CN107895691B - 一种提升光伏电池扩散制结效率的方法 - Google Patents

一种提升光伏电池扩散制结效率的方法 Download PDF

Info

Publication number
CN107895691B
CN107895691B CN201711084963.4A CN201711084963A CN107895691B CN 107895691 B CN107895691 B CN 107895691B CN 201711084963 A CN201711084963 A CN 201711084963A CN 107895691 B CN107895691 B CN 107895691B
Authority
CN
China
Prior art keywords
keeping
flow
7slm
time
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711084963.4A
Other languages
English (en)
Other versions
CN107895691A (zh
Inventor
杨飞飞
焦朋府
郭卫
张雁东
周凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Luan Solar Energy Technology Co Ltd
Original Assignee
Shanxi Luan Solar Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Luan Solar Energy Technology Co Ltd filed Critical Shanxi Luan Solar Energy Technology Co Ltd
Priority to CN201711084963.4A priority Critical patent/CN107895691B/zh
Publication of CN107895691A publication Critical patent/CN107895691A/zh
Application granted granted Critical
Publication of CN107895691B publication Critical patent/CN107895691B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及光伏电池生产领域。一种提升光伏电池扩散制结效率的方法,对硅片进行氧化后,首先进行较低温度的大流量沉积,然后采用较高温度的大流量推进,提高PN结深度,然后采用三次较高温度的小流量沉积和推进,在硅片表面形成渐变场浓度梯度更陡的磷扩散。本发明通过渐变场钝化效应来降低表面复合速率,实现后可以提升效率至少0.07%,同时扩散均匀性改善,对于组件抗PID也有所提升。

Description

一种提升光伏电池扩散制结效率的方法
技术领域
本发明涉及光伏电池生产领域。
背景技术
扩散制结工艺是电池制造过程的关键工序,主要作用在于形成PN结,通过内置电场收集光生载流子。目前扩散工艺包括普通扩散与低压扩散。由于工艺流程本身的问题,不易做到浅结低表面浓度的结构,由此提效存在一定的困难。
发明内容
本发明所要解决的技术问题是:如何通过沉积推进来降低表面复合速率,同时提高光伏电池的效率。
本发明所采用的技术方案是:一种提升光伏电池扩散制结效率的方法,按照如下的步骤进行
步骤一、保持氮气流量7slm,将携带硅片的石英舟以35cm/min的速度进入充满氮气的石英炉管中,关闭炉门,以10℃/min的升温速率升温至780℃,保温2分钟,保持氮气流量7slm,氧气流量2slm,保温5分钟;
步骤二、第一次沉积,保持温度810℃,保持氮气流量7slm,三氯化氧磷流量1.45slm,氧气流量1.16slm,沉积时间为7分钟;第一次推进,以10℃/min的升温速率升温到830 ℃,保持氮气流量7slm、氧气流量为2.9slm,推进时间为6min;
步骤三、第二次沉积,保持温度830℃,氮气流量7slm,三氯化氧磷流量1.45slm、氧气流量为1.16slm,沉积时间为3min;第二次推进,保持温度830℃,氮气流量7slm,氧气流量为1.5slm,推进时间为3min;
步骤四、第三次沉积,保持温度830℃,氮气流量7slm,三氯化氧磷流量1.45slm、氧气流量为1.16slm,沉积时间为1min;第三次推进,保持温度830℃,氮气流量7slm,氧气流量为1.5slm,推进时间为1min;
步骤五、第四次沉积,保持温度830℃,氮气流量7slm,三氯化氧磷流量1.45slm、氧气流量为1.16slm,沉积时间为1min;第四次推进,保持温度830℃,氮气流量7slm,氧气流量为1.5slm,推进时间为1min;
步骤六、以10℃/min的降温速率将温度降到780℃,保持氮气流量7slm,以40cm/min速度出舟。
本发明的有益效果是:对硅片进行氧化后,首先进行较低温度的大流量沉积,然后采用较高温度的大流量推进,提高PN结深度,然后采用三次较高温度的小流量沉积和推进,在硅片表面形成渐变场浓度梯度更陡的磷扩散。本发明通过渐变场钝化效应来降低表面复合速率,实现后可以提升效率至少0.07%,同时扩散均匀性改善,对于组件抗PID也有所提升。
具体实施方式
一种提升光伏电池扩散制结效率的方法,按照如下的步骤进行
步骤一、保持氮气流量7slm,将携带硅片的石英舟以35cm/min的速度进入充满氮气的石英炉管中,关闭炉门,以10℃/min的升温速率升温至780℃,保温2分钟,保持氮气流量7slm,氧气流量2slm,保温5分钟;通过沉积前氧化使后续磷源在硅片表面充分堆积。
步骤二、第一次沉积,保持温度810℃,保持氮气流量7slm,三氯化氧磷流量1.45slm,氧气流量1.16slm,沉积时间为7分钟;第一次推进,以10℃/min的升温速率升温到830 ℃,保持氮气流量7slm,氧气流量为2.9slm,推进时间为6min;此步骤中主要控制结的深度与掺杂浓度的大小,因此采用较低温度的沉积和较高温度的推进,并采用大流量形成较大的掺杂浓度,使磷源在硅片表面更深层形成PN结,提高光伏电池的效率。
步骤三、第二次沉积,保持温度830℃,氮气流量7slm,三氯化氧磷流量1.45slm、氧气流量为1.16slm,沉积时间为3min;第二次推进,保持温度830℃,氮气流量7slm,氧气流量为1.5slm,推进时间为3min;
步骤四、第三次沉积,保持温度830℃,氮气流量7slm,三氯化氧磷流量1.45slm、氧气流量为1.16slm,沉积时间为1min;第三次推进,保持温度830℃,氮气流量7slm,氧气流量为1.5slm,推进时间为1min;
步骤五、第四次沉积,保持温度830℃,氮气流量7slm,三氯化氧磷流量1.45slm、氧气流量为1.16slm,沉积时间为1min;第四次推进,保持温度830℃,氮气流量7slm,氧气流量为1.5slm,推进时间为1min;
通过后续三次等温并且较高温度的沉积和推进,形成表面渐变场,采用较短的时间使渐变场浓度梯度更陡,更易收集光生载流子,有效提高对太阳光的吸收效率,降低表面复合速率。
步骤六、以10℃/min的降温速率将温度降到780℃,保持氮气流量7slm,以40cm/min速度出舟。降温后保温出炉,相等于直接对硅片进行了热处理,使四次沉积和推进的中间截面更融合,提高了光伏电池的扩散均匀性。

Claims (1)

1.一种提升光伏电池扩散制结效率的方法,其特征在于:按照如下的步骤进行
步骤一、保持氮气流量7slm,将携带硅片的石英舟以35cm/min的速度进入充满氮气的石英炉管中,关闭炉门,以10℃/min的升温速率升温至780℃,保温2分钟,保持氮气流量7slm,氧气流量2slm,保温5分钟;
步骤二、第一次沉积,保持温度810℃,保持氮气流量7slm,三氯化氧磷流量1.45slm,氧气流量1.16slm,沉积时间为7分钟;第一次推进,以10℃/min的升温速率升温到830 ℃,保持氮气流量7slm、氧气流量为2.9slm,推进时间为6min;
步骤三、第二次沉积,保持温度830℃,氮气流量7slm,三氯化氧磷流量1.45slm、氧气流量为1.16slm,沉积时间为3min;第二次推进,保持温度830℃,氮气流量7slm,氧气流量为1.5slm,推进时间为3min;
步骤四、第三次沉积,保持温度830℃,氮气流量7slm,三氯化氧磷流量1.45slm、氧气流量为1.16slm,沉积时间为1min;第三次推进,保持温度830℃,氮气流量7slm,氧气流量为1.5slm,推进时间为1min;
步骤五、第四次沉积,保持温度830℃,氮气流量7slm,三氯化氧磷流量1.45slm、氧气流量为1.16slm,沉积时间为1min;第四次推进,保持温度830℃,氮气流量7slm,氧气流量为1.5slm,推进时间为1min;
步骤六、以10℃/min的降温速率将温度降到780℃,保持氮气流量7slm,以40cm/min速度出舟。
CN201711084963.4A 2017-11-07 2017-11-07 一种提升光伏电池扩散制结效率的方法 Active CN107895691B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711084963.4A CN107895691B (zh) 2017-11-07 2017-11-07 一种提升光伏电池扩散制结效率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711084963.4A CN107895691B (zh) 2017-11-07 2017-11-07 一种提升光伏电池扩散制结效率的方法

Publications (2)

Publication Number Publication Date
CN107895691A CN107895691A (zh) 2018-04-10
CN107895691B true CN107895691B (zh) 2020-02-21

Family

ID=61804742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711084963.4A Active CN107895691B (zh) 2017-11-07 2017-11-07 一种提升光伏电池扩散制结效率的方法

Country Status (1)

Country Link
CN (1) CN107895691B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113964239B (zh) * 2021-10-18 2023-07-21 横店集团东磁股份有限公司 一种太阳能单晶perc的低压扩散工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2048716A2 (en) * 2007-10-08 2009-04-15 CSI Cells Co. Ltd. A process of phosphorus diffusion for manufacturing solar cell
CN103618019A (zh) * 2013-08-13 2014-03-05 苏州盛康光伏科技有限公司 一种晶体硅太阳能电池片扩散方法
CN105185870A (zh) * 2015-09-17 2015-12-23 江西展宇新能源股份有限公司 一种硅片的磷吸杂扩散工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2048716A2 (en) * 2007-10-08 2009-04-15 CSI Cells Co. Ltd. A process of phosphorus diffusion for manufacturing solar cell
CN103618019A (zh) * 2013-08-13 2014-03-05 苏州盛康光伏科技有限公司 一种晶体硅太阳能电池片扩散方法
CN105185870A (zh) * 2015-09-17 2015-12-23 江西展宇新能源股份有限公司 一种硅片的磷吸杂扩散工艺

Also Published As

Publication number Publication date
CN107895691A (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
CN106057980B (zh) 一种晶体硅太阳能电池的磷扩散方法
CN102569523B (zh) 多晶硅太阳能光伏电池硅片的扩散方法
CN110164759B (zh) 一种区域性分层沉积扩散工艺
CN104505427B (zh) 改善晶体硅太阳能电池片lid和pid的方法及装置
CN104404626B (zh) 物理冶金多晶硅太阳能电池的磷扩散方法
CN102723266B (zh) 太阳能电池扩散方法
CN103715308A (zh) 一种多晶硅太阳能电池低温变温扩散工艺
CN107910256A (zh) 太阳能电池低表面磷源浓度扩散方法
CN103050581A (zh) 一种激光掺杂选择性发射结的扩散工艺
CN102719894A (zh) 太阳能电池硅片的磷扩散工艺
CN103066156A (zh) 一种应用于晶体硅太阳电池中的制备发射极的扩散工艺
CN113066894B (zh) 一种适用于hbc电池的硼扩散方法
CN105280484A (zh) 一种晶硅高效高方阻电池片的扩散工艺
CN102544238B (zh) 一种多晶硅硅片多重扩散的制造方法
CN107895691B (zh) 一种提升光伏电池扩散制结效率的方法
CN106104755A (zh) 包括通过离子注入掺杂和沉积向外扩散阻挡物的用于制备太阳能电池的方法
CN107871660A (zh) 一种晶体硅太阳能电池发射极磷掺杂控制方法
CN105118896A (zh) 升温推结扩散工艺
CN108110090B (zh) 一种n型双面电池制备方法
CN111509054A (zh) 一种topcon钝化结构及其制备方法
CN108389933B (zh) 一种高浓度磷硅玻璃且高方阻的扩散方法
CN101980381B (zh) 一种晶体硅太阳能电池双扩散工艺
CN109873052B (zh) 一种太阳能电池扩散后退火工艺
CN105047766A (zh) 一种制备双面n型晶硅电池的掩膜扩散方法
CN113571602A (zh) 一种二次扩散的选择性发射极及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant