CN107887031B - 基于同步筛选的脑区间耦合分析方法 - Google Patents

基于同步筛选的脑区间耦合分析方法 Download PDF

Info

Publication number
CN107887031B
CN107887031B CN201711063666.1A CN201711063666A CN107887031B CN 107887031 B CN107887031 B CN 107887031B CN 201711063666 A CN201711063666 A CN 201711063666A CN 107887031 B CN107887031 B CN 107887031B
Authority
CN
China
Prior art keywords
eeg
synchronous
sequence
brain
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711063666.1A
Other languages
English (en)
Other versions
CN107887031A (zh
Inventor
高云园
苏慧需
任磊磊
孟明
佘青山
张启忠
马玉良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201711063666.1A priority Critical patent/CN107887031B/zh
Publication of CN107887031A publication Critical patent/CN107887031A/zh
Application granted granted Critical
Publication of CN107887031B publication Critical patent/CN107887031B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Physiology (AREA)
  • Psychology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开了一种基于同步筛选的脑区间耦合分析方法,本发明首先同步采集了不同握力输出时,32通道脑电信号EEG和12通道肌电信号EMG,为研究握力输出过程中,EEG运动区与感觉区的耦合关系,对大脑运动区及运动感觉区的导联C3,C4,CP5和CP6的脑电信号和肱桡肌信号进行分析;然后利用同步筛选算法将EEG与EMG的同步信息提取出来,得到EEG与EMG相关的数据;最后计算SSEM的符号传递熵,以确定其耦合关系。本发明可去除与运动的非相关数据,缩小数据规模。

Description

基于同步筛选的脑区间耦合分析方法
技术领域
本发明属于信号处理领域,涉及一种脑电、肌电信号的耦合性方法,特别涉及一种应用于脑区间状态分析方法。
背景技术
运动皮层的脑电信号(electroencephalogram,EEG)和肌电信号(electromyogra-phy,EMG)分别反映运动控制信息和肌肉对大脑控制意图的功能响应信息,脑肌电之间具有同步性。不同脑区拥有其特殊的功能,但是大脑作为一个有机的整体,各个脑区之间必然存在某种联系。大脑控制上肢运动时,运动神经系统通过神经的同步振荡来传递运动控制信息,相关的脑区和肌肉组织相关的周围神经之间也自动地发生了同步化,从而激发肢体的运动。大脑皮层与肌肉之间的同步振荡不仅从发出命令的大脑皮层传导至作为效应器的肌肉,同时也由肌肉反馈回大脑皮层,这些反馈信息必然会被大脑作为发出下一次控制信息的重要依据。近来,探究EEG与肢体运动之间的关系已成为人们研究的热点问题。Ponten等人利用同步似然性构建了癫痫患者脑电信号在癫痫发作不同阶段的脑功能网络,并通过对网络属性的分析发现癫痫在发病中和发病后,脑功能网络的特征路径长度会增大;Scott曾以奥托博克肌电假手为例,设计了电刺激感觉反馈系统,通过安装在假手食指上的应变式力矩传感器测量捏力大小,通过调制电刺激脉冲频率的方式将刺激频率与捏力的大小成比例对应,以此将捏力感觉反馈给使用者;美国国防先进研究项目局(DARPA)采用目标肌肉神经移植术重新连接被截肢位置和肌肉组织的神经信号,并作为一个“放大器”来控制假肢。同时,利用名为FINE(Flat Interface Nerve Electrode)技术直接向使用者的大脑反馈假手的感觉。FINE使神经元变得平缓,让部分神经元能够接触电流并提供反馈,恢复患者的触觉。然而在处理与运动相关的EEG时都面临的一个问题是,EEG中包含有大量与运动非相关的成分,这些非相关成分会使EEG数据规模变得庞大,湮没EEG中与运动相关的成分,这会使求解变得困难,同时增大计算复杂度。针对这一问题,本发明提出了一种基于同步筛选-符号传递熵的脑区间耦合分析方法,可以滤除EEG中与运动的非相关成分,去除非相关数据、降低运算复杂度的同时,保留了数据有效信息,可以快速准确的分析脑区间的耦合关系。
发明内容
为了能够快速准确的分析上肢握力输出时,大脑运动区与感觉区的耦合关系,本发明提出了一种基于同步筛选-符号传递熵的脑区间耦合分析方法。首先同步采集了不同握力输出时,32通道脑电信号(EEG)和12通道肌电信号(EMG),为研究握力输出过程中,EEG运动区与感觉区的耦合关系,对大脑运动区及运动感觉区的导联C3,C4,CP5,CP6等多个通道的脑电信号和肱桡肌信号进行分析;然后利用同步筛选算法将EEG与EMG的同步信息提取出来,得到EEG与EMG相关的数据(Synchronous Screening of EEG Signals Based on EMGSignals,SSEM);最后计算SSEM的符号传递熵,以确定其耦合关系。
本发明方法主要包括以下步骤:
(1).同步采集了在不同握力输出时,32通道脑电信号和12通道肌电信号。
(2).选取步骤(1)中获取的C3、C4、CP5、CP6通道脑电信号和肱桡肌肌电信号,对其进行小波阈值消噪处理,滤除心电、体位的影响并对EEG与EMG进行了时延分析。
(3).使用同步筛选算法,以EMG肱桡肌信号为基准数据,对EEG运动区C3、C4通道与感觉区CP5、CP6通道的信号进行同步筛选,得到EEG与EMG相关的数据SSEM。
同步筛选算法,具体算法如下:
对于任意两列时间序列:X1={x1,x2,x3,…};Y1={y1,y2,y3,…};X1、Y1每一元素都有一个固定的标签,各元素在X1或Y1中的索引值为其对应的标签值。X1,Y1对应的标签序列为WX1、WY1,WX1={1,2,3,…};WY1={1,2,3,…}。
X2=V(X1) (1)
V(X)表示将X进行非递减的排序。在改变X1中元素的位置得到非递减的X2时,为了实现标签和元素的一一对应,标签序列中标签会发生与X1中元素相同的位置改变,从而得到X2对应的索引序列WX2
Y2=T(WX2,Y1) (2)
T(WX2,Y1)表示将WX2中存放的标签序列当作Y1新的索引序列,对Y1进行重新排列。因为Y1为非递减序列,若X1、Y1完全同步,Y2必为非递减序列。当X1、Y1不完全同步时,Y1中的非同步成分会导致无法将T(WX2,Y1)映射成非递减序列;根据这一特点,我们可通过Y2去掉Y1中的非同步成分;
Figure GDA0002578842360000031
若Y2中某索引大的元素值等于索引小的元素值,则将该值赋值为0,从而得到新的序列Y3。Y3即:对于Y2中的yn、ym,此处n、m为索引,若yn=ym,n<m,则将ym置0。然后将Y3按照WY1中的标签进行还原排序:
Y4=T(WY1,Y3) (4)
T(WY1,Y3)表示将WY1中存放的标签序列当作Y3新的索引,对Y3进行重新排列。Y4与原始时间序列Y1具有相同的排序,但与X1非同步的成分都已置0。将X1中为0的元素全部去除,得到Y5。Y5即为Y1基于X1同步筛选后的结果。
(4).结合SSEM,计算在不同握力下大脑运动区C3、C4与感觉区CP5、CP6之间基于同步筛选的符号传递熵,分析脑区间的耦合性。
所述基于同步筛选的符号传递熵,具体算法如下:
同步筛选即为步骤(3)中提到的同步筛选算法。符号传递熵算法如下:
首先对时间序列进行符号化处理,根据时间序列的数值特点进行符号划分的静态法,公式如下:
Figure GDA0002578842360000032
式(5)中,Si为划分好的符号集,xi为时间序列Xt={x1,x2,x3,…}中的数据点;B1,B2...BN-1是一系列截断点。设符号划分数量为pieces,pieces=N。pieces的大小可以任意的放大或缩小;将原始数据符号化后,计算的传递熵称为符号传递熵。
传递熵定义如式(6):设Xt,Yt为两个长度为n的时间序列,各自从t-1到t-p的历史记为
Figure GDA0002578842360000041
表示X与Y-在X-条件下的互信息。则Yt对Xt的传递熵TX→Y定义为X与Y-在X-下的互信息。
Figure GDA0002578842360000042
在相同的符号集下,计算TX→Y越大,表明数据X传递到数据Y的信息量越多,X对Y的影响越大。
本发明与已有的诸多与运动相关的脑区间EEG耦合分析方法相比,具有如下特点:
探究动力系统之间的耦合关系时,传统的方法是先将时间序列符号化,再探求其耦合关系是一种重要的方法。对于两列含有大量非相关数据的时间序列中,非相关数据会使数据规模变大,会对耦合分析产生不利影响,使用传统的方法分析,计算复杂度往往很大,且难以寻找耦合关系。针对这一问题,本发明提出了基于同步筛选-符号传递熵的脑区间耦合分析方法,在探究耦合关系之前,先对数据进行同步筛选处理。同步筛选算法可去除与运动的非相关数据,缩小数据规模。这会降低运算复杂度,去除非相关数据对耦合分析的影响。
附图说明
图1为本发明的实施流程图。
图2为非同步成分示意图,图中标记的两个黑点为Y相对于X的非同步点。
图3-(a)、图3-(b)为左手发力,在不同握力输出下大脑运动区与感觉区间的符号传递熵的分析;
图3-(c)、图3-(d)为右手发力,在不同握力输出下大脑运动区与感觉区间的符号传递熵的分析。
具体实施方式
下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程。
其中图2为非同步成分示意图;
如图1所示,本实施例包括如下步骤:
步骤一,同步采集了不同握力输出时,32通道脑电信号(EEG)和12通道肌电信号(EMG)。具体的采集操作如下:
选取6名无任何病史的健康受试者,在安静的实验室内,受试者端坐于木制座椅上,将握力计放置于受试者手心。受试者在接收到信号之后,立即将握力计从零刻度握至目标刻度(握力计的目标刻度为5kg,10kg,20kg),受试者持续输出握力,使握力计在目标刻度处保持5秒,受试者松开握力计,休息5秒,进行下一组实验。每名受试者的同一只手,在相同握力条件下进行10组实验。数据采集所用的是128导BrainAmp DC脑电采集系统(BrainProducts GmbH,Germany)。同步采集了上述实验范式下32通道脑电和12通道肌电信号。BrainAmp DC设备也用于采集左右手臂指浅屈肌(flexor digitorum superficialis,FDS)、肱桡肌(Brachioradialis muscle,BM)、桡侧腕屈肌(Radial wrist flexor,RWF)、尺侧腕屈肌(Ulnar wrist flexor,UWF)、肱二头肌(Musculus biceps brachii,MBB)和肱三头肌(Triceps)的肌电信号。在电极安放前,头皮已经清洗干净,皮肤表面也经过酒精清理,采样频率为1000Hz。
步骤二,选取步骤一中获取的C3,C4,CP5,CP6通道脑电信号和肱桡肌肌电信号,对其进行小波阈值消噪处理,滤除心电,体位,以及其它噪声的影响并针对EEG与EMG之间的shiyan2进行延时分析。
EEG->EMG,EMG->EEG存在一定的时延。研究发现EEG与EMG之间的信息流延迟时间为20-30ms。通过实验分析得出6名受试者的平均时延为:EEG->EMG的时延是21ms,EMG->EEG的时延是30ms。
步骤三,使用同步筛选算法,以EMG肱桡肌信号为基准数据,对EEG运动区(C3,C4通道)与感觉区(CP5,CP6通道)信号进行同步筛选,得到SSEM。
对于不同握力下大脑运动区(C3、C4通道)感觉区(CP5、CP6通道)的脑电信号,以左右手肱桡肌的数据为参照进行同步筛选,从而得到四组SSEM数据。EEG的数据点的个数均为4970个,由于SSEM较EEG去除了大量与运动无关的成分,SSEM的数据规模必定显著小于EEG。表1为左右手不同握力下,六组数据的SSEM数据点个数的均值与EEG数据点个数的比较。可以看出:同步筛选后得到的SSEM数据点大大减少,且随着握力的增加SSEM的数据点个数增多,这表明随着握力的增加,EEG与EMG的同步点增多,同步性增强,信息交互增强。
表1不同握力下原始EEG与SSEM数据点个数
Figure GDA0002578842360000061
记每个符号平均分得的数据点个数为pa,pa为数据点个数和pieces的比值,pa值取整数。pa值是对数据划分粗细的指标。显然pa值越小,平均每个符号代表的数据点个数越少,数据划分的越细。由表2可知,相同的pieces值下,SSEM的pa值远远小于原始EEG的。当计算与运动相关的脑区间符号化传递熵时,SSEM较EEG的数据点个数大大减小。符号化时,考虑到平均每个符号可代表的数据点个数。对于小规模的数据,用一个较小的pieces值就可实现大规模数据在较大pieces值下相同的划分粗细程度。数据的规模,符号集大小正是影响符号传递熵计算复杂度的关键所在。
表2输出握力10kg时原始EEG与SSEM在不同Pieces下pa值的比较
Figure GDA0002578842360000062
步骤四,结合SSEM计算在不同握力下运动区(C3,C4)与感觉区(CP5,CP6)之间基于同步筛选的符号传递熵。
如图3-(a)、图3-(b)、图3-(c)、图3-(d)所示,随着握力输出的增大,符号传递熵值也随之增大,即耦合关系增强;这是由于随着握力的增大,大脑运动区需要给肌肉神经传递更多的信息,同时肌肉也需要反馈更多的信息到大脑感觉区,这导致运动区与感觉区的信息流增大,耦合强度增强。感觉区传递到运动区的信息要多于运动区传递到感觉区的信息,并且这种差值随着握力的增大有增大的趋势;运动控制信号由大脑运动区发出,传递到肢体的肌肉神经,从而控制肢体运动,运动控制信号并不会由运动区传递到感觉区,因此我们测得的运动区到反馈区的传递熵并不是运动控制信息的信息量,而是一些其它信息,不是运动区激发的主要信息;感觉区的感觉信息作为整个运动系统的反馈信息传递到运动区,因此我们测得的感觉区到运动区的传递熵是运动系统的反馈信息量,正是感觉区激发出的主要信息。因此感觉区传递到运动区的信息要多于运动区传递到感觉区的信息。

Claims (1)

1.基于同步筛选的脑区间耦合分析方法,其特征在于,该方法包括如下步骤:
(1).同步采集了在不同握力输出时,32通道脑电信号EEG和12通道肌电信号EMG;
(2).选取步骤(1)中获取的C3、C4、CP5、CP6通道脑电信号和肱桡肌肌电信号,对其进行小波阈值消噪处理,滤除心电、体位的影响并对EEG与EMG进行了时延分析;
(3).使用同步筛选算法,以EMG肱桡肌信号为基准数据,对EEG运动区C3、C4通道与感觉区CP5、CP6通道的信号进行同步筛选,得到EEG与EMG相关的数据SSEM;
同步筛选算法,具体算法如下:
对于任意两列时间序列:X1={x1,x2,x3,…};Y1={y1,y2,y3,…};X1、Y1每一元素都有一个固定的标签,各元素在X1或Y1中的索引值为其对应的标签值;X1,Y1对应的标签序列为WX1、WY1,WX1={1,2,3,…};WY1={1,2,3,…};
X2=V(X1) (1)
V(X)表示将X进行非递减的排序;在改变X1中元素的位置得到非递减的X2时,为了实现标签和元素的一一对应,标签序列中标签会发生与X1中元素相同的位置改变,从而得到X2对应的索引序列WX2
Y2=T(WX2,Y1) (2)
T(WX2,Y1)表示将WX2中存放的标签序列当作Y1新的索引序列,对Y1进行重新排列;因为Y1为非递减序列,若X1、Y1完全同步,Y2必为非递减序列;当X1、Y1不完全同步时,Y1中的非同步成分会导致无法将T(WX2,Y1)映射成非递减序列;根据这一特点,通过Y2去掉Y1中的非同步成分;
Figure FDA0002578842350000011
其中Y3(i)表示Y3中第i个索引元素值,Y2(i)表示Y2中第i个索引元素值;若Y2中某索引大的元素值等于索引小的元素值,则将该值赋值为0,从而得到新的序列Y3;Y3即:对于Y2中的yn、ym,此处n、m为索引,若yn=ym,n<m,则将ym置0;然后将Y3按照WY1中的标签进行还原排序:
Y4=T(WY1,Y3) (4)
T(WY1,Y3)表示将WY1中存放的标签序列当作Y3新的索引,对Y3进行重新排列;Y4与原始时间序列Y1具有相同的排序,但与X1非同步的成分都已置0;将X1中为0的元素全部去除,得到Y5;Y5即为Y1基于X1同步筛选后的结果;
(4).结合SSEM,计算在不同握力下大脑运动区C3、C4与感觉区CP5、CP6之间基于同步筛选的符号传递熵,分析脑区间的耦合性;
所述基于同步筛选的符号传递熵,具体算法如下:
同步筛选即为步骤(3)中提到的同步筛选算法;符号传递熵算法如下:
首先对时间序列进行符号化处理,根据时间序列的数值特点进行符号划分的静态法,公式如下:
Figure FDA0002578842350000021
式(5)中,Si为划分好的符号集,xi为时间序列Xt={x1,x2,x3,…}中的数据点;B1,B2...BN-1是一系列截断点;设符号划分数量为pieces,pieces=N;pieces的大小可以任意的放大或缩小;将原始数据符号化后,计算的传递熵称为符号传递熵;
传递熵定义如式(6):设Xt,Yt为两个长度为n的时间序列,各自从t-1到t-p的历史记为
Figure FDA0002578842350000022
I(X;Y-|X-)表示X与Y-在X-条件下的互信息;则Yt对Xt的传递熵TX→Y定义为X与Y-在X-下的互信息;
Figure FDA0002578842350000023
在相同的符号集下,计算TX→Y越大,表明数据X传递到数据Y的信息量越多,X对Y的影响越大。
CN201711063666.1A 2017-11-02 2017-11-02 基于同步筛选的脑区间耦合分析方法 Active CN107887031B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711063666.1A CN107887031B (zh) 2017-11-02 2017-11-02 基于同步筛选的脑区间耦合分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711063666.1A CN107887031B (zh) 2017-11-02 2017-11-02 基于同步筛选的脑区间耦合分析方法

Publications (2)

Publication Number Publication Date
CN107887031A CN107887031A (zh) 2018-04-06
CN107887031B true CN107887031B (zh) 2020-10-27

Family

ID=61783579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711063666.1A Active CN107887031B (zh) 2017-11-02 2017-11-02 基于同步筛选的脑区间耦合分析方法

Country Status (1)

Country Link
CN (1) CN107887031B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108596848B (zh) * 2018-04-20 2020-06-30 西南交通大学 一种基于改进小波阈值函数的图像去噪方法
CN109088770B (zh) * 2018-08-21 2020-03-31 西安交通大学 一种基于自适应符号传递熵的机电系统交互网络建模方法
CN109144259A (zh) * 2018-08-23 2019-01-04 杭州电子科技大学 一种基于多尺度排列传递熵的脑区间同步关系分析方法
CN109497999A (zh) * 2018-12-20 2019-03-22 杭州电子科技大学 基于Copula-GC的脑肌电信号时频耦合分析方法
CN110755062B (zh) * 2019-10-29 2020-07-07 电子科技大学 基于符号转移熵的生理器官网络非平衡性量化分析方法
CN112244870B (zh) * 2020-09-24 2022-02-22 杭州电子科技大学 基于符号化排列传递熵的癫痫脑电双向耦合分析方法
CN112932505B (zh) * 2021-01-16 2022-08-09 北京工业大学 一种基于时频能量的符号传递熵及脑网络特征计算方法
CN115474945B (zh) * 2022-09-15 2024-04-12 燕山大学 一种面向多通道脑肌电耦合分析的多元全局同步指数方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155993A (en) * 1999-03-31 2000-12-05 Queen's University At Kingston Kinesiological instrument for limb movements
CN103961092A (zh) * 2014-05-09 2014-08-06 杭州电子科技大学 基于自适应阈值处理的脑电信号去噪方法
CN106901728A (zh) * 2017-02-10 2017-06-30 杭州电子科技大学 基于变尺度符号传递熵的多通道脑肌电耦合分析方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155993A (en) * 1999-03-31 2000-12-05 Queen's University At Kingston Kinesiological instrument for limb movements
CN103961092A (zh) * 2014-05-09 2014-08-06 杭州电子科技大学 基于自适应阈值处理的脑电信号去噪方法
CN106901728A (zh) * 2017-02-10 2017-06-30 杭州电子科技大学 基于变尺度符号传递熵的多通道脑肌电耦合分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Phasic and tonic coupling between EEG and EMG demonstrated with independent component analysis;M J McKeown;R Radtke;《Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society》;20010131;正文第45-57页 *
基于相干性的多频段脑肌电信号双向耦合分析;高云园等;《传感技术学报》;20171031;正文第1465-1471页 *

Also Published As

Publication number Publication date
CN107887031A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
CN107887031B (zh) 基于同步筛选的脑区间耦合分析方法
CN108304068B (zh) 一种基于脑机接口的上肢康复训练机器人控制系统及方法
CN106901728B (zh) 基于变尺度符号传递熵的多通道脑肌电耦合分析方法
Gao et al. EEG classification for motor imagery and resting state in BCI applications using multi-class Adaboost extreme learning machine
CN111227830B (zh) 一种基于复杂改进多尺度传递熵的脑肌电耦合分析方法
CN102063180B (zh) 基于hht高频组合编码稳态视觉诱发电位脑机接口方法
Thomas et al. Adaptive tracking of discriminative frequency components in electroencephalograms for a robust brain–computer interface
CN110969108A (zh) 一种基于自主运动想象脑电的肢体动作识别方法
Wang et al. Feature extraction of brain-computer interface based on improved multivariate adaptive autoregressive models
Chowdhury et al. EEG-EMG based hybrid brain computer interface for triggering hand exoskeleton for neuro-rehabilitation
Malekmohammadi et al. An efficient hardware implementation for a motor imagery brain computer interface system
Ibáñez et al. Predictive classification of self-paced upper-limb analytical movements with EEG
Huong et al. Classification of left/right hand movement EEG signals using event related potentials and advanced features
Samuel et al. Motor imagery classification of upper limb movements based on spectral domain features of EEG patterns
Janapati et al. Towards a more theory-driven BCI using source reconstructed dynamics of EEG time-series
Li et al. Discrete hand motion intention decoding based on transient myoelectric signals
Wang et al. Prosthetic control system based on motor imagery
Guerrero-Mendez et al. Coherence-based connectivity analysis of EEG and EMG signals during reach-to-grasp movement involving two weights
Birvinskas et al. Data compression of EEG signals for artificial neural network classification
Hua et al. An optimized selection method of channel numbers and electrode layouts for hand motion recognition
Xie et al. Identification method of human movement intention based on the fusion feature of EEG and EMG
Risangtuni et al. Towards online application of wireless EEG-based open platform Brain Computer Interface
Carra et al. Evaluation of sensorimotor rhythms to control a wheelchair
Bhattacharyya et al. Detection of fast and slow hand movements from motor imagery EEG signals
CN112674783A (zh) 长时程脑-肌电耦合的上肢运动功能训练与评测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180406

Assignee: Ruixukang (Hangzhou) Intelligent Technology Co.,Ltd.

Assignor: HANGZHOU DIANZI University

Contract record no.: X2022330000044

Denomination of invention: Brain interval coupling analysis method based on synchronous screening

Granted publication date: 20201027

License type: Common License

Record date: 20220218