CN107894284A - A kind of infrared camera wave band comparative approach of combination detection efficiency - Google Patents

A kind of infrared camera wave band comparative approach of combination detection efficiency Download PDF

Info

Publication number
CN107894284A
CN107894284A CN201711000162.5A CN201711000162A CN107894284A CN 107894284 A CN107894284 A CN 107894284A CN 201711000162 A CN201711000162 A CN 201711000162A CN 107894284 A CN107894284 A CN 107894284A
Authority
CN
China
Prior art keywords
mrow
msub
lambda
target
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711000162.5A
Other languages
Chinese (zh)
Other versions
CN107894284B (en
Inventor
饶鹏
谢婧
李夜金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201711000162.5A priority Critical patent/CN107894284B/en
Publication of CN107894284A publication Critical patent/CN107894284A/en
Application granted granted Critical
Publication of CN107894284B publication Critical patent/CN107894284B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

The invention discloses a kind of Space-based Surveillance camera wave band comparative approach of combination detection efficiency.The realization of method comprises the following steps:First, infrared radiation characteristics and the atmospheric background radiation characteristic are emulated;2nd, carry out target with reference to the optical system and parameter detector actually used and Electronic number calculates;3rd, detection interference electron number is carried out with reference to detector performance to calculate;4th, the detection effectiveness parameters under different-waveband, the reference frame as waveband selection are calculated.The present invention is undertakes the method that the Space-based Surveillance detection system waveband selection of particular task provides system, and this method is not only brought into close contact engineering practice, and evaluation index can quantify, and the design for Space-based Surveillance detection system wave band provides reference frame.

Description

A kind of infrared camera wave band comparative approach of combination detection efficiency
Technical field
The invention belongs to infrared acquisition field, is related to a kind of combination detector performance and the infrared camera of target background characteristic Wave band comparative approach, the selection design of the wave band in being designed applied to infrared detector.
Background technology
During detection system designs, waveband selection has significant effect for detection performance, determines to a certain extent Can detection system be determined find target in time, and realization of goal is persistently tracked.Suitable detecting band should suppress Prominent detection target, influence factor therein include target background emittance, atmospheric effect, image optics on the basis of background System and detector influence.Do not have authoritative model and unified evaluation criteria, usual institute in terms of moment detector waveband selection The method used is atmospheric transmittance, the backs on the basis of with reference to external identical function satellite band for wave band Analyzed with background emission rate, binding analysis result makes the selection of detecting band.Common method has two shortcomings at present, and one It is to only account for target background characteristic during wave band analysis, does not account for the detection employed in specific Project Realization The performance of device;Second, simply distribution considers the influence of each factor when influence factor is considered, without by shadow The factor of sound combines comprehensive analysis.The present invention solves the two problems, establishes combining target background characteristics and detector The detection efficiency computation model of performance, synthesis, quantification reference frame is provided for waveband selection.
The content of the invention
The purpose of the present invention is to establish the detection effectiveness models for considering that target background influences and detector performance influences, and is made up Existing method does not consider the shortcomings that Project Realization and influence factor interphase interaction, is provided for the design of IRDS wave band A kind of comparative approach of quantification.
The purpose of the present invention is achieved through the following technical solutions:
1st, target and background simulation are detected
Infrared radiation characteristics are emulated first, by inquire about documents and materials or actual measurement obtain target temperature and Emissivity, computer sim- ulation is carried out to its spectral radiance using Planck law, obtains It(λ);
It is high to input lower interface temperature, reflectivity, height of observation, background using Modtran result of calculation for the emulation of background Degree, solar zenith angle, export atmospheric transmittance τ under different wave lengtha(λ), background radiance Lbk(λ), air path spoke brightness Lph (λ), Multiple Scattering spoke brightness Lscat(λ);
2nd, the signal electron number of target and background is calculated
Target electronic number calculating method is as follows:The caused electron number S of goal pels under certain wave band Δ λt(Δ λ) is
Wherein, λ1, λ2For wave band start-stop wavelength, tintFor the time of integration, η is the average quantum efficiency of detector, and h is Planck Constant, c are the light velocity, φtarget_pixel(Δ λ) is the gross energy that goal pels receive under certain wave band Δ λ
φ in formulatarget(λ) is point target radiation into camera entrance pupil and reaches the spectral radiant flux on pixel, φback_target(λ) be goal pels in background spectral radiant flux, φfk_target(λ) is target location at observation station Atmospheric spectral radiant flux, is respectively calculated, and method is as follows:
Point target radiation is into camera entrance pupil and reaches the spectral radiant flux φ on pixeltarget(λ) is
R=H-h
τ0For transmissivity of optical system, τa(λ) is atmospheric spectral transmittance, ADFor entrance pupil area, R is observed range, and H is Observation station height, h is object height, and n is target imaging member number on focal plane;The spectral radiance of background is led in goal pels Measure φback_target(λ) is:
As=Nd2
Wherein, AtThe size being imaged for target on focal plane, AsFor all pixel gross areas, Ω on focal planeIFOV For instantaneous field of view's solid angle, AtargetFor target area, N is pixel sum, and d is pixel centre-to-centre spacing, and f is focal length, and FF is detector Fill factor, curve factor;Atmospheric spectral radiant flux φ of the target location at observation stationfk_target(λ) is
Electronic number calculating method is as follows:Background caused electron number S on the detector under certain wave band Δ λb(Δ λ) is
Wherein, φback(Δ λ) is background radiation flux under certain wave band Δ λ
φback(λ) is the spectral radiant flux that background introduces on single pixel
φback(λ)=Lbk(λ)τoADΩIFOV
3rd, detection interference electron number is calculated
Clutter is in electron number σ caused by the wave bandz(Δ λ) is
Wherein, Φzb(Δ λ) is the radiation flux of clutter, and computational methods are as follows:
Φzb(Δ λ)=(φph(Δλ)+φback(Δλ)+φscat(Δ λ)) × 10%
φ in formulaph(Δ λ) is air path radiation flux, φscat(Δ λ) is Multiple Scattering radiation flux.
4th, detection effectiveness parameters are calculated
Bring result above into calculating detection effectiveness parameters SNRP
Wherein, σs、σd、σrRespectively instrumental background noise, dark current noise and reading noise, can be by for specific The estimation of detector or inquiry related data obtain;The bigger target that represents of SNRP value is more easily found, and current band is more suitable Share the detection in this target;
Detector waveband selection for undertaking M kind target acquisition tasks, then calculate average detection effectiveness parameters
Wherein, SNRP '1、SNRP′2、…SNRP′MThe respectively normalization detection effectiveness parameters of M kinds target;Value The bigger detection for representing current band and being more suitable for this M kind target.
Brief description of the drawings
Fig. 1 is the infrared camera wave band comparative approach block diagram for combining detection efficiency;
Fig. 2 is the target optical spectrum schematic diagram of emulation;
Fig. 3 is emulation through atmospheric attenuation rear backdrop spectral schematic;
Fig. 4 is the detection effectiveness parameters comparison diagram of two wave bands.
Embodiment
Technical scheme is further described below in conjunction with the accompanying drawings, but is not limited thereto, it is every to this Inventive technique scheme is modified or equivalent substitution, without departing from the spirit and scope of technical solution of the present invention, all should cover In protection scope of the present invention.
Below by taking certain aircraft target following waveband selection as an example illustration method embodiment.Consideration is contrasted Two long wave bands of selection are respectively 8~12 μm and 8~10 μm.
1st, target and background simulation
Certain target temperature in flight course elapses gradual reduction over time, takes the exemplary operation state temperature to be about 590K, emissivity are about 1, are emulated using planck formula, as a result as shown in Figure 2.
Because extra large background is the main background of detection, background simulation is then chosen extra large background and calculated.According to the data whole world Sea mean temperature is about 290K, emissivity 0.9 or so, carries out simulation calculation using atmospheric transfer model Modtran, obtains sea Target optical spectrum spoke brightness of the background after atmospheric radiative transfer is decayed, as shown in Figure 3.In addition, Modtran also outputs it The result of calculation of his influence factor, wherein including atmospheric transmittance τa(λ), atmospheric radiation spoke brightness Lph(λ) and Multiple Scattering spoke Brightness Lscat(λ)。
2nd, signal electron number is calculated
First have to the parameter of detector clearly used in the waveband selection, including Entry pupil diameters AD, optical system it is average Transmitance τo, focal length f, pixel centre-to-centre spacing d, time of integration tint, detector fill factor, curve factor FF, detective quantum efficiency η, then Signal electron number is calculated.The spectral radiance that target arrival goal pels can be calculated by the radiation intensity of target is led to Amount
Spectral radiant flux of the background in goal pels can be calculated by the brightness of background spectrum spoke
As=Nd2
Similarly calculating atmospheric spectral radiant flux of the target location at observation station is
Obtain the spectral radiant flux of goal pels
φtarget_pixel(λ)=φtarget(λ)+φback_target(λ)+φfk_target(λ)
The electron number of goal pels can then be calculated after integration
Backdrop pels radiation flux is calculated by background radiance
φback(λ)=Lbk(λ)τo(λ)ADΩIFOV
The electron number of backdrop pels can then be calculated after integration
3rd, detection interference electron number calculates
Clutter considers surface radiation disturbance, Multiple Scattering disturbance and atmospheric radiation disturbance, according to Modtran result of calculation This three radiation fluxes are tried to achieve respectively, take the 10% of its width flux to be disturbed as clutter, radiation flux caused by clutter is estimated as
Φzb(Δ λ)=(φph(Δλ)+φback(Δλ)+φscat(Δ λ)) × 10%
Clutter produces electron number
Noise of detector is related to the detector performance of selected use, can be obtained by consulting related data or real Border measurement obtains.
4th, Effectiveness Comparison analysis is detected
It is calculated under a certain wave band and detects effectiveness parameters
SNRP, which is carried out, here according to the several typical detection ranges of detection range excursion selection calculates analysis, 8~12 μ The detection effectiveness parameters of m wave bands and 8~10 mu m wavebands are as shown in Figure 4.As can be seen from the figure under different detection ranges, 8~ 12 μm of detection effectiveness parameters are above 8~10 μm, and 8~12 μm are the preferred probing wave for being directed in two wave bands specific objective Section.

Claims (1)

1. a kind of infrared camera wave band comparative approach of combination detection efficiency, it is characterised in that method and step is as follows:
1) target and background simulation are detected
Infrared radiation characteristics are emulated first, temperature and the transmitting of target are obtained by inquiring about documents and materials or actual measurement Rate, computer sim- ulation is carried out to its spectral radiance using Planck law, obtains It(λ);
The emulation of background using Modtran result of calculation, input lower interface temperature, reflectivity, height of observation, background height, Solar zenith angle, export atmospheric transmittance τ under different wave lengtha(λ), background radiance Lbk(λ), air path spoke brightness Lph(λ)、 Multiple Scattering spoke brightness Lscat(λ);
2) the signal electron number of target and background is calculated
Target electronic number calculating method is as follows:The caused electron number S of goal pels under certain wave band Δ λt(Δ λ) is
<mrow> <msub> <mi>S</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;eta;</mi> <mfrac> <mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>t</mi> <mi>arg</mi> <mi>e</mi> <mi>t</mi> <mo>_</mo> <mi>p</mi> <mi>i</mi> <mi>x</mi> <mi>e</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>t</mi> <mi>int</mi> </msub> </mrow> <mrow> <mi>h</mi> <mi>c</mi> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </mfrac> </mrow>
Wherein, λ1, λ2For wave band start-stop wavelength, tintFor the time of integration, η is the average quantum efficiency of detector, and h is that Planck is normal Amount, c are the light velocity, φtarget_pixel(Δ λ) is the gross energy that goal pels receive under certain wave band Δ λ:
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>t</mi> <mi>arg</mi> <mi>e</mi> <mi>t</mi> <mo>_</mo> <mi>p</mi> <mi>i</mi> <mi>x</mi> <mi>e</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <msub> <mi>&amp;lambda;</mi> <mi>2</mi> </msub> </msubsup> <msub> <mi>&amp;phi;</mi> <mrow> <mi>t</mi> <mi>arg</mi> <mi>e</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;phi;</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> <mo>_</mo> <mi>t</mi> <mi>arg</mi> <mi>e</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;phi;</mi> <mrow> <mi>f</mi> <mi>k</mi> <mo>_</mo> <mi>t</mi> <mi>arg</mi> <mi>e</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> </mrow>
φ in formulatarget(λ) is point target radiation into camera entrance pupil and reaches the spectral radiant flux on pixel, φback_target (λ) be goal pels in background spectral radiant flux, φfk_target(λ) is that target location is atmospheric at observation station Spectral radiant flux, it is respectively calculated, method is as follows:
Point target radiation is into camera entrance pupil and reaches the spectral radiant flux φ on pixeltarget(λ) is:
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>t</mi> <mi>arg</mi> <mi>e</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;tau;</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mi>o</mi> </msub> <mfrac> <mrow> <msub> <mi>I</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>n</mi> <mo>&amp;CenterDot;</mo> <msup> <mi>R</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>A</mi> <mi>D</mi> </msub> </mrow>
R=H-h
τ0For transmissivity of optical system, τa(λ) is atmospheric spectral transmittance, ADFor entrance pupil area, R is observed range, and H is observation Point height, h is object height, and n is target imaging member number on focal plane;The spectral radiant flux of background in goal pels φback_target(λ) is:
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> <mo>_</mo> <mi>t</mi> <mi>arg</mi> <mi>e</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>L</mi> <mrow> <mi>b</mi> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msub> <mi>A</mi> <mi>t</mi> </msub> <msub> <mi>A</mi> <mi>s</mi> </msub> </mfrac> <mo>)</mo> </mrow> <msub> <mi>A</mi> <mi>D</mi> </msub> <msub> <mi>&amp;Omega;</mi> <mrow> <mi>I</mi> <mi>F</mi> <mi>O</mi> <mi>V</mi> </mrow> </msub> </mrow>
<mrow> <msub> <mi>A</mi> <mi>t</mi> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mi>t</mi> <mi>arg</mi> <mi>e</mi> <mi>t</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mfrac> <mi>f</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow>
As=Nd2
<mrow> <msub> <mi>&amp;Omega;</mi> <mrow> <mi>I</mi> <mi>F</mi> <mi>O</mi> <mi>V</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msup> <mi>d</mi> <mn>2</mn> </msup> <msup> <mi>f</mi> <mn>2</mn> </msup> </mfrac> <mi>F</mi> <mi>F</mi> </mrow>
Wherein, AtThe size being imaged for target on focal plane, AsFor all pixel gross areas, Ω on focal planeIFOVFor wink When field stereo angle, AtargetFor target area, N is pixel sum, and d is pixel centre-to-centre spacing, and f is focal length, and FF fills for detector The factor;Atmospheric spectral radiant flux φ of the target location at observation stationfk_target(λ) is:
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>f</mi> <mi>k</mi> <mo>_</mo> <mi>t</mi> <mi>arg</mi> <mi>e</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>L</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mi>o</mi> </msub> <mfrac> <msub> <mi>A</mi> <mi>t</mi> </msub> <msub> <mi>A</mi> <mi>s</mi> </msub> </mfrac> <msub> <mi>A</mi> <mi>D</mi> </msub> <msub> <mi>&amp;Omega;</mi> <mrow> <mi>I</mi> <mi>F</mi> <mi>O</mi> <mi>V</mi> </mrow> </msub> </mrow>
Electronic number calculating method is as follows:Background caused electron number S on the detector under certain wave band Δ λb(Δ λ) is:
<mrow> <msub> <mi>S</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;eta;</mi> <mfrac> <mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>t</mi> <mi>int</mi> </msub> </mrow> <mrow> <mi>h</mi> <mi>c</mi> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </mfrac> </mrow>
Wherein, φback(Δ λ) is background radiation flux under certain wave band Δ λ,
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> </msubsup> <msub> <mi>&amp;phi;</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> </mrow>
φback(λ) is the spectral radiant flux that background introduces on single pixel;
φback(λ)=Lbk(λ)τoADΩIFOV
3) detection interference electron number is calculated:
Clutter is in electron number σ caused by the wave bandz(Δ λ) is:
<mrow> <msub> <mi>&amp;sigma;</mi> <mi>z</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&amp;eta;</mi> <mfrac> <mrow> <msub> <mi>&amp;Phi;</mi> <mrow> <mi>z</mi> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>t</mi> <mi>int</mi> </msub> </mrow> <mrow> <mi>h</mi> <mi>c</mi> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </mfrac> </mrow>
Wherein, Φzb(Δ λ) is the radiation flux of clutter, and computational methods are as follows:
Φzb(Δ λ)=(φph(Δλ)+φback(Δλ)+φscat(Δ λ)) × 10%
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> </msubsup> <msub> <mi>L</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mi>o</mi> </msub> <msub> <mi>A</mi> <mi>D</mi> </msub> <msub> <mi>&amp;Omega;</mi> <mrow> <mi>I</mi> <mi>F</mi> <mi>O</mi> <mi>V</mi> </mrow> </msub> <mi>d</mi> <mi>&amp;lambda;</mi> </mrow>
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>s</mi> <mi>c</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> </msubsup> <msub> <mi>L</mi> <mrow> <mi>s</mi> <mi>c</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;tau;</mi> <mi>o</mi> </msub> <msub> <mi>A</mi> <mi>D</mi> </msub> <msub> <mi>&amp;Omega;</mi> <mrow> <mi>I</mi> <mi>F</mi> <mi>O</mi> <mi>V</mi> </mrow> </msub> <mi>d</mi> <mi>&amp;lambda;</mi> </mrow>
φ in formulaph(Δ λ) is air path radiation flux, φscat(Δ λ) is Multiple Scattering radiation flux;
4) detection effectiveness parameters are calculated
Bring result above into calculating detection effectiveness parameters SNRP
<mrow> <mi>S</mi> <mi>N</mi> <mi>R</mi> <mi>P</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>S</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>S</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> <msqrt> <mrow> <msub> <mi>S</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>S</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mi>z</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mi>d</mi> </msub> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>r</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;sigma;</mi> <mi>s</mi> <mn>2</mn> </msubsup> </mrow> </msqrt> </mfrac> </mrow>
Wherein, σs、σd、σrRespectively instrumental background noise, dark current noise and reading noise, can be by for specific detection The estimation of device or inquiry related data obtain;The bigger target that represents of SNRP value is more easily found, the more suitable use of current band In the detection of this target;
Detector waveband selection for undertaking M kind target acquisition tasks, then calculate average detection effectiveness parameters
<mrow> <mover> <mrow> <mi>S</mi> <mi>N</mi> <mi>R</mi> <mi>P</mi> </mrow> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>SNRP</mi> <mn>1</mn> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>SNRP</mi> <mn>2</mn> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msubsup> <mi>SNRP</mi> <mi>M</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mi>M</mi> </mrow>
Wherein, SNRP1′、SNRP2′、…SNRP′MThe respectively normalization detection effectiveness parameters of M kinds target;Value is bigger Represent the detection that current band is more suitable for this M kind target.
CN201711000162.5A 2017-10-24 2017-10-24 A kind of infrared camera wave band comparative approach of combination detection efficiency Active CN107894284B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711000162.5A CN107894284B (en) 2017-10-24 2017-10-24 A kind of infrared camera wave band comparative approach of combination detection efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711000162.5A CN107894284B (en) 2017-10-24 2017-10-24 A kind of infrared camera wave band comparative approach of combination detection efficiency

Publications (2)

Publication Number Publication Date
CN107894284A true CN107894284A (en) 2018-04-10
CN107894284B CN107894284B (en) 2019-07-23

Family

ID=61802912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711000162.5A Active CN107894284B (en) 2017-10-24 2017-10-24 A kind of infrared camera wave band comparative approach of combination detection efficiency

Country Status (1)

Country Link
CN (1) CN107894284B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109255198A (en) * 2018-09-30 2019-01-22 上海机电工程研究所 Empty day environmental modeling method and system based on data model
CN109297590A (en) * 2018-09-14 2019-02-01 北京遥感设备研究所 A kind of infrared detector background radiation noise calculation method
CN109781259A (en) * 2018-12-29 2019-05-21 华中科技大学 A kind of associated method for accurately measuring aerial sports Small object infrared spectroscopy of map
CN112434589A (en) * 2020-11-18 2021-03-02 中国科学院上海技术物理研究所 Space-based high-sensitivity differential detection method for quasi-molecular spectrum target
CN113075150A (en) * 2021-03-19 2021-07-06 中国空间技术研究院 Space-based infrared early warning spectrum section selection method and device based on detection efficiency
CN113589312A (en) * 2021-07-15 2021-11-02 中国科学院上海技术物理研究所 Space-based infrared aerial target detection waveband selection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020096622A1 (en) * 2001-01-23 2002-07-25 Steven Adler-Golden Methods for atmospheric correction of solar-wavelength Hyperspectral imagery over land
CN102116861A (en) * 2011-02-01 2011-07-06 环境保护部卫星环境应用中心 Method for extracting straw burning fire based on No. 1 environment satellite
CN104156530A (en) * 2014-08-15 2014-11-19 中国科学院上海技术物理研究所 Channel radiation quantity reconstructing method of high temperature target
CN106483522A (en) * 2015-09-02 2017-03-08 南京理工大学 A kind of operating distance analysis method based on Space-based Surveillance detection system
CN106568511A (en) * 2016-10-21 2017-04-19 北京航天长征飞行器研究所 Method for eliminating influence on spatial target radiation characteristic ground simulation measurement caused by stray radiations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020096622A1 (en) * 2001-01-23 2002-07-25 Steven Adler-Golden Methods for atmospheric correction of solar-wavelength Hyperspectral imagery over land
CN102116861A (en) * 2011-02-01 2011-07-06 环境保护部卫星环境应用中心 Method for extracting straw burning fire based on No. 1 environment satellite
CN104156530A (en) * 2014-08-15 2014-11-19 中国科学院上海技术物理研究所 Channel radiation quantity reconstructing method of high temperature target
CN106483522A (en) * 2015-09-02 2017-03-08 南京理工大学 A kind of operating distance analysis method based on Space-based Surveillance detection system
CN106568511A (en) * 2016-10-21 2017-04-19 北京航天长征飞行器研究所 Method for eliminating influence on spatial target radiation characteristic ground simulation measurement caused by stray radiations

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109297590A (en) * 2018-09-14 2019-02-01 北京遥感设备研究所 A kind of infrared detector background radiation noise calculation method
CN109297590B (en) * 2018-09-14 2021-01-01 北京遥感设备研究所 Method for calculating background radiation noise of infrared detector
CN109255198A (en) * 2018-09-30 2019-01-22 上海机电工程研究所 Empty day environmental modeling method and system based on data model
CN109255198B (en) * 2018-09-30 2019-11-08 上海机电工程研究所 Empty day environmental modeling method and system based on data model
CN109781259A (en) * 2018-12-29 2019-05-21 华中科技大学 A kind of associated method for accurately measuring aerial sports Small object infrared spectroscopy of map
CN109781259B (en) * 2018-12-29 2020-05-19 华中科技大学 Method for accurately measuring infrared spectrum of small aerial moving target through spectrum correlation
CN112434589A (en) * 2020-11-18 2021-03-02 中国科学院上海技术物理研究所 Space-based high-sensitivity differential detection method for quasi-molecular spectrum target
CN112434589B (en) * 2020-11-18 2022-03-29 中国科学院上海技术物理研究所 Space-based high-sensitivity differential detection method for quasi-molecular spectrum target
CN113075150A (en) * 2021-03-19 2021-07-06 中国空间技术研究院 Space-based infrared early warning spectrum section selection method and device based on detection efficiency
CN113075150B (en) * 2021-03-19 2022-11-01 中国空间技术研究院 Space-based infrared early warning spectrum section selection method and device based on detection efficiency
CN113589312A (en) * 2021-07-15 2021-11-02 中国科学院上海技术物理研究所 Space-based infrared aerial target detection waveband selection method

Also Published As

Publication number Publication date
CN107894284B (en) 2019-07-23

Similar Documents

Publication Publication Date Title
CN107894284A (en) A kind of infrared camera wave band comparative approach of combination detection efficiency
Hashimoto et al. Gas Motion Study of Lyα Emitters at z∼ 2 Using FUV and Optical Spectral Lines
US8050884B2 (en) Method and apparatus for determining the emissivity, area and temperature of an object
CN102853916B (en) Method and system for conducting remote infrared temperature measurement on coal pile surfaces
CN102163264A (en) Method for evaluating quality and application capability of hyperspectral data
Goita et al. Surface temperature and emissivity separability over land surface from combined TIR and SWIR AVHRR data
CN108287350A (en) Method is determined based on the space-based track production key parameter of multiple information synthesis
CN114581349A (en) Visible light image and infrared image fusion method based on radiation characteristic inversion
CN115507959A (en) Infrared radiation characteristic analysis method for target detection
Jee et al. Development of GK-2A AMI aerosol detection algorithm in the East-Asia region using Himawari-8 AHI data
Han et al. Modeling the space-based optical imaging of complex space target based on the pixel method
CN108897059A (en) A kind of Infrared Targets imaging detectivity analysis method
CN104655129A (en) Method for determining major parameters of CCD (charge coupled device) star sensor optical system
CN106546264B (en) It is a kind of that stray light is analyzed to the technical method for incorporating Thermal/Structural/Optical Integrated Analysis
Qin et al. Application of small angle approximation in circumsolar irradiance modelling
Jenniskens et al. CAMSS: A spectroscopic survey of meteoroid elemental abundances
Badura et al. Spectral performance optimization of small telescopes for space object detection
Lin et al. The effect of randomly-distributed droplets on thermal radiation of surfaces
Kerekes et al. Analytical model of hyperspectral system performance
CN105203211B (en) A kind of relative radiometric correction method of medium-wave infrared focal plane array detector
Englin Analysis of atmospheric influences on ratio thermography for solar tower systems
Fuyu et al. Simulation of earth background radiation characteristic for satellite borne laser warning system
Angara et al. Performance assessment of underwater-to-air optical wireless communication system with the effect of solar noise and sea surface conditions
CN107545082B (en) A kind of radiation effect calculation method in EO-1 hyperion emulation
CN116306210A (en) Design method of space-based infrared hyperspectral imaging index

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant