CN107869865B - 在泵运行模式期间对过热水平进行控制的方法及制冷系统 - Google Patents
在泵运行模式期间对过热水平进行控制的方法及制冷系统 Download PDFInfo
- Publication number
- CN107869865B CN107869865B CN201710888935.1A CN201710888935A CN107869865B CN 107869865 B CN107869865 B CN 107869865B CN 201710888935 A CN201710888935 A CN 201710888935A CN 107869865 B CN107869865 B CN 107869865B
- Authority
- CN
- China
- Prior art keywords
- predetermined
- pump
- superheat
- pressure differential
- pump pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/13—Pump speed control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Air Conditioning Control Device (AREA)
Abstract
本发明提供了一种在制冷系统的泵运行模式期间对过热水平进行控制的系统和方法,其中,制冷系统可以在泵模式或压缩机模式下运行,并且制冷系统具有电子控制膨胀阀(EEV)。控制器获得存储的能够由系统的泵产生的预定泵压差范围。控制器还获得存储的预定过热范围并对过热水平进行检测。当检测到的过热水平超出过热温度范围时,控制器命令基于检测到的过热水是高于还是低于过热范围以及当前的泵压差是高于还是低于预定泵压差范围来对EEV和泵的速度中的至少一者进行调节。
Description
相关申请的交叉引用
本申请要求于2016年3月22日提交的序列号为62/311,765的美国临时申请的优先权,该临时申请的全部公开内容在此通过参引并入本公开中。
技术领域
本公开涉及制冷系统,并且更具体地涉及与具有泵送制冷剂“节能器”运行模式的制冷系统以及与该制冷系统结合使用的控制方法,并且再更具体地涉及用于对泵压差和过热进行监测及控制以防止在泵模式(即,制冷剂节能器模式)下运行时以及在系统从泵模式切换至压缩机模式时对系统的压缩机造成损坏。
背景技术
本部分的陈述仅提供与本公开相关的背景信息,并且本部分的陈述可以不构成现有技术。
本公开的受让人是在小型、中型和大型数据中心中使用的环境控制系统领域的领导者。与更传统的空气侧节能器相反,在本申请中描述的系统使用泵送制冷剂节能器。当室内和室外温度条件适于提供冷却而不需要蒸气压缩循环时,泵送制冷剂节能器系统使用液体泵使制冷剂循环而不是操作压缩机。
泵送制冷剂节能器系统通常还使用传感器系统来测量外部和内部空气条件,并且如果外部条件适合于进行冷却而不需要压缩制冷剂,则使用液体泵来代替压缩机来提供流动穿过系统的制冷剂。此运行模式在业内被称为“泵模式”。泵模式下的运行减少或消除了对空调系统的压缩机运行的需要。这样可以显著节省用于对空间进行冷却的能源。在“压缩机模式”运行中,系统的压缩机运行,以提供空间所需的冷却。
然而,当在泵模式下运行时,必须注意不要对系统的各种部件造成损坏。特别地,应当理解的是,在泵模式期间离开蒸发器的过热不足会最终导致过多的液体冷却剂聚集在压缩机的曲轴箱中。如果在泵模式期间已在压缩机曲轴箱中聚集了足够量的液体制冷剂并且接着开始压缩机模式,则这会对压缩机产生不利影响。在压缩机的曲轴箱(即,贮槽)中积聚的过多的液体会潜在地导致各种问题,比如,在从泵模式转换到压缩机模式期间在压缩机尝试启动时,贮槽结霜和/或油起沫、油稀释和/或油洗脱。
尽管现代节能器系统对系统的EEV(电子膨胀阀)进行调节以在泵模式下运行时保持适当的泵压差,但是在系统以泵模式运行时没有对离开蒸发器的过热进行控制。因此,需要对在泵运行模式期间在压缩机中积聚的液体冷却剂进行控制及限制的一些装置。
发明内容
在一方面,本公开涉及一种用于在制冷系统的泵运行模式期间对过热水平进行控制的方法,其中,该制冷系统能够在泵运行模式或压缩机运行模式下进行操作,该制冷系统包括电子控制膨胀阀(EEV)。该方法可以包括使用控制器来获得存储的能够由制冷系统的泵产生的预定泵压差范围。该控制器还可以用于获得存储的预定过热范围并对过热水平进行检测。当检测到的过热水平超出预定过热温度范围时,控制器可以用于基于检测到的过热水平是高于还是低于预定过热范围以及当前的泵压差是高于还是低于预定泵压差范围来发出指令对EEV和泵的速度中的至少一者进行调节。
在另一方面,本公开涉及一种在制冷系统的泵运行模式期间对过热水平进行控制的方法,其中,制冷系统能够在泵运行模式或压缩机运行模式下进行操作,并且制冷系统包括电子控制膨胀阀(EEV)。该方法可以包括限定用于所述EEV的固定调节步骤、限定用于泵速改变的固定调节步骤以及限定要应用在所述EEV的相继调节和泵速的相继调节之间的时间延迟间隔。该方法还可以包括使用控制器来获得存储的能够由制冷系统的泵产生的预定泵压差范围以及使用所述控制器来获得存储的预定过热范围。该方法还可以包括对过热水平进行检测,并且当检测到的过热水平超出预定过热温度范围时,基于检测到的过热水平是高于还是低于预定过热范围并且根据预定的EEV的固定调节步骤和泵速的固定调节步骤来对EEV和泵的速度进行调节。
在又一方面,本公开涉及一种被配置为在泵运行模式期间对过热水平进行控制的制冷系统。该制冷系统能够在泵运行模式或压缩机运行模式下进行操作,并且该制冷系统包括泵、电子控制膨胀阀(EEV)以及用于对EEV的调节和泵的调节进行控制的控制器。该控制器还可以配置成获得存储的能够由泵产生的预定泵压差范围并且获得存储的预定过热范围并且在制冷系统的运行期间对过热水平进行检测。当检测到的过热水平超出预定过热温度范围时,控制器基于检测到的过热水平是高于还是低于预定过热范围来对EEV和泵的速度进行调节。
附图说明
本文中所描述的附图仅用于说明的目的,并不意在以任何方式限制本公开的范围。
图1是本公开的制冷系统的一个实施方式的高级框图,其中,制冷系统包括用于在系统的泵运行模式期间对电子膨胀阀进行控制以对泵压差和蒸发器过热进行调节的基于子系统的电子控制器;
图2是示出由系统的控制器执行的与过热控制算法相关联的操作的高级流程图;
图3是由控制器执行的低过热调节程序的流程图;以及
图4是在使用过热控制算法期间施加调节时控制器观测的各种控制调节参数的表格。
具体实施方式
以下描述在本质上仅仅是示例性的,并不意在限制本公开、本公开的应用或用途。应当理解的是,在整个附图中,相应的附图标记指示相同或相应的部件和特征。
本系统和方法涉及使用电子膨胀阀(EEV),电子膨胀阀(EEV)用于在泵送运行模式期间对泵压差进行调节。另外,该系统和方法涉及应用控制程序来控制离开蒸发器的过热。离开蒸发器的过热与泵压差一起被控制,这消除或显著降低了在泵送运行模式期间在压缩机曲轴箱(即,贮槽)中聚集液体制冷剂并引起油稀释的可能性。重要的是,该系统和方法不会对系统的整体效率产生负面影响。
参照图1,其示出了根据本公开的一个实施方式的制冷系统10。此示例中的系统10形成节能器系统并且因此能够在“泵”模式和“压缩机”模式两者下运行。在泵模式下,较低温度的外部空气能够以较低的压力使制冷剂冷凝,并且液体制冷剂泵使制冷剂循环来冷却制冷剂以及内部房间或建筑物,其中,系统的压缩机被关闭。在压缩机模式下,使用压缩机来帮助冷却房间或建筑物的内部。在此示例中,系统10包括蒸发器16、止回阀17、电子膨胀阀(“EEV”)18、过热温度及压力传感器20、泵压差传感器12以及至少一个压缩机14。压缩机14和泵压差传感器12与单元控制器22双向通信。单元控制器22包括处理器22a——在一个示例中为微处理器,处理器22a可以运行压缩机过热控制算法100a、泵压差控制算法100b以及泵模式过热控制算法110c,这些算法全部存储在非易失性RAM或ROM中。将理解的是,压缩机过热控制算法100a是在工业中已经被用于在以压缩机模式运行时对从蒸发器16出来的过热进行控制的标准算法。泵压差控制算法100b的细节可以在美国专利No.9,316,424和美国专利8,881,541中找到,这两个美国专利的公开内容在此通过参引并入本申请中。将结合图2和图3进一步详细论述作为本公开的重要特征的泵模式过热控制算法100c。
系统10还包括冷凝器24,冷凝器24在压缩机模式期间用于接纳来自压缩机14的热气并且在泵模式期间用于为制冷剂提供热传递。液体冷却剂流至常规的接纳器24a,接纳器24a能够在系统10的运行期间根据需要保持预定量的制冷剂装料。如关于空气调节系统众所周知的,液体冷却剂继续流动穿过泵箱25、穿过液体管线27并回到电子膨胀阀18。泵箱25容纳用于在节能模式期间进行操作的制冷剂泵25b以及包括泵速控制器25a的泵速控制装置。历史地,泵速控制器25a将泵速调节成满足冷却需求,并且单元控制器22将EEV 18调节成保持泵压差。相结合地,这样可以以使得房间或数据中心内的冷却载荷得到满足的方式保持冷却剂流至蒸发器16。如果室外温度升高、使得不能保持负载,则单元控制器22将泵“关闭”并将压缩机“打开”,以确保房间负载得以保持。在压缩机运行期间,单元控制器22通过将过热温度及压力传感器20用作对压缩机模式过热控制算法100a的输入来保持过热。
在不同的实施方式中,如图1中所示,单元控制器22还可以使用泵模式过热控制算法100c基于过热温度及压力传感器20来确定EEV的位置。在此实施方式中,单元控制器22评估过热和泵压差条件来确定适当的EEV 18的位置,以最佳地满足如下面所描述的两个条件。另外,单元控制器22将基于EEV 18的位置来确定最大泵速限值,并将该最大泵速限值传送至泵速控制器25a以限制泵速调节。
图1中示出的系统10还使用了室内相对湿度温度传感器28、室外温度(干球)传感器30和室内(干球)温度传感器32。
参照图2,单元控制器22执行压缩机过热控制算法100c,以对离开蒸发器盘管16的过热进行监测和控制且同时还对泵压差进行监测和控制。最初,当在泵模式下运行时,用于系统10的泵压差控制算法100b限定了由允许的上限默认泵压力阈值和下限默认泵压力阈值构成的允许的压力范围。在超出允许范围的运行期间,单元控制器22使用PID(比例积分/微分)计算来对EEV 18的位置进行调节。当结合泵压差控制对EEV 18的位置进行调节时,新的泵模式过热(“SH”)控制算法100c应用如下额外的参数:
SH控制EEV关闭步骤(在打开EEV 18时用于进行一个调节的百分比步长值);
SH控制打开步骤(在关闭EEV 18时用于进行一个调节的百分比步长值);
下限SH阈值(预定的下限SH温度阈值);
上限SH阈值(预定的上限SH温度阈值);
调节时间延迟(在进行EEV 18的相继调节之间的时间延迟);
已调节的最大泵25b压力上限阈值;
泵压力上限阈值调节步骤(在进行单个调节步骤以设定泵25b压力上限阈值时的百分比值);以及
基于EEV 18的位置的最大允许的泵25b速度设定。对于上述参数,“泵速”和“泵压力”指的是泵25b的马达速度和跨过泵25b的压差。
具体地参照图2,其示出了可以与泵模式过热控制算法100c相关联的各种操作。在操作102处,系统10开始在泵模式下运行。在操作104处,单元控制器22获得在泵模式下用于泵压差控制的允许压力范围。单元控制器22随后获得单元控制器在施加调节时观测到的各种过热控制调节参数,如在操作106处示出的。这些参数在图4中示出的表中示出。
在操作108处,接着启用包括在单元控制器22中的且与由单元控制器确定的泵启动条件相关联的启动定时器。启动定时器使得系统压力和温度在泵模式运行开始之后可以稳定,以防止对瞬态过热状态的不稳定反应。在操作110处,单元控制器22进行检查以判定启动时间是否已经超时(例如,泵启动之后已经经过了5分钟),如果否,则由单元控制器22重复地检查启动时间,直到启动定时器被检测为已超时为止。当发生超时时,单元控制器22重置启动时间,如在操作112处所指示的,并且接着检查以判定是否检测到低过热状态,如在操作114处所指示的。如上面所指出的,通过下述方式来判定低过热状态:通过让单元控制器22评估实际的吸入温度和压力并将实际的吸入温度和压力与由吸入压力计算出的饱和温度进行比较,以判定过热温度是否低于预定的下限过热阈值。更具体地,单元控制器22对离开蒸发器16的制冷剂的温度和压力进行观测,并计算在测得的压力(过热)状态下的实际温度与饱和的制冷剂温度之间的差。如果过热温度高于预定的下限过热阈值,则重复操作114。如果过热温度低于预定的下限过热阈值,则检测到低过热状态并且单元控制器22执行作为算法100c的子部分且在图3中详细示出的低过热调节程序200。
低过热调节程序200涉及使用单元控制器22来初始调节最大泵压力上限阈值,以防止压差控制程序在阀被过热控制程序关闭时计算出打开得较多的阀位置,如在操作202处指示的。接着,EEV关闭预定量(例如,百分比预定量),这包括一个调节“步长”(即,增量),以使流向蒸发器的制冷剂减少并使过热增大,如在操作204处指示的。
在操作206处,单元控制器22随后启用调节时间延迟定时器。
还参照图3,如在操作208处所指示的,单元控制器22随后开始检查调节时间延迟计时器是否已经超时。如果检查产生“否”的答案,则由单元控制器22重复操作208。如果在操作208处的检查产生“是”的答案,则由单元控制器22重置调节时间延迟计时器,如在操作210处指示的,并且单元控制器随后按照图4的表1中列出的条件来评估过热和泵压差条件的相互作用,如在操作212处指示的。更具体地,单元控制器22检查低过热温度和泵压差,以确定目前是表1(图4)中的条件中的哪个条件。假设仍然存在低过热状态,则单元控制器22基于存在于表1中的特定条件来调节EEV 18,如在操作214处指示的。在操作216处,单元控制器22随后评估相比于EEV 18的位置的泵速并且基于当前EEV18的位置将泵速限定至最大允许速度。将理解的是,针对每个EEV 18的位置的最大允许泵速还将根据EEV 18的尺寸和泵25b的排量而变化。
继续参照图3,单元控制器22随后使用泵压差传感器12进行检查,以判定泵压差上限阈值是否被调回正常默认值并且当前的EEV 18的位置是否与泵压差控制要求的位置相同,如在操作218处指示的。接着由单元控制器22进行检查以判定是否已经退出泵模式,如在操作220处指示的。如果已经退出,则低过热调节程序200结束。如果尚未退出泵模式,则在操作114(图1)处,单元控制器22再次开始检查存在的过热状态。
因此,本公开的系统和方法使得节能器系统能够在泵模式和压缩机模式两者下进行操作且同时消除或者至少显著地降低了在系统退出泵模式并开始在压缩机模式下运行时液体冷却剂被供给至系统10的压缩机的吸入口的机会。本公开的系统10和方法不需要向系统添加重要的新部件,也不会使系统的操作显著复杂化或降低其效率或增加其成本。本公开的系统和方法也可以仅通过微小的修改被改装至现有的节能器系统。
尽管已经描述了各种实施方式,但是本领域技术人员将认识到在不背离本公开的情况下可以作出改型或变型。这些示例说明了各种实施方式并且并不意在限制本公开。因此,说明书和权利要求应该仅在考虑有关现有技术的情况下以必要的限制进行自由解释。
Claims (15)
1.一种用于在制冷系统的泵运行模式期间对过热水平进行控制的方法,其中,所述制冷系统能够在所述泵运行模式或压缩机运行模式下进行操作,并且所述制冷系统包括电子控制膨胀阀,所述方法包括:
使用控制器获得存储的能够由所述制冷系统的泵产生的预定泵压差范围;
使用所述控制器获得存储的预定过热温度范围;
对过热水平进行检测;
判定检测到的所述过热水平处于所述预定过热温度范围之外,则使用所述控制器发指令基于所述过热水平是高于还是低于所述预定过热温度范围以及当前的泵压差是高于还是低于所述预定泵压差范围来对所述电子控制膨胀阀和所述泵的速度中的至少一者进行调节,并且
所述方法还包括:
检测到所述过热水平低于所述预定过热温度范围的下限并且泵压差在所述预定泵压差范围内,则以固定的预定百分比通过一系列的步骤将所述电子控制膨胀阀关闭至预定的最小电子控制膨胀阀打开百分比设定值,并且保持当前的泵速以保持所述泵压差的当前的上限阈值。
2.根据权利要求1所述的方法,还包括限定用于所述电子控制膨胀阀的与固定的预定百分比相对应的调节步骤。
3.根据权利要求2所述的方法,还包括:
对所述电子控制膨胀阀进行调节;以及
在已对所述电子控制膨胀阀进行调节之后并且在对所述电子控制膨胀阀进行随后的调节之前等待最小的预定时间间隔。
4.根据权利要求1所述的方法,还包括使用预定的调节步骤对所述泵的速度进行调节。
5.根据权利要求1所述的方法,还包括在所述电子控制膨胀阀或者所述泵的速度的相继调节之间实施预定的时间延迟。
6.根据权利要求1所述的方法,还包括:
对所述电子控制膨胀阀进行调节;
当所述电子控制膨胀阀被调节至最小电子控制膨胀阀打开百分比设定值时,限定在每次对所述电子控制膨胀阀进行调节时所遵循的位置调节步骤,所述位置调节步骤表示相对于所述电子控制膨胀阀的当前操作位置的百分比变化;
对所述泵进行速度调节;以及
限定在每次对所述泵进行速度调节时所遵循的速度调节步骤,所述速度调节步骤表示相对于最大泵速的百分比变化。
7.根据权利要求1所述的方法,还包括检测到所述过热水平低于所述预定过热温度范围的下限并且泵压差低于所述预定泵压差范围的下限阈值,则通过一系列的步骤将所述电子控制膨胀阀关闭至最小电子控制膨胀阀打开百分比设定值,每个所述步骤由固定的预定百分比限定,并且控制所述泵的速度以保持所述泵压差的上限阈值。
8.根据权利要求1所述的方法,还包括检测到所述过热水平低于所述预定过热温度范围的下限并且泵压差高于所述预定泵压差范围的上限阈值,则通过一系列的步骤将所述电子控制膨胀阀关闭至预定的最小电子控制膨胀阀打开百分比设定值,每个所述步骤由预定百分比限定,保持当前的泵速,并且保持泵压差的当前的上限阈值。
9.根据权利要求1所述的方法,还包括检测到所述过热水平在所述预定过热温度范围内并且泵压差在所述预定泵压差范围内,则保持所述电子控制膨胀阀的当前位置,保持当前的泵速,并且保持泵压差的当前的上限阈值。
10.根据权利要求1所述的方法,还包括检测到所述过热水平在所述预定过热温度范围内并且泵压差高于所述预定泵压差范围的上限阈值,则保持所述电子控制膨胀阀的当前位置,保持当前的泵速,并且保持所述泵压差的当前的泵压差的上限阈值。
11.根据权利要求1所述的方法,还包括检测到所述过热水平高于所述预定过热温度范围的预定上限阈值并且泵压差低于所述预定泵压差范围的下限阈值,则通过一系列的步骤将所述电子控制膨胀阀关闭至预定的最小电子控制膨胀阀打开百分比设定值,每个所述步骤由预定百分比限定,并降低所述泵的速度以通过预定的调节步骤将泵压差范围的上限阈值减小预定的固定值。
12.根据权利要求1所述的方法,还包括检测到所述过热水平高于所述预定过热温度范围的预定上限阈值并且检测到的泵压差在所述预定泵压差范围内,则将所述电子控制膨胀阀打开预定百分比并降低所述泵的速度以因此将泵压差范围的上限阈值减小预定的固定值。
13.根据权利要求1所述的方法,还包括检测到当所述过热水平高于所述预定过热温度范围的预定上限阈值并且泵压差高于所述预定泵压差范围的上限阈值,则将所述电子控制膨胀阀打开预定百分比,保持当前的泵速,并且保持泵压差范围的当前的上限阈值。
14.一种用于在制冷系统的泵运行模式期间对过热水平进行控制的方法,其中,所述制冷系统能够在泵运行模式或压缩机运行模式下进行操作,并且所述制冷系统包括电子控制膨胀阀,所述方法包括:
使用控制器来获得存储的能够由所述制冷系统的泵产生的预定泵压差范围;
使用所述控制器来获得存储的预定过热温度范围;
对过热水平进行检测;
判定检测到的所述过热水平处于所述预定过热温度范围之外,则使用所述控制器发指令基于所述过热水平是高于还是低于所述预定过热温度范围以及当前的泵压差是高于还是低于所述预定泵压差范围来对所述电子控制膨胀阀和所述泵的速度中的至少一者进行调节;并且
还包括:
检测到所述过热水平在所述预定过热温度范围内并且泵压差低于所述预定泵压差范围的下限阈值,则通过一系列的步骤将所述电子控制膨胀阀关闭至预定的最小电子控制膨胀阀打开百分比设定值,每个所述步骤对应于预定百分比,并且保持当前的泵速以保持所述泵压差的当前的上限阈值。
15.一种用于在制冷系统的泵运行模式期间对过热水平进行控制的方法,其中,所述制冷系统能够在泵运行模式或压缩机运行模式下进行操作,并且所述制冷系统包括电子控制膨胀阀,所述方法包括:
使用控制器来获得存储的能够由所述制冷系统的泵产生的预定泵压差范围;
使用所述控制器来获得存储的预定过热温度范围;
对过热水平进行检测;
判定检测到的所述过热水平处于所述预定过热温度范围之外,则使用所述控制器发指令基于所述过热水平是高于还是低于所述预定过热温度范围以及当前的泵压差是高于还是低于所述预定泵压差范围来对所述电子控制膨胀阀和所述泵的速度中的至少一者进行调节,并且
还包括:
检测到所述过热水平高于所述预定过热温度范围的预定上限阈值并且泵压差在所述预定泵压差范围内时,则将所述电子控制膨胀阀打开预定百分比,并且降低所述泵的速度,同时将泵压差范围的上限阈值减小预定的固定值。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/277,569 | 2016-09-27 | ||
US15/277,569 US10502470B2 (en) | 2016-03-22 | 2016-09-27 | System and method to maintain evaporator superheat during pumped refrigerant economizer operation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107869865A CN107869865A (zh) | 2018-04-03 |
CN107869865B true CN107869865B (zh) | 2020-09-01 |
Family
ID=61752406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710888935.1A Active CN107869865B (zh) | 2016-09-27 | 2017-09-27 | 在泵运行模式期间对过热水平进行控制的方法及制冷系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107869865B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1825008A (zh) * | 2005-02-26 | 2006-08-30 | Lg电子株式会社 | 第二制冷剂泵驱动式空调器 |
CN101611275A (zh) * | 2006-12-22 | 2009-12-23 | 开利公司 | 用于控制空调系统的方法和系统 |
CN101821507A (zh) * | 2007-10-08 | 2010-09-01 | 艾默生环境优化技术有限公司 | 用于监测压缩机过热的系统和方法 |
CN103609206A (zh) * | 2011-04-19 | 2014-02-26 | 力博特公司 | 高效冷却系统 |
CN103868264A (zh) * | 2012-12-07 | 2014-06-18 | 力博特公司 | 具有泵送制冷剂节能器的蒸汽压缩冷却系统中的接受器/缓冲罐排空 |
JP5639984B2 (ja) * | 2011-10-27 | 2014-12-10 | 日立アプライアンス株式会社 | 空気調和装置 |
-
2017
- 2017-09-27 CN CN201710888935.1A patent/CN107869865B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1825008A (zh) * | 2005-02-26 | 2006-08-30 | Lg电子株式会社 | 第二制冷剂泵驱动式空调器 |
CN101611275A (zh) * | 2006-12-22 | 2009-12-23 | 开利公司 | 用于控制空调系统的方法和系统 |
CN101821507A (zh) * | 2007-10-08 | 2010-09-01 | 艾默生环境优化技术有限公司 | 用于监测压缩机过热的系统和方法 |
CN103609206A (zh) * | 2011-04-19 | 2014-02-26 | 力博特公司 | 高效冷却系统 |
JP5639984B2 (ja) * | 2011-10-27 | 2014-12-10 | 日立アプライアンス株式会社 | 空気調和装置 |
CN103868264A (zh) * | 2012-12-07 | 2014-06-18 | 力博特公司 | 具有泵送制冷剂节能器的蒸汽压缩冷却系统中的接受器/缓冲罐排空 |
Also Published As
Publication number | Publication date |
---|---|
CN107869865A (zh) | 2018-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101626675B1 (ko) | 공기조화기 및 그 제어방법 | |
US20110011125A1 (en) | Refrigeration apparatus | |
AU2014253572B2 (en) | Air-conditioning apparatus | |
JP2007100699A (ja) | 空調装置用可変容量圧縮機の制御方法 | |
CN105091204A (zh) | 多联机系统的控制方法 | |
CN105091440A (zh) | 电子膨胀阀的控制方法及装置 | |
KR101235546B1 (ko) | 공기 조화기의 제어방법 | |
US20150204592A1 (en) | Air-conditioning apparatus | |
EP3411642B9 (en) | A method for controlling a fan of a vapour compression system in accordance with a variable temperature setpoint | |
KR101901300B1 (ko) | 공기조화기의 제어방법 | |
US20190226706A1 (en) | Evaporator coil protection for hvac systems | |
EP3460357A1 (en) | Refrigerant circuit system and method for controlling refrigerant circuit system | |
JP2014181869A (ja) | 空気調和機 | |
CN108800421B (zh) | 空调的控制方法、装置及具有其的空调 | |
US10502470B2 (en) | System and method to maintain evaporator superheat during pumped refrigerant economizer operation | |
US20120117995A1 (en) | Energy Saving Device And Method For Cooling And Heating Apparatus | |
CN106322829A (zh) | 热泵系统的控制方法、系统及热泵 | |
KR102558826B1 (ko) | 공기 조화 시스템 및 제어 방법 | |
US10352607B2 (en) | Selecting control strategy for an expansion valve | |
US12066225B2 (en) | Method and device for controlling pressure of units with height drop, and air conditioner device | |
JP6191490B2 (ja) | 空気調和装置 | |
KR101995583B1 (ko) | 공기조화기 및 그 제어방법 | |
CN107869865B (zh) | 在泵运行模式期间对过热水平进行控制的方法及制冷系统 | |
JP6403413B2 (ja) | 空気調和機 | |
KR100565995B1 (ko) | 실내기 설치 위치에 따른 멀티형 에어컨의 운전 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
CB02 | Change of applicant information |
Address after: ohio Applicant after: Vitamin Corporation Address before: ohio Applicant before: Libot Inc. |
|
CB02 | Change of applicant information | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |