791C (en) * 2014-04-07 2023-09-05 Carboncure Technologies Inc. Integrated carbon dioxide capture
CN104874244B (zh) * 2015-06-17 2016-09-07 容秀柳 锅炉烟气处理方法
CN104959006B (zh) * 2015-06-17 2017-04-12 广西柳州中嘉知识产权服务有限公司 锅炉烟气处理塔
WO2017177324A1 (en) 2016-04-11 2017-10-19 Carboncure Technologies Inc. Methods and compositions for treatment of concrete wash water
US9782718B1 (en) 2016-11-16 2017-10-10 Membrane Technology And Research, Inc. Integrated gas separation-turbine CO2 capture processes
KR102524769B1 (ko) * 2017-07-19 2023-04-25 엑손모빌 테크놀로지 앤드 엔지니어링 컴퍼니 Co₂흡착 및 포획을 위한 유형 v 흡착제 및 기체 농축의 용도
US11511225B2 (en) 2019-09-11 2022-11-29 Honeywell International Inc. Contaminant concentration and removal system using liquid sorbent
CN111871159A (zh) * 2020-07-15 2020-11-03 中石化南京化工研究院有限公司 一种膜分离耦合醇胺溶液捕集烟气co2装置和方法
WO2024011231A1 (en) * 2022-07-07 2024-01-11 Enverid Systems, Inc. Methods and systems of extracting carbon dioxide from air

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1963128A1 (en) * 2005-12-13 2008-09-03 Scania CV AB (publ) Data generating system
CN101588856A (zh) * 2006-11-15 2009-11-25 环球研究技术有限公司 从空气中除去二氧化碳
CN101584960A (zh) * 2008-05-22 2009-11-25 青岛生物能源与过程研究所 气相-液相吸收膜分离装置与分离净化方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR685992A (fr) 1930-10-07 1930-07-21 Girdler Corp Perfectionnements à la séparation des gaz entre eux
US4376102A (en) * 1981-12-02 1983-03-08 Exxon Research And Engineering Co. Process for removing acid gases using a basic salt activated with a diaminoalcohol
US4963165A (en) 1987-04-27 1990-10-16 Membrane Technology & Research, Inc. Composite membrane, method of preparation and use
US4931070A (en) 1989-05-12 1990-06-05 Union Carbide Corporation Process and system for the production of dry, high purity nitrogen
US5034126A (en) 1990-01-29 1991-07-23 The Dow Chemical Company Counter current dual-flow spiral wound dual-pipe membrane separation
BR9100570A (pt) * 1990-02-12 1991-10-29 Union Carbide Ind Gases Tech Processo para a desidratacao de gases e membranas composito para o mesmo
US5240471A (en) 1991-07-02 1993-08-31 L'air Liquide Multistage cascade-sweep process for membrane gas separation
US5681433A (en) 1994-09-14 1997-10-28 Bend Research, Inc. Membrane dehydration of vaporous feeds by countercurrent condensable sweep
US5500036A (en) 1994-10-17 1996-03-19 Air Products And Chemicals, Inc. Production of enriched oxygen gas stream utilizing hollow fiber membranes
US5641337A (en) 1995-12-08 1997-06-24 Permea, Inc. Process for the dehydration of a gas
AU724534B2 (en) 1996-08-14 2000-09-21 Bend Research, Inc. Vapor permeation system
US6478852B1 (en) 2000-02-18 2002-11-12 Cms Technology Holdings, Inc. Method of producing nitrogen enriched air
DE10300141A1 (de) * 2003-01-07 2004-07-15 Blue Membranes Gmbh Verfahren und Vorrichtung zur Sauerstoffanreicherung von Luft bei gleichzeitiger Abreicherung von Kohlendioxid
US7966829B2 (en) * 2006-12-11 2011-06-28 General Electric Company Method and system for reducing CO2 emissions in a combustion stream
US7981196B2 (en) * 2007-06-04 2011-07-19 Posco Apparatus and method for recovering carbon dioxide from flue gas using ammonia water
RU2489197C2 (ru) * 2008-05-12 2013-08-10 Мембране Текнолоджи Энд Ресерч, Инк. Способ разделения газов с применением мембран с продувкой пермеата для удаления co2 из продуктов сжигания
US8034168B2 (en) * 2008-05-12 2011-10-11 Membrane Technology & Research, Inc Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases
US8025715B2 (en) * 2008-05-12 2011-09-27 Membrane Technology And Research, Inc Process for separating carbon dioxide from flue gas using parallel carbon dioxide capture and sweep-based membrane separation steps
US8007567B2 (en) * 2008-08-13 2011-08-30 A & B Process Systems Corporation Apparatus and method for biogas purification
US8734569B2 (en) * 2009-12-15 2014-05-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of obtaining carbon dioxide from carbon dioxide-containing gas mixture
WO2012036650A1 (en) * 2010-09-13 2012-03-22 Membrane Technology And Research, Inc. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas
CN103228339B (zh) * 2010-09-13 2016-06-15 膜技术研究股份有限公司 使用具有渗透吹扫的膜从气体燃料燃烧排气除去co2的气体分离工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1963128A1 (en) * 2005-12-13 2008-09-03 Scania CV AB (publ) Data generating system
CN101588856A (zh) * 2006-11-15 2009-11-25 环球研究技术有限公司 从空气中除去二氧化碳
CN101584960A (zh) * 2008-05-22 2009-11-25 青岛生物能源与过程研究所 气相-液相吸收膜分离装置与分离净化方法

Also Published As

Publication number Publication date
US8246718B2 (en) 2012-08-21
RU2013114714A (ru) 2014-10-20
EP2616162A1 (en) 2013-07-24
CN103249466A (zh) 2013-08-14
US20110262328A1 (en) 2011-10-27
PL2616162T3 (pl) 2017-10-31
RU2534075C1 (ru) 2014-11-27
WO2012036652A1 (en) 2012-03-22
EP2616162B1 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
CN103249466B (zh) 使用基于吹扫的膜分离和吸收步骤从烟气分离二氧化碳的工艺
CN103228339B (zh) 使用具有渗透吹扫的膜从气体燃料燃烧排气除去co2的气体分离工艺
CN102026702B (zh) 利用膜及渗透吹扫从燃烧气体中除去二氧化碳的气体分离工艺
Spigarelli et al. Opportunities and challenges in carbon dioxide capture
Aaron et al. Separation of CO2 from flue gas: a review
Feron Exploring the potential for improvement of the energy performance of coal fired power plants with post-combustion capture of carbon dioxide
JP5579602B2 (ja) ガス混合物の分離のためのプロセスおよび装置
AU2013200405A1 (en) Systems and methods for capturing carbon dioxide
CN107148398A (zh) 从气态混合物中分离产物气体的方法
US20100275777A1 (en) Membrane-Based Process for CO2 Capture from Flue Gases Generated by Oxy-Combustion of Coal
CN107899377A (zh) 烟气中二氧化碳的捕集回收装置及方法
CA2877733A1 (en) Controlling acidic compounds produced from oxy-combustion processes
Zhao et al. Comparative investigation of polymer membranes for post-combustion capture
RU2619313C2 (ru) Способ разделения газов с использованием мембран на основе продувки, объединённый с выработкой энергии на газовых электростанциях и извлечением co2
CN103359731A (zh) 用于生产二氧化碳的系统和方法
US20160256818A1 (en) Production of electric power from fossil fuel with almost zero air pollution
Obi et al. Review of recent process developments in the field of carbon dioxide (CO2) capture from power plants flue gases and the future perspectives
WO2015076859A1 (en) Production of electric power from fossil fuel with almost zero air pollution
WO2012164371A2 (en) Flue gas recirculation
Joarder et al. Solution to air pollution for removing CO2 and SO2 from flue gases: a prospective approach
Jimoh et al. Introduction to Carbon Capture by Solvent‐based Technologies
Ducroux et al. Technologies, methods and modelling for CO2 capture
US20240207772A1 (en) System, apparatus, and method for capture of multi-pollutants from industrial gases and/or exhausts
Pactat et al. Screening of Technologies for Carbon Capture from Offshore Gas Field Power Generation
Sahu et al. A review of materials used for carbon dioxide capture

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant