CN107899002A - 骨钙素在调节内皮祖细胞外泌体中的应用 - Google Patents

骨钙素在调节内皮祖细胞外泌体中的应用 Download PDF

Info

Publication number
CN107899002A
CN107899002A CN201711218900.3A CN201711218900A CN107899002A CN 107899002 A CN107899002 A CN 107899002A CN 201711218900 A CN201711218900 A CN 201711218900A CN 107899002 A CN107899002 A CN 107899002A
Authority
CN
China
Prior art keywords
osteocalcin
ocn
excretion body
adjusting
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711218900.3A
Other languages
English (en)
Other versions
CN107899002B (zh
Inventor
李静
张迎花
司瑾
吴晴晴
左雪冰
石宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuanwu Hospital
Original Assignee
Xuanwu Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuanwu Hospital filed Critical Xuanwu Hospital
Priority to CN201711218900.3A priority Critical patent/CN107899002B/zh
Publication of CN107899002A publication Critical patent/CN107899002A/zh
Application granted granted Critical
Publication of CN107899002B publication Critical patent/CN107899002B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明涉及骨钙素在调节内皮祖细胞外泌体中的应用,所述调节涉及外泌体的数量以及直径分布。调节后的外泌体能够显著促进内皮细胞的增殖、迁移,使内皮细胞更快地生成血管。该调节机制的发现为缺血性疾病的治疗提供了新的思路。

Description

骨钙素在调节内皮祖细胞外泌体中的应用
技术领域
本发明涉及生物医药领域,具体涉及骨钙素(OCN)在调节内皮祖细胞外泌体中的应用。
背景技术
骨钙素(Osteocalcin,OCN),也称为骨Gla蛋白,或骨γ-羧基谷氨酸蛋白(Boneγ-CarboxyglutamicAcid Containing Protein,BGLAP或BGP),或骨依赖维生素K蛋白(BoneVitamin K Dependent Protein),是一种由成骨细胞、成牙质细胞和肥大软骨细胞特异合成和分泌的一种结构蛋白,属于构成骨基质的成分之一。骨钙素分子中的谷氨酸残基通过依赖维生素K的翻译后修饰转化为γ-羧基谷氨酸(Gla)残基。γ-羧基化骨钙素分子含3个Gla残基。活性维生素D促进成骨细胞中γ-羧基化骨钙素的生物合成。γ-羧基化骨钙素称为活性骨钙素,能够通过Gla残基与钙结合。研究证明,骨钙素能维持骨的正常矿化速率,抑制异常的羟磷灰石(HA)结晶的形成,是反映机体骨代谢变化的灵敏、可靠的指标。由于一部分骨钙素分子分泌到血液中,所以用血清骨钙素水平作为骨形成和骨代谢病的指数。
来源于骨髓的内皮祖细胞(Endothelial Progenitor Cells,EPCs)是血管内皮细胞的前体细胞,能分化为成熟的血管内皮细胞,参与内皮系统受损的修复补充。EPC细胞表达内皮细胞特异性抗原,如CD34、CD133、Flk-l、Tie-2、VEGFR-2等,其可迁徙到损伤组织,增殖分化为成熟的内皮细胞层,从而参与血管重建。但是,由于内皮祖细胞也具有干细胞多向分化潜能的特性,在某些有害的环境下,其有可能分化为具有负性作用的细胞表型,加速病理损害进程。近来有报道,内皮祖细胞的数量减少与功能受损,与动脉粥样硬化、糖尿病的发生、发展存在着密切联系。另一方面,内皮祖细胞在肿瘤血管生成中也起着重要作用,而且不同类型的肿瘤中内皮祖细胞所起的作用及所含比例还有所不同。
可见,研究内皮祖细胞的生物调控机制,能够更好地了解相关疾病的生物学机理,为药物研发和临床治疗提供了新的思路。本发明中,骨钙素(OCN)能够调节内皮祖细胞的外泌体,尤其是调节外泌体的数量以及直径分布。这在现有技术中还鲜有报道。本发明还进一步研究骨钙素对内皮祖细胞功能的影响,能够为缺血性疾病的治疗开拓了新的前景。
发明内容
本发明针对现有技术的不足,提供骨钙素(OCN)在制备调节内皮祖细胞外泌体的药物中的应用。
在一个方面中,所述调节是对内皮祖细胞中骨钙素的表达量的调节。
优选的,所述骨钙素的表达量提高2倍左右、4倍左右、6倍左右、7倍左右、或8倍左右。
在一个方面中,所述调节是对内皮祖细胞外泌体的数量的调节。
优选的,所述外泌体的数量提高4%左右、6%左右、8%左右、9%左右、10%左右、11%左右、或12%左右。
在一个方面中,所述调节是对内皮祖细胞外泌体的直径的调节。
优选的,所述外泌体的直径的平均尺寸提高5%左右、10%左右、15%左右、20%左右、25%左右、或30%左右。
本发明还提供骨钙素(OCN)在制备通过调节内皮祖细胞外泌体从而调节内皮祖细胞功能的药物中的应用。
在一个方面中,所述调节是对内皮祖细胞增殖速率的调节。
优选的,所述增殖速率提高25%左右、30%左右、35%左右、40%左右、45%左右、或50%左右。
上述提高/增加的数值/比例是相对于对照组而言的。
本发明还提供骨钙素(OCN)在制备治疗缺血性疾病的药物中的应用。
在一个方面中,所述缺血性疾病选自冠心病、动脉粥样硬化、动脉栓塞、脑卒中、糖尿病性局部缺血。
在一个方面中,所述药物包含骨钙素,或骨钙素的编码基因,或含有骨钙素的编码基因的载体,以及药学上可接受的辅料。
本发明还提供了一种药物组合物,其包含骨钙素,或骨钙素的编码基因,或含有骨钙素的编码基因的载体,以及药学上可接受的辅料。
在一个方面中,所述药物组合物可根据常规方法制成药物制剂。制剂过程中,优选将重组基因载体或双特异性抗体与药学上可接受的载体混合或用载体稀释。当载体作为稀释剂时,其可以为固体、半固体或液体。制剂选自片剂、丸剂、粉剂、胶囊、混悬剂、乳剂、溶液剂、气溶胶、胶囊、注射用溶液等形式。合适的载体、赋形剂或稀释剂包括水、乳糖、葡萄糖、蔗糖、山梨醇、甘露醇、硅酸钙、纤维素、聚乙烯吡咯烷酮、羟基苯甲酸甲酯、羟基苯甲酸丙酯、滑石粉、硬脂酸镁和矿物油等。制剂还可以包括填充剂、抗凝血剂、润滑剂、保湿剂、调味剂、乳化剂、防腐剂等。
本发明的积极效果包括:骨钙素(OCN)能够显著调节内皮祖细胞(EPC)外泌体的直径分布和数量,使外泌体的数量增加、直径尺寸增大。所述调节后的外泌体能够显著促进内皮细胞的增殖、迁移,使内皮细胞更快地生成血管。本发明研究骨钙素对内皮祖细胞的生物调控机制,研究骨钙素对内皮祖细胞功能的影响,在现有技术中鲜有报道,这为缺血性疾病的治疗开拓了新的研究前景,为药物研发和临床治疗提供了新的思路。
附图说明
图1:OCN过表达EPC细胞的mRNA表达量对比。
图2:OCN过表达EPC细胞的OCN表达量的蛋白质免疫印迹。
图3:BCA法检测OCN过表达EPC细胞的外泌体浓度。
图4:NTA法检测OCN过表达EPC细胞的外泌体数量。
图5:NTA法检测OCN过表达EPC细胞的外泌体直径分布。
图6:OCN过表达EPC细胞的外泌体与三种抗体结合的蛋白质免疫印迹。
图7:CCK-8检测OCN过表达EPC细胞的外泌体对RAOEC细胞增殖的影响。
图8:划痕实验检测OCN过表达EPC细胞的外泌体对RAOEC细胞迁移的影响。
图9:显微镜拍照检测OCN过表达EPC细胞的外泌体对RAOEC细胞血管生成的影响。
图10:OCN过表达EPC细胞的外泌体对RAOEC细胞血管生成的影响(细胞群网络/血管网络的网格数量)。
图11:OCN过表达EPC细胞的外泌体对RAOEC细胞血管生成的影响(细胞群网络/血管网络的网格长度)。
图12:检测OCN过表达EPC细胞的外泌体对RAOEC细胞NO浓度的影响。
图13:检测OCN过表达EPC细胞的外泌体对RAOEC细胞生物分子数量/活性的影响,与五种抗体结合的蛋白质免疫印迹。
具体实施方式
下述实验方法中所用的实验材料如无特别说明,均可容易地从商业公司获取。在不背离本发明精神的情况下,本领域技术人员结合公知技术,可以对本发明做出诸多修改,这样的修改也落入本发明的保护范围之内。
实施例1、骨钙素(OCN)过表达细胞的构建
实验材料:骨钙素(OCN),其氨基酸序列及其编码序列可参考/选自现有技术(如鼠源骨钙素RAT-OCN:GenBank:AAA41761;GenBank:AAA53280;等),OCN的编码基因可委托商业公司合成。pYr真核表达载体、内皮祖细胞(EPC),均可通过商业公司购买。
限制性培养基:FBS预先经0.22μm滤膜过滤,100000g离心12h,去除FBS中外泌体。然后加入10%的该FBS到EBM-2培养基中(含EGM-2MVSingleQuots)。使用外泌体专用FBS。
(一)、OCN过表达载体的构建
采用基因工程的技术手段将OCN的编码基因导入pYr真核表达载体中,构建OCN过表达载体pYr-RAT-OCN。
主要步骤包括:设计扩增目的基因的引物,PCR扩增OCN编码基因,纯化回收扩增产物,限制性内切酶酶切目的基因和pYr真核表达载体,纯化回收酶切产物,DNA连接酶连接目的基因和pYr真核表达载体,转染酿酒酵母感受态细胞,细胞培养,鉴定阳性克隆,细胞培养、离心、破菌,纯化回收OCN过表达载体pYr-RAT-OCN。
(二)、转染EPC细胞
1、表达载体的设置
实验分组(2个组):OCN过表达载体;空质粒(pYr载体)
2、转染细胞的设置
实验分组(2个组):
A组:转染OCN过表达载体的EPC细胞(pYr-RAT-OCN组)
B组:转染空质粒的EPC细胞(对照组,NC组)
主要步骤包括:将上述构建好的OCN过表达载体转染EPC细胞;同时,转染空质粒进入EPC细胞。分别选用初始浓度相同的EPC细胞,转染48h后,收集细胞,准备检测OCN的过表达效果。
(三)、OCN过表达的鉴定
1、利用qPCR检测OCN过表达效果(2个组)
分别选用初始浓度相同的EPC细胞,转染48h后,检测OCN的过表达效果。检测的目的基因为OCN,使用的内参为β-actin。
实验结果如图1所示。由结果可知,OCN过表达EPC细胞的mRNA表达量是对照组的6倍左右。这说明OCN过表达载体在EPC细胞内能很好地复制、转录OCN的编码基因。
2、利用Western Blot(WB)检测OCN过表达效果(2个组)
分别选用初始浓度相同的EPC细胞,转染48h后,检测OCN的过表达效果。检测OCN蛋白表达量,使用抗OCN的抗体,使用的内参为β-actin。
实验结果如图2所示。由结果可知,OCN过表达EPC细胞的OCN表达量与对照组的差异非常显著。这说明OCN过表达载体在EPC细胞内能很好地翻译、表达OCN蛋白。
实施例2、骨钙素(OCN)对于外泌体分泌的影响
(一)、转染的EPC细胞的培养与外泌体的提取
1、转染细胞的培养
实验分组(2个组):
A组:转染OCN过表达载体的EPC细胞(pYr-RAT-OCN组)
B组:转染空质粒的EPC细胞(对照组,NC组)
取常规培养基培养的对数生长期的上述细胞,分别在相同的细胞浓度下,更换成相同体积的限制性培养基,培养24h后,进行外泌体的提取。
2、外泌体的提取(2个组)
利用外泌体提取试剂盒提取细胞培养物中的外泌体。主要步骤包括:细胞培养物先经2000g离心30min,去除细胞/细胞碎片。取上清液,用1μm滤膜过滤,取滤液。滤液经试剂盒提取外泌体。分离的外泌体加PBS或海藻糖缓冲液(TPM)重悬。储存于-80℃或进行实验。
(二)、外泌体分泌的鉴定
1、定量检测外泌体的浓度(2个组)
利用BCA法,使用BCA试剂盒对分离的外泌体进行定量检测。
实验结果如图3所示。由结果可知,OCN过表达EPC细胞的外泌体浓度相比对照组的略有降低。
2、检测外泌体的直径分布和数量(2个组)
分离的外泌体采用PBS重悬,利用纳米粒子追踪分析技术(NTA)检测外泌体的直径分布和数量。
实验结果如图4、图5所示。由结果可知,OCN过表达EPC细胞的外泌体数量相比对照组的有所增加,提高10%左右;同时,外泌体的直径分布明显向更大直径方向偏移,平均直径尺寸提高20%左右。这说明OCN能够显著调节EPC细胞外泌体的直径分布和数量。
3、检测外泌体的免疫原性(2个组)
利用Western Blot(WB)检测分离的外泌体与抗体的结合活性。使用抗CD9抗体、抗CD81抗体、抗OCN抗体,使用的内参为Flotillin-1。
实验结果如图6所示。由结果可知,OCN过表达EPC细胞的外泌体相比对照组的具有更强的免疫原性,与抗体的结合更加明显。
实施例3、骨钙素(OCN)通过外泌体调控内皮祖细胞功能的机制研究
实验材料:大鼠动脉内皮细胞(RAOEC)、CCK-8试剂盒、Griess试剂检测试剂盒,均可通过商业公司购买。
限制性培养基:FBS预先经0.22μm滤膜过滤,100000g离心12h,去除FBS中外泌体。然后加入10%的该FBS到MCDB131培养基中。使用外泌体专用FBS。
(一)、分离的外泌体与内皮细胞共培养
实验分组(3个组):
A组:转染OCN过表达载体的EPC细胞的外泌体与RAOEC细胞共培养(RAOEC+pYr-RAT-OCN Exosomes组)
B组:转染空质粒的EPC细胞的外泌体与RAOEC细胞共培养(RAOEC+Exosomes组)
C组:RAOEC细胞单独培养(RAOEC组)
(二)、外泌体对内皮细胞增殖的影响(3个组)
A、B、C三个组,使用限制性培养基培养,每个组选用RAOEC细胞的浓度为5×103个/mL,外泌体的浓度为200ng/μL,共培养4天。随后利用CCK-8检测RAOEC细胞的增殖情况。
实验结果如图7所示。由结果可知,OCN过表达EPC细胞的外泌体在4天内能够使内皮细胞的增殖数量(增殖速率)提高40%以上,而转染空质粒的EPC细胞的外泌体也能使内皮细胞的增殖数量(增殖速率)提高25%以上。这说明OCN过表达EPC细胞的外泌体能够更好地促进内皮细胞的增殖。
(三)、外泌体对内皮细胞迁移的影响(3个组)
A、B、C三个组,使用限制性培养基培养,每个组选用RAOEC细胞的浓度为2×105个/mL,外泌体的浓度为200ng/μL,共培养24h。随后利用划痕实验检测RAOEC细胞的迁移情况,检测0、16h、24h的细胞迁移。在3个不同的时间点标记出划痕的宽度。
实验结果如图8所示。由结果可知,在OCN过表达EPC细胞的外泌体存在下,内皮细胞的划痕宽度相比另外两个组的缩小得非常明显。这说明OCN过表达EPC细胞的外泌体能够明显促进内皮细胞更快地迁移。
(四)、外泌体对血管生成的影响(3个组)
A、B、C三个组,使用限制性培养基培养,每个组选用RAOEC细胞的浓度为2×104个/mL,外泌体的浓度为200ng/μL,共培养24h。随后利用显微镜拍照检测4h、8h时血管生成的情况,并计算血管生成长度(Tube Length)以及出芽(Branch Proints)数量。
实验结果如图9、图10、图11所示。由结果可知,OCN过表达EPC细胞的外泌体在8h内能够使内皮细胞形成的细胞群网络(血管网络)更加密集,包括细胞群网络(血管网络)的网格数量和网格长度,均比另外两个组的更多。这说明OCN过表达EPC细胞的外泌体能够显著促进内皮细胞更快地生成血管。
(五)、外泌体对内皮细胞生物活性的影响(3个组)
A、B、C三个组,使用限制性培养基培养,每个组选用RAOEC细胞的浓度为2×105个/mL,外泌体的浓度为200ng/μL,共培养24h。随后利用Griess试剂显色法测定NO浓度。NO是内皮细胞产生最重要的舒血管因子,由内皮细胞的NO合酶(eNOs)作用于L-精氨酸产生,NO可扩散至血管壁平滑肌细胞激活鸟氨酸环化酶,介导cGMP调控的血管舒张。
实验结果如图12所示。由结果可知,OCN过表达EPC细胞的外泌体在24h内能够使内皮细胞的NO浓度提高45%以上,而转染空质粒的EPC细胞的外泌体也能使内皮细胞的NO浓度提高25%以上。这说明OCN过表达EPC细胞的外泌体能够更好地提高内皮细胞的生物活性。
(六)、外泌体对内皮细胞生物活性的影响(3个组)
A、B、C三个组,使用限制性培养基培养,每个组选用RAOEC细胞的浓度为2×106个/mL,外泌体的浓度为200ng/μL,共培养24h。随后利用WesternBlot(WB)检测内皮细胞的生物分子与抗体的结合活性。使用抗p-eNOS抗体、抗eNOS抗体、抗VEGFA抗体、抗整合素β1抗体、抗CXCR2抗体,使用的内参为β-actin。
实验结果如图13所示。由结果可知,在p-eNOS、VEGFA、抗整合素β1、CXCR2这几个方面,OCN过表达EPC细胞的外泌体能够使内皮细胞的生物分子数量或活性的提升,相比另外两个组的更加突出。这说明OCN过表达EPC细胞的外泌体能够更好地提高内皮细胞的生物活性。

Claims (10)

1.骨钙素(OCN)在制备调节内皮祖细胞外泌体的药物中的应用。
2.如权利要求1所述的应用,其中所述调节是对内皮祖细胞中骨钙素的表达量的调节;优选的,所述骨钙素的表达量提高2倍左右、4倍左右、6倍左右、7倍左右、或8倍左右。
3.如权利要求1所述的应用,其中所述调节是对内皮祖细胞外泌体的数量的调节;优选的,所述外泌体的数量提高4%左右、6%左右、8%左右、9%左右、10%左右、11%左右、或12%左右。
4.如权利要求1所述的应用,其中所述调节是对内皮祖细胞外泌体的直径的调节;优选的,所述外泌体的直径的平均尺寸提高5%左右、10%左右、15%左右、20%左右、25%左右、或30%左右。
5.骨钙素(OCN)在制备通过调节内皮祖细胞外泌体从而调节内皮祖细胞功能的药物中的应用。
6.如权利要求5所述的应用,其中所述调节是对内皮祖细胞增殖速率的调节;
优选的,所述增殖速率提高25%左右、30%左右、35%左右、40%左右、45%左右、或50%左右。
7.骨钙素(OCN)在制备治疗缺血性疾病的药物中的应用。
8.如权利要求7所述的应用,其中所述缺血性疾病选自冠心病、动脉粥样硬化、动脉栓塞、脑卒中、糖尿病性局部缺血。
9.如权利要求7或8所述的应用,所述药物包含骨钙素,或骨钙素的编码基因,或含有骨钙素的编码基因的载体,以及药学上可接受的辅料。
10.一种药物组合物,其包含骨钙素,或骨钙素的编码基因,或含有骨钙素的编码基因的载体,以及药学上可接受的辅料。
CN201711218900.3A 2017-11-28 2017-11-28 骨钙素在调节内皮祖细胞外泌体中的应用 Expired - Fee Related CN107899002B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711218900.3A CN107899002B (zh) 2017-11-28 2017-11-28 骨钙素在调节内皮祖细胞外泌体中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711218900.3A CN107899002B (zh) 2017-11-28 2017-11-28 骨钙素在调节内皮祖细胞外泌体中的应用

Publications (2)

Publication Number Publication Date
CN107899002A true CN107899002A (zh) 2018-04-13
CN107899002B CN107899002B (zh) 2020-02-18

Family

ID=61849313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711218900.3A Expired - Fee Related CN107899002B (zh) 2017-11-28 2017-11-28 骨钙素在调节内皮祖细胞外泌体中的应用

Country Status (1)

Country Link
CN (1) CN107899002B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108865978A (zh) * 2018-07-25 2018-11-23 辽宁润基生物科技有限公司 一种分离和纯化外泌体的方法
WO2019211866A1 (en) * 2018-04-30 2019-11-07 National Institute Of Immunology Carboxylated osteocalcin for treatment of amyloidosis or diseases associated with abnormal protein folding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2663069A1 (en) * 2006-09-13 2008-03-20 Patricia F. Ducy Undercarboxylated/uncarboxylated osteocalcin increases beta-cell proliferation, insulin secretion, insulin sensitivity, glucose tolerance and decreases fat mass
US20160108368A1 (en) * 2014-07-03 2016-04-21 ReCyte Therapeutics, Inc. Exosomes from clonal progenitor cells
CN105582576A (zh) * 2016-02-23 2016-05-18 武汉大复生物科技有限公司 提高内皮祖细胞外泌体释放并促进骨缺损修复的生物材料、制备方法及用途
JP2017131172A (ja) * 2016-01-29 2017-08-03 国立大学法人大阪大学 エクソソーム産生促進剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2663069A1 (en) * 2006-09-13 2008-03-20 Patricia F. Ducy Undercarboxylated/uncarboxylated osteocalcin increases beta-cell proliferation, insulin secretion, insulin sensitivity, glucose tolerance and decreases fat mass
US20160108368A1 (en) * 2014-07-03 2016-04-21 ReCyte Therapeutics, Inc. Exosomes from clonal progenitor cells
JP2017131172A (ja) * 2016-01-29 2017-08-03 国立大学法人大阪大学 エクソソーム産生促進剤
CN105582576A (zh) * 2016-02-23 2016-05-18 武汉大复生物科技有限公司 提高内皮祖细胞外泌体释放并促进骨缺损修复的生物材料、制备方法及用途

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
EKSTRÖM K等: "Monocyte Exosomes Stimulate the Osteogenic Gene Expression of Mesenchymal Stem Cells", 《PLOS ONE》 *
FLAMMER AJ等: "Polyphenol-rich cranberry juice has a neutral effect on endothelial function but decreases the fraction of osteocalcin-expressing endothelial progenitor cells", 《EUR J NUTR》 *
LI X等: "Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function", 《J DIABETES COMPLICATIONS》 *
ZHANG J等: "Exosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling", 《INT J BIOL SCI》 *
刘力等: "循环内皮祖细胞异位表达骨钙素在缺血性脑血管病发病中的作用", 《中国卒中杂志》 *
张健等: "共培养下成骨细胞与血管内皮细胞相互功能影响", 《口腔颌面修复学杂志》 *
徐兵等: "骨髓源内皮祖细胞分泌的外泌体对大鼠创伤性皮肤缺损修复的促进作用", 《吉林大学学报(医学版)》 *
董雪等: "骨钙素的研究进展", 《吉林医药学院学报》 *
陈春媛: "人EPCs来源外泌体修复糖尿病大鼠皮肤缺损的作用及机制", 《中国优秀硕士学位论文全文数据库医药卫生科技辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019211866A1 (en) * 2018-04-30 2019-11-07 National Institute Of Immunology Carboxylated osteocalcin for treatment of amyloidosis or diseases associated with abnormal protein folding
CN108865978A (zh) * 2018-07-25 2018-11-23 辽宁润基生物科技有限公司 一种分离和纯化外泌体的方法

Also Published As

Publication number Publication date
CN107899002B (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
Wu et al. Extracellular vesicles from human embryonic stem cell-derived cardiovascular progenitor cells promote cardiac infarct healing through reducing cardiomyocyte death and promoting angiogenesis
Oh et al. In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model
Qiao et al. microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential
Ozaki Tan et al. Novel applications of mesenchymal stem cell-derived exosomes for myocardial infarction therapeutics
JP7015169B2 (ja) 機能性ミトコンドリアで富化された哺乳動物細胞
Kawasaki et al. Vascular repair by tissue-resident endothelial progenitor cells in endotoxin-induced lung injury
Mao et al. MicroRNA-23a is involved in tumor necrosis factor-α induced apoptosis in mesenchymal stem cells and myocardial infarction
Jumabay et al. Endothelial differentiation in multipotent cells derived from mouse and human white mature adipocytes
Paul et al. Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: investigation in rat heart with acute infarction
Wang et al. ADSC-derived exosomes attenuate myocardial infarction injury by promoting miR-205-mediated cardiac angiogenesis
US20220110979A1 (en) Fibroblast regenerative cells
Urzì et al. The dark side of foetal bovine serum in extracellular vesicle studies
CN107028980A (zh) 用于治疗心脏疾病的药物组合物
CN110403959B (zh) 间充质干细胞外泌体制剂及其应用
Soni et al. MicroRNA-enriched exosomes from different sources of mesenchymal stem cells can differentially modulate functions of immune cells and neurogenesis
Shao et al. Effects of oral implants with miR‑122‑modified cell sheets on rat bone marrow mesenchymal stem cells
Wang et al. BMSC-derived small extracellular vesicles induce cartilage reconstruction of temporomandibular joint osteoarthritis via autotaxin–YAP signaling Axis
Mao et al. MiR-183-5p overexpression in bone mesenchymal stem cell-derived exosomes protects against myocardial ischemia/reperfusion injury by targeting FOXO1
Madonna et al. Transplantation of telomerase/myocardin-co-expressing mesenchymal cells in the mouse promotes myocardial revascularization and tissue repair
Kang et al. Magnetic bionanoparticle enhances homing of endothelial progenitor cells in mouse hindlimb ischemia
Ding et al. Exosomes secreted from human umbilical cord mesenchymal stem cells promote pancreatic ductal adenocarcinoma growth by transferring miR-100-5p
JP2017530977A (ja) 肺高血圧症の治療剤としての心筋球由来細胞(cdc)
Derval et al. Epicardial deposition of endothelial progenitor and mesenchymal stem cells in a coated muscle patch after myocardial infarction in a murine model
Santos et al. Intrinsic angiogenic potential and migration capacity of human mesenchymal stromal cells derived from menstrual blood and bone marrow
CN107899002A (zh) 骨钙素在调节内皮祖细胞外泌体中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200218