CN107872270A - A kind of relay node selecting method based on optimal threshold transmitting and scheduling in rayleigh fading channel - Google Patents

A kind of relay node selecting method based on optimal threshold transmitting and scheduling in rayleigh fading channel Download PDF

Info

Publication number
CN107872270A
CN107872270A CN201710919230.1A CN201710919230A CN107872270A CN 107872270 A CN107872270 A CN 107872270A CN 201710919230 A CN201710919230 A CN 201710919230A CN 107872270 A CN107872270 A CN 107872270A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
mtr
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710919230.1A
Other languages
Chinese (zh)
Other versions
CN107872270B (en
Inventor
黄亮
岳梦娟
钱丽萍
吴远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201710919230.1A priority Critical patent/CN107872270B/en
Publication of CN107872270A publication Critical patent/CN107872270A/en
Application granted granted Critical
Publication of CN107872270B publication Critical patent/CN107872270B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A kind of relay node selecting method based on optimal threshold transmitting and scheduling in rayleigh fading channel, comprise the following steps:1) channel probability density function and cumulative probability density function after each channel minor sort are calculated;2) each via node channel perception information current time slots fading information, energy and itself energy storage required for via node forwarding information simultaneously calculate average transmission rate notice source node;3) via node determines the minimal disruption probability of each of the links foundation according to the energy condition met required for channel information and forwarding and notifies source node, the repeating power that source node is provided according to link establishment outage probability and via node itself energy storage, determines all qualified via nodes;4) it is all it is eligible in select the node of it is expected that transmission rate is maximum, as optimal via node.When source node transmission power is constant in rayleigh fading channel, end-to-end node selection via node is transmitted the present invention with greatest hope transmission rate.

Description

A kind of via node based on optimal threshold transmitting and scheduling in rayleigh fading channel System of selection
Technical field
The invention belongs to the communications field, more particularly, to the Turbo Detection for Cooperative Communication with energy acquisition and optimizes system It is expected the relay node selecting method of transmission rate.
Background technology
With the broad development of wireless communication technology, wireless communication technology has penetrated into the every aspect of human lives. Meanwhile gradually cause scientific research and engineering field the problem of the communication energy consumption caused by communications industry fast development increases rapidly Pay attention to.Power consumption issues caused by how effectively reducing communications industry are that current scientific research and engineering field are all urgently to be resolved hurrily Problem.Energy acquisition relay network system has merged the advantage of energy acquisition and junction network, is that communication system further develops Extremely promising solution.Energy acquisition junction network utilize from surrounding environment collecting energy (such as solar energy, wind energy, RF etc.) information that via node is sent to by source node is forwarded, on the basis of communication quality is ensured, the wasting of resources is reduced, from And reach energy-saving and emission-reduction, reduce the purpose of communication energy consumption.Energy acquisition part in most of energy acquisition junction network model All it is to be completed by via node, and source node and destination node are still then using traditional power supply mode, the model of communications portion is all It is by single or multiple via node forwarding informations.For energy acquisition junction network, each time slot of different via nodes is received The energy for collecting and storing is different, and the energy for forwarding identical data packet to be consumed is also different, then selection is suitable Via node, then it can lift the capacity usage ratio and transmission rate of whole system.Therefore, when transmission power is limited and constant, How research makes full use of limited energy storage, and suitable via node is selected from energy acquisition junction network so that system reaches Optimal transmission speed is extremely significant.
The content of the invention
In order to overcome the via node in existing energy acquisition junction network to cause forwarding data because collecting energy is limited It is limited, the present invention provide it is a kind of in decoding forwards energy acquisition junction network, for exist in the channel of Rayleigh fading how Via node is selected to maximize the relay node selecting method of system transfer rate with limited collecting energy.
The technical scheme adopted by the invention to solve the technical problem is that:
A kind of relay node selecting method of optimal threshold transmitting and scheduling in rayleigh fading channel, methods described include Following steps:
1) source node to via node, each signal of via node to destination node envelope γ Rayleigh distributeds, And signal to noise ratio γ is obeyedExponential distribution, wherein γ0For average signal-to-noise ratio.Via node instantaneous signal-to-noise ratio γ12,…,γKBy being γ after ascending order rearrangement(1)≤γ(2)≤…≤γ(k)≤γ(k+1)≤…≤γ(K), γ(k)Claim k-th of order statistic, its probability density function f(k)(γ) is:
Cumulative probability density function F(k)(γ) is:
Wherein, each parameter definition is as follows in formula:
f(k)(γ):γ(k)Probability density function;
F(k)(γ):γ(k)Cumulative probability density function;
F(γ):Signal to noise ratio γ cumulative probability density function, wherein
K:Via node number;
γ0:Average signal-to-noise ratio;
γk:Via node k instantaneous signal-to-noise ratio;
γ(k):After via node instantaneous signal-to-noise ratio according to sorting from small to large, k-th of order system of signal to noise ratio
Metering
2) each via node is perceived from source node to itself, and itself arrives the letter of destination node
Road information, then by the energy required for forwarding information and itself storage energy notice source node;
The letter that the channel information and via node and destination node perceived by via node receives
Road information, obtain system average signal-to-noise ratio E [γ(k)] as follows:
Average transmission rate E [C(k)] as follows:
Wherein, each parameter definition is as follows in formula:
B:Channel width
Ps:Source node transmission power
3) optimal threshold transmission dispatching method selection via node then stores energy whether to judge link using via node Establish, obtaining outage probability expression formula is:
Wherein, each parameter definition is as follows in formula:
Pk=2Emax/T:Via node k repeating power;EmaxVia node energy storage maximum capacity;T information is from source node The time being sent to required for destination node, information source node to via node and the time phase from via node to destination node Together;
4) system selects Largest Mean average transmission rate E [C from qualified via node(k)], during selection is optimal After node k*Meet following formula:
Constraints is:E[O(k)]≤Emax
For the constraints in formula (7), minimum power and maximum energy storage relation are converted to, obtains following formula:
Constraints:Pk≥2Emax/T
According to step 2), 3) Mean Speed defines in, and obtaining transmission rate when threshold value is fixed is:
Wherein, E [C(0)] represent no data transfer, E [C(0)]=0
According to identical in channel fading, in transmission time identical channel, the time required for information is identical, asks system to pass Defeated expectation energy expenditure:
Energy it is expected that consumption is:
Wherein, E [O(0)] energy expenditure when indicating no information transfer, E [O(0)]=0
According to step 2), 4) transmission rate for obtaining threshold value scheduled transmission algorithm is:
Energy it is expected consumption:
Wherein,
Energy it is expected that consumption is:
The present invention technical concept be:The repeating power of via nodes different first is different, because of each not phase of channel It is different with the energy required for causing synchronization to forward same packet, therefore via node energy storage can be said as can be with The Internet resources of control, realize transmission rate maximum.In other words, it is desirable to judge source node to purpose section by via node energy storage Whether the link of point can be established, and the maximum via node of transmission rate can be reached by being picked out from qualified via node.
Beneficial effects of the present invention are mainly manifested in:For whole energy acquisition junction network, during selection is suitable Not only can be effectively using the energy collected, and the long-term average benefit of system can be increased after node.
Brief description of the drawings
Fig. 1 is the network system schematic diagram for having K via node.
Fig. 2 is the flow chart for selecting suitable via node.
Embodiment
The present invention is described in further detail below in conjunction with the accompanying drawings.
Referring to Figures 1 and 2, a kind of trunk node selection based on optimal threshold transmitting and scheduling in rayleigh fading channel Method, the energy collected can be made full use of by carrying out this method, increase system average transmission rate.The present invention is based on having K The energy acquisition relay network system (as shown in Figure 1) of via node.In energy acquisition junction network, source node is with constant work( Information is sent a via node by rate, and via node will according to the node that therefrom selection transmission rate is maximum and itself energy storage is enough Information is transmitted to destination node.Invention selects suitable via node to reach average transmission rate for energy acquisition junction network Maximum method has following steps (as shown in Figure 2):
1) source node to via node, each signal of via node to destination node envelope γ Rayleigh distributeds, And signal to noise ratio γ is obeyedExponential distribution, wherein γ0For average signal-to-noise ratio.Via node instantaneous signal-to-noise ratio γ12,…,γKBy being γ after ascending order rearrangement(1)≤γ(2)≤…≤γ(k)≤γ(k+1)≤…≤γ(K), γ(k)Claim k-th of order statistic, its probability density function f(k)(γ) is:
Cumulative probability density function F(k)(γ) is:
Wherein, each parameter definition is as follows in formula:
f(k)(γ):γ(k)Probability density function;
F(k)(γ):γ(k)Cumulative probability density function;
F(γ):Signal to noise ratio γ cumulative probability density function, wherein
K:Via node number;
γ0:Average signal-to-noise ratio;
γk:Via node k instantaneous signal-to-noise ratio;
γ(k):After via node instantaneous signal-to-noise ratio according to sorting from small to large, k-th of order statistic of signal to noise ratio;
2) each via node is perceived from source node to itself, and itself arrives the channel information of destination node, then will Energy and itself storage energy notice source node required for forwarding information;
The channel information that the channel information and via node and destination node perceived by via node receives, is obtained To system average signal-to-noise ratio E [γ(k)] as follows:
Average transmission rate E [C(k)] as follows:
Wherein, each parameter definition is as follows in formula:
B:Channel width;
Ps:Source node transmission power;
3) optimal threshold transmission dispatching method selection via node then stores energy whether to judge link using via node Establish, obtaining outage probability expression formula is:
Wherein, each parameter definition is as follows in formula:
Pk=2Emax/T:Via node k repeating power;
EmaxVia node energy storage maximum capacity;
T information be sent to destination node from source node required for time, information source node to via node with from relaying The time of node to destination node is identical, is T/2;
4) system selects Largest Mean average transmission rate from qualified via nodeChoosing Select optimal via node k* and meet following formula:
Constraints is:E[O(k)]≤Emax
Step 4.1:For the constraints in formula (19), minimum power and maximum energy storage relation are converted to, is obtained down Formula:
Constraints:Pk≥2Emax/T
Step 4.2:For the constraints in formula (21), 3) outage probability expression is used instead, i.e., when outage probability is less than Threshold value then link establishment, obtains following formula:
UtilizeOptimal via node k is selected when trying to achieve greatest hope transmission rate*
Step 4.3:The energy that via node consumed is sent to from source node be equal to it from via node according to information The energy that destination node is consumed is forwarded to, tries to achieve system average energy consumption E [O(k)]:
By formula (23) abbreviation, obtaining the average power consumption after order statistics of via node transmission rate is:
Formula (14) is substituted into formula (24), by integral formula Obtain:
System is obtained by formula (18) (25) and it is expected energy expenditure

Claims (1)

1. a kind of relay node selecting method based on optimal threshold transmitting and scheduling in rayleigh fading channel, its feature exists In:It the described method comprises the following steps:
1) source node to via node, each signal of via node to destination node envelope γ Rayleigh distributeds, and believe Make an uproar and obeyed than γExponential distribution, wherein γ0For average signal-to-noise ratio, via node instantaneous signal-to-noise ratio γ1, γ2,…,γKBy being γ after ascending order rearrangement(1)≤γ(2)≤…≤γ(k)≤γ(k+1)≤…≤γ(K), γ(k) Claim k-th of order statistic, its probability density function f(k)(γ) is:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>K</mi> <mo>!</mo> </mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>!</mo> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>)</mo> <mo>!</mo> </mrow> </mfrac> <msup> <mi>F</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>-</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mi>k</mi> </mrow> </msup> <mi>f</mi> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mi>K</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfrac> <mrow> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mfrac> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> </mtr> </mtable> </mfenced> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>i</mi> </msup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mfrac> <mi>&amp;gamma;</mi> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mfrac> </mrow> </msup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Cumulative probability density function F(k)(γ) is:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>Pr</mi> <mi>o</mi> <mi>b</mi> <mo>{</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;le;</mo> <mi>&amp;gamma;</mi> <mo>}</mo> <mo>=</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>k</mi> </mrow> <mi>K</mi> </msubsup> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mi>K</mi> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> </mtr> </mtable> </mfenced> <msup> <mi>F</mi> <mi>i</mi> </msup> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>-</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mi>i</mi> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>k</mi> </mrow> <mi>K</mi> </msubsup> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mi>K</mi> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> </mtr> </mtable> </mfenced> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>i</mi> </msubsup> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mi>j</mi> </mtd> </mtr> </mtable> </mfenced> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>j</mi> </msup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mi>i</mi> <mo>+</mo> <mi>j</mi> <mo>)</mo> </mrow> <mfrac> <mi>&amp;gamma;</mi> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mfrac> </mrow> </msup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein, each parameter definition is as follows in formula:
f(k)(γ):γ(k)Probability density function;
F(k)(γ):γ(k)Cumulative probability density function;
F(γ):Signal to noise ratio γ cumulative probability density function, wherein
K:Via node number;
γ0:Average signal-to-noise ratio;
γk:Via node k instantaneous signal-to-noise ratio;
γ(k):After via node instantaneous signal-to-noise ratio according to sorting from small to large, k-th of order statistic of signal to noise ratio;
2) each via node is perceived from source node to itself, and itself arrives the channel information of destination node, then will forwarding Energy and itself storage energy notice source node required for information;The channel information that is perceived by via node and in After the channel information that node and destination node receive, system average signal-to-noise ratio E [γ are obtained(k)] as follows:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mi>&amp;gamma;</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </msubsup> <msub> <mi>&amp;gamma;dF</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mi>&amp;gamma;</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </msubsup> <msub> <mi>&amp;gamma;f</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;gamma;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mi>K</mi> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> </mtr> </mtable> </mfenced> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>i</mi> </msup> <mfrac> <mn>1</mn> <msup> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Average transmission rate E [C(k)] as follows:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>C</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mi>&amp;gamma;</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </msubsup> <msub> <mi>Blog</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>P</mi> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <msub> <mi>dF</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mi>&amp;gamma;</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </msubsup> <msub> <mi>Blog</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>P</mi> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;gamma;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <mi>B</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>l</mi> <mi>n</mi> <mn>2</mn> </mrow> </mfrac> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mi>K</mi> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> </mtr> </mtable> </mfenced> <mfrac> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>i</mi> </msup> <mrow> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <msup> <mi>e</mi> <mfrac> <mrow> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <msub> <mi>P</mi> <mi>s</mi> </msub> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </msup> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <msub> <mi>P</mi> <mi>s</mi> </msub> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Wherein, each parameter definition is as follows in formula:
B:Channel width;
Ps:Source node transmission power;
3) optimal threshold transmission dispatching method selection via node then stores energy to judge whether link is established using via node, Obtaining outage probability expression formula is:
<mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>&amp;infin;</mi> </msubsup> <mi>F</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>P</mi> <mi>s</mi> </msub> <msub> <mi>P</mi> <mi>k</mi> </msub> </mfrac> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;gamma;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mi>K</mi> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> </mtr> </mtable> </mfenced> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>i</mi> </msup> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <mrow> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <msub> <mi>P</mi> <mi>s</mi> </msub> <msub> <mi>P</mi> <mi>k</mi> </msub> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
Wherein, each parameter definition is as follows in formula:
Pk=2Emax/T:Via node k repeating power;
EmaxVia node energy storage maximum capacity;
T information be sent to destination node from source node required for time, information source node to via node with from via node Time to destination node is identical, is T/2;
4) system selects Largest Mean average transmission rate E [C from qualified via node(k)], select optimal relaying section Point k*Meet following formula:
<mrow> <mi>max</mi> <mi>E</mi> <mo>&amp;lsqb;</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>K</mi> </msubsup> <msub> <mi>C</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
Constraints is:E[O(k)]≤Emax
Step 4.1:For the constraints in formula (6), minimum power and maximum energy storage relation are converted to, obtains following formula:
<mrow> <mi>max</mi> <mi> </mi> <mi>E</mi> <mo>&amp;lsqb;</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>K</mi> </msubsup> <msub> <mi>C</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
Constraints:Pk≥2Emax/T
Step 4.2:For the constraints in formula, the outage probability for using step 3) instead represents, i.e., when outage probability is less than threshold It is worth then link establishment, obtains following formula:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>E</mi> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>K</mi> </msubsup> <msub> <mi>C</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>C</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>C</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>(</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> <msubsup> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>K</mi> </msubsup> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </msubsup> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msubsup> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>C</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>C</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>C</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <msubsup> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>K</mi> </msubsup> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
UtilizeOptimal via node k is selected when trying to achieve greatest hope transmission rate*
Step 4.3:From source node the energy that via node consumed is sent to according to information is equal to it forwarded from via node The energy consumed to destination node, try to achieve system average energy consumption E [O(k)]:
<mrow> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>O</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mi>T</mi> <mo>/</mo> <mn>2</mn> <msubsup> <mo>&amp;Integral;</mo> <mrow> <msub> <mi>&amp;gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </msubsup> <msubsup> <mo>&amp;Integral;</mo> <mrow> <msubsup> <mi>&amp;gamma;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mi>s</mi> </msub> <msub> <mi>P</mi> <mi>k</mi> </msub> </mfrac> <msub> <mi>&amp;gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> </mrow> <mi>&amp;infin;</mi> </msubsup> <mfrac> <msub> <mi>&amp;gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <msubsup> <mi>&amp;gamma;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> </mfrac> <msub> <mi>P</mi> <mi>s</mi> </msub> <msub> <mi>dF</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>F</mi> <mrow> <mo>(</mo> <msubsup> <mi>&amp;gamma;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
Abbreviation formula (9), obtaining the average power consumption after order statistics of via node transmission rate is:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>O</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mi>T</mi> <mo>/</mo> <mn>2</mn> <msubsup> <mo>&amp;Integral;</mo> <mrow> <msub> <mi>&amp;gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </msubsup> <msubsup> <mo>&amp;Integral;</mo> <mrow> <msubsup> <mi>&amp;gamma;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mi>s</mi> </msub> <msub> <mi>P</mi> <mi>k</mi> </msub> </mfrac> <msub> <mi>&amp;gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> </mrow> <mi>&amp;infin;</mi> </msubsup> <mfrac> <msub> <mi>&amp;gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <msubsup> <mi>&amp;gamma;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> </mfrac> <msub> <mi>P</mi> <mi>s</mi> </msub> <msub> <mi>dF</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>F</mi> <mrow> <mo>(</mo> <msubsup> <mi>&amp;gamma;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mi>T</mi> <mn>2</mn> </mfrac> <msub> <mi>P</mi> <mi>s</mi> </msub> <msubsup> <mo>&amp;Integral;</mo> <mrow> <msub> <mi>&amp;gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </msubsup> <msub> <mi>&amp;gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <msubsup> <mo>&amp;Integral;</mo> <mrow> <msubsup> <mi>&amp;gamma;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mi>s</mi> </msub> <msub> <mi>P</mi> <mi>k</mi> </msub> </mfrac> <msub> <mi>&amp;gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> </mrow> <mi>&amp;infin;</mi> </msubsup> <mfrac> <mn>1</mn> <msubsup> <mi>&amp;gamma;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> </mfrac> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>&amp;gamma;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <msubsup> <mi>d&amp;gamma;</mi> <mi>k</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>dF</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <mo>=</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <mfrac> <mrow> <msub> <mi>TP</mi> <mi>s</mi> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mi>&amp;gamma;</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </msubsup> <msub> <mi>&amp;gamma;E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mi>s</mi> </msub> <mi>&amp;gamma;</mi> </mrow> <mrow> <msub> <mi>P</mi> <mi>k</mi> </msub> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;gamma;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Formula (1) is substituted into formula (10), and utilizes integral formula Obtain:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>O</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>TP</mi> <mi>s</mi> </msub> </mrow> <mn>2</mn> </mfrac> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mi>K</mi> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfrac> <mrow> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <msubsup> <mi>&amp;gamma;</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mfrac> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> </mtr> </mtable> </mfenced> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>i</mi> </msup> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mi>&amp;gamma;</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </msubsup> <msup> <mi>&amp;gamma;e</mi> <mrow> <mo>-</mo> <mfrac> <mrow> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mfrac> <mi>&amp;gamma;</mi> </mrow> </msup> <msub> <mi>E</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>P</mi> <mi>s</mi> </msub> <mrow> <msub> <mi>P</mi> <mi>k</mi> </msub> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;gamma;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>TP</mi> <mi>s</mi> </msub> </mrow> <mn>2</mn> </mfrac> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mi>K</mi> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mi>k</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mn>1</mn> <mo>)</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> </mtr> </mtable> </mfenced> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>i</mi> </msup> <mfrac> <mn>1</mn> <msup> <mrow> <mo>(</mo> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>&amp;lsqb;</mo> <mi>ln</mi> <mo>(</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mrow> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <msub> <mi>P</mi> <mi>s</mi> </msub> </mfrac> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mrow> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mfrac> <msub> <mi>P</mi> <mi>s</mi> </msub> <msub> <mi>P</mi> <mi>k</mi> </msub> </mfrac> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
By formula (5) (11), obtain system and it is expected energy expenditure
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>E</mi> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>K</mi> </msubsup> <msub> <mi>O</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>O</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>+</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>O</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <msubsup> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>K</mi> </msubsup> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>O</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <msubsup> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </msubsup> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>O</mi> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>+</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>O</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msub> <mo>&amp;rsqb;</mo> <msubsup> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>K</mi> </msubsup> <msubsup> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
CN201710919230.1A 2017-09-30 2017-09-30 Relay node selection method based on optimal threshold transmission scheduling Active CN107872270B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710919230.1A CN107872270B (en) 2017-09-30 2017-09-30 Relay node selection method based on optimal threshold transmission scheduling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710919230.1A CN107872270B (en) 2017-09-30 2017-09-30 Relay node selection method based on optimal threshold transmission scheduling

Publications (2)

Publication Number Publication Date
CN107872270A true CN107872270A (en) 2018-04-03
CN107872270B CN107872270B (en) 2020-08-04

Family

ID=61753041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710919230.1A Active CN107872270B (en) 2017-09-30 2017-09-30 Relay node selection method based on optimal threshold transmission scheduling

Country Status (1)

Country Link
CN (1) CN107872270B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080219222A1 (en) * 2007-03-10 2008-09-11 The Hong Kong University Of Science And Technology Optimizing downlink throughput with user cooperation and scheduling in adaptive cellular networks
CN101577956A (en) * 2009-06-15 2009-11-11 北京邮电大学 Method and system for selecting collaboration relay node
CN101969396A (en) * 2010-09-02 2011-02-09 北京邮电大学 Time delay and bandwidth resource-based relay selection method
CN103796284A (en) * 2014-02-27 2014-05-14 西安交通大学 Relay selection method for energy harvesting wireless network
CN104202788A (en) * 2014-07-22 2014-12-10 浙江工业大学 Relay node selection method for minimizing end-to-end sending power in Rayleigh fading channel
CN105375972A (en) * 2015-10-19 2016-03-02 中国科学院信息工程研究所 Full-duplex repeater, full-duplex relay transmission control method and system
US20160095074A1 (en) * 2014-09-25 2016-03-31 Samsung Electronics Co., Ltd. Synchronization procedure and resource control method and apparatus for communication in d2d system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080219222A1 (en) * 2007-03-10 2008-09-11 The Hong Kong University Of Science And Technology Optimizing downlink throughput with user cooperation and scheduling in adaptive cellular networks
CN101577956A (en) * 2009-06-15 2009-11-11 北京邮电大学 Method and system for selecting collaboration relay node
CN101969396A (en) * 2010-09-02 2011-02-09 北京邮电大学 Time delay and bandwidth resource-based relay selection method
CN103796284A (en) * 2014-02-27 2014-05-14 西安交通大学 Relay selection method for energy harvesting wireless network
CN104202788A (en) * 2014-07-22 2014-12-10 浙江工业大学 Relay node selection method for minimizing end-to-end sending power in Rayleigh fading channel
US20160095074A1 (en) * 2014-09-25 2016-03-31 Samsung Electronics Co., Ltd. Synchronization procedure and resource control method and apparatus for communication in d2d system
CN105375972A (en) * 2015-10-19 2016-03-02 中国科学院信息工程研究所 Full-duplex repeater, full-duplex relay transmission control method and system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHENG YIYUN: "Energy states aided relay selection and optimal power allocation for cognitive relaying networks", 《IET COMMUNICATIONS》 *
MOHAMMAD TORABI: "Performance analysis of amplify-and-forward cooperative networks with relay selection over Rayleigh fading channel", 《VTC SPRING 2009-IEEE 69TH VEHICULAR TECHNOLOGY CONFERENCE》 *
王炜杰: "具有能量手机的中继系统最优传输策略研究", 《中国优秀硕士学位论文全文数据库(信息科技辑)》 *
龚渝钧: "协作中继网络的功率分配与中继选择研究", 《中国优秀硕士学位论文全文数据库(信息科技辑)》 *

Also Published As

Publication number Publication date
CN107872270B (en) 2020-08-04

Similar Documents

Publication Publication Date Title
Shi et al. An energy-efficiency Optimized LEACH-C for wireless sensor networks
CN104507144B (en) Wireless take can junction network joint relay selection and resource allocation methods
CN103781168B (en) Power distribution method and system of cellular network
CN100558177C (en) The adaptive power saving method of wireless mobile packet communication system
CN103796284B (en) A kind of relay selection method for energy acquisition wireless network
CN109067488B (en) Energy accumulation-based information and energy bidirectional transmission system performance optimization method
CN107508628A (en) A kind of RF energy collects the cooperation transmission method in junction network
CN108541001B (en) Interrupt rate optimization method for energy-collectable bidirectional cooperative communication
CN102438298B (en) Trusted energy-saving data convergence method for wireless sensor network
CN105517096B (en) A kind of relay selection method of more relaying amplification forward collaboration networks
CN107666676A (en) A kind of On-Line Control Method of energy-collecting type wireless relay network maximum system throughput
WO2019210648A1 (en) Self-adaptive time-slot signal receiving method for swipt system based on nonlinear energy collection
CN106255220A (en) Resource allocation methods in energy acquisition small cell network
CN107070529A (en) A kind of optimization energy distribution method for taking energy multiple antennas relaying
CN104185292A (en) Data packet scheduling method with maximum energy efficiency
CN106793121B (en) A kind of multi-user data and energy cooperation transmission method and system
He et al. Optimizing information freshness in RF-powered multi-hop wireless networks
CN102802241A (en) High-energy-efficiency wireless relay selection method
CN107872270A (en) A kind of relay node selecting method based on optimal threshold transmitting and scheduling in rayleigh fading channel
CN110012526A (en) It is a kind of that the node sleep dispatching method that can be communicated wirelessly is taken based on time slot switching
CN101466160A (en) Method and system for saving energy of wireless netted network node
CN109688557A (en) A kind of cooperative node selection method, device
CN103327518B (en) Node dormancy scheduling method based on link quality
CN107359926A (en) A kind of full duplex relaying transmission method based on energy state
CN109756956A (en) Communication means and communication device, access point apparatus and site apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant