CN107845787A - 石榴状Fe3O4@N‑C锂电池负极材料制备方法 - Google Patents
石榴状Fe3O4@N‑C锂电池负极材料制备方法 Download PDFInfo
- Publication number
- CN107845787A CN107845787A CN201710897213.2A CN201710897213A CN107845787A CN 107845787 A CN107845787 A CN 107845787A CN 201710897213 A CN201710897213 A CN 201710897213A CN 107845787 A CN107845787 A CN 107845787A
- Authority
- CN
- China
- Prior art keywords
- nano
- particles
- pomegranate shape
- polyacrylic acid
- ammoniacal liquor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了石榴状Fe3O4@N‑C纳米粒子,它是将40~50 mg聚丙烯酸、100~200μL氨水和20~35 mL去离子水依次加入容器中,搅拌混合均匀后,将80~120 mL异丙醇滴加到溶液中,滴加完毕后,再向溶液中加入50~100 mg四水合氯化亚铁,室温下搅拌反应;离心,沉淀烘干,通过在惰性气体保护下500~600℃煅烧后获得的;该纳米粒子是由许多超小的氮掺杂碳包覆四氧化三铁二级单元组装而成,二级单元粒径小于5 nm,大大减小了锂离子的传输距离。具有超高的循环稳定性和倍率性能。以其为活性材料制备的锂电池;实验表明具有超高的循环性能和快速充放电能力。
Description
技术领域
本发明属于纳米复合材料及其应用技术领域,具体涉及一种石榴状氮掺杂碳包覆四氧化三铁(Fe3O4@N-C)高性能锂电池负极材料的制备方法。
背景技术
过渡金属氧化物MxOy(M = Fe、Co、Cu、Ni等)作为锂离子电池负极材料的研究始于2000年,Tarascon课题组首次报道了纳米尺度的过渡金属氧化物负极材料,并表现出优异的电化学性能,同时他还提出了这类材料作为锂离子电池负极材料的储锂机理与传统的嵌锂机理不同。在放电过程中,过渡金属氧化物MxOy与锂发生完全可逆的氧化还原反应,具有较高的理论可逆容量(500-1000 mAh g-1),普遍高于传统碳材料(理论容量为374 mAh g-1)。且过渡金属氧化物的放电平台高于石墨类,有利于避免充放电过程中锂枝晶的形成。因此,有利于新一代大容量锂离子电池的发展。而在众多的过渡金属氧化物中,铁的氧化物(如Fe2O3、Fe3O4等)在自然界中资源丰富、无毒、易于制备,且价格低廉,对其潜在的应用具有重要的实际意义,很快受到广大科研工作者的关注,被认为是最有希望的负极材料。
Fe3O4负极材料虽然具有很高的理论容量,但其本身在脱嵌锂过程中,会伴随着明显的体积膨胀/收缩的现象,极易导致电极材料团聚粉化脱落,很难和初始状态保持一致,表现出较差的循环稳定性及倍率性能。为了解决这一问题,起初人们大多采用碳包覆来解决稳定性问题,并取得了很好的效果(Yang C R, Wang Y Y, Wan C C. Compositionanalysis of the passive film on the carbon electrode of a lithium-ion batterywith an EC-based electrolyte. J. Power Sources, 1998, 72, 66-70;Claye A S,Fischer J E, Huffman C B, et a1. Solid-State Electrochemistry of the LiSingle Wall Carbon Nanotube System. J. Electrochem. Soc., 2000, 147, 2845-2852;Wu G T, Wang C S, Zhang X B, el a1. Structure and Lithium InsertionProperties of Carbon Nanotubes. J. Electrochem. Soc., 1999, 146, 1696-1701.)。碳包覆虽能有效缓解 Fe3O4的体积变化,起到是起到保护电极提高循环稳定性的作用,但对提升电极材料容量及倍率性能的能力有限。为了获得更高容量和倍率性能的电极材料,目前的研究重点侧重于制备具有特殊形貌的纳米材料。特殊纳米结构除可抑制充放电过程中的体积效应,改善电极材料的循环稳定性(Chen Y, Xia H, Lu L, et al. Synthesis ofporous hollow Fe3O4 beads and their applications in lithium ion batteries.Journal of Materials Chemistry, 2012, 22, 5006-5012. Wang J Z, Zhong C,Wexler D, et al. Graphene-Encapsulated Fe3O4 Nanoparticles with 3D LaminatedStructure as Superior Anode in Lithium Ion Batteries. Chemistry-A EuropeanJournal, 2011, 17, 661-667. Zhu F Q, Fan D, Zhu X, et al. Ultrahigh-DensityArrays of Ferromagnetic Nanorings on Macroscopic Areas. Adv. Mater., 2004,16, 2155-2159. Zhai Y M, Zhai J F, Dong S J. Temperature-dependent synthesisof CoPt hollow nanoparticles: from “nanochain” to “nanoring”. Chem. Commun.,2010, 46, 1500-1502. Cao H Q, Xu Z, Sang H, et al. Template Synthesis andMagnetic Behavior of an Array of Cobalt Nanowires Encapsulated in PolyanilineNanotubules. Adv. Mater., 2001, 13, 121-123.)。还具备比表面积大、Li+扩散路径短等优点,有利于提高电池的循环稳定性和高倍率性能。如空心球、片层、多孔球和超细颗粒等形貌(Kwon K-A, Lim H-S, Sun Y-K, et al. α-Fe2O3 Submicron Spheres withHollow and Macroporous Structures as High-Performance Anode Materials forLithium Ion Batteries. J. Phys. Chem. C, 2014, 118, 2897-2907. Wang B, Chen JS, Wu H B, et al. Quasiemulsion-Templated Formation of α-Fe2O3 Hollow Sphereswith Enhanced Lithium Storage Properties. J. Am. Chem. Soc., 2011, 133,17146-17148. Xu X, Cao R, Jeong S, et al. Spindle-like Mesoporous α-Fe2O3Anode Material Prepared from MOF Template for High-Rate Lithium Batteries.Nano Letters, 2012, 12, 4988-4991. Chen J, Xu L, Li W, et al. α-Fe2O3Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Adv. Mater.,2005, 17, 582-586. NuLi Y, Zhang P, Guo Z, et al. Preparation of α-Fe2O3submicro-flowers by a hydrothermal approach and their electrochemicalperformance in lithium-ion batteries. Electrochimica. Acta, 2008, 53, 4213-4218. Etacheri V, Seisenbaeva G A, Caruthers J, et al. Ordered Network ofInterconnected SnO2 Nanoparticles for Excellent Lithium-Ion Storage. AdvancedEnergy Materials, 2015, 5, 1401289. Wu Y, Wei Y, Wang J, et al. ConformalFe3O4 Sheath on Aligned Carbon Nanotube Scaffolds as High-Performance Anodesfor Lithium Ion Batteries. Nano Letters, 2013, 13, 818-823.),特别是超细纳米颗粒(<10 nm)因其超小的粒径,赋予了其超凡的性能,成为近年来的研究热点。但超小粒子本身稳定性差,易聚集、难于大规模合成,严重制约了其发展。如何将碳包覆与超细纳米颗粒结合起来,寻找一种简单可控的方法,大规模合成稳定的超细纳米结构电极材料是一个巨大挑战。
发明内容
本发明的目的是提供一种具有分散性好、比容量大、循环性能好、使用寿命长的石榴状氮掺杂碳包覆四氧化三铁(Fe3O4@N-C)高性能锂电池负极材料。
石榴状Fe3O4@N-C纳米粒子,它是采用下述方法制备,包括:
1)、将40 ~ 50 mg聚丙烯酸、100 ~ 200 μL氨水和20 ~ 35 mL去离子水依次加入到容器中,搅拌混合均匀后,将80 ~ 120 mL异丙醇滴加至溶液中,滴加完毕后再向溶液中加入50 ~ 100 mg四水合氯化亚铁,室温下搅拌反应3 ~ 5 h;
2)、将步骤1)得到的混合溶液进行离心分离,沉淀在烘箱中烘干8 ~ 10 h;置于管式炉中,在惰性气体保护下500 ~ 600 ℃煅烧5 ~ 10 h,得到石榴状Fe3O4@N-C高性能锂电池负极材料;
所述的烘干温度为50℃;
所述的聚丙烯酸40 mg、氨水100 μL和去离子水20 mL;所述的异丙醇80 mL ;所述的四水合氯化亚铁50 mg;
所述的聚丙烯酸50 mg、氨水130 μL和去离子水23 mL;所述的异丙醇100 mL ;所述的四水合氯化亚铁60 mg;
所述的聚丙烯酸43 mg、氨水150 μL和去离子水30mL;所述的异丙醇100 mL ;所述的四水合氯化亚铁100 mg。
一种锂电池负极片的制备方法:用上述的石榴状Fe3O4@N-C纳米粒子为活性物质,乙炔黑为导电剂,聚偏氟乙烯为粘结剂,氮甲基吡咯烷酮为溶剂;混合后,研磨成浆;120 oC真空干重,压片,干燥;
所述的活性物质 、导电剂、粘结剂的重量比为:78:10:10。
本发明提供了石榴状Fe3O4@N-C纳米粒子,它是将40 ~ 50 mg聚丙烯酸、100 ~ 200μL氨水和20 ~ 35 mL去离子水依次加入容器中,搅拌混合均匀后,将80 ~ 120 mL异丙醇滴加到溶液中,滴加完毕后,再向溶液中加入50 ~ 100 mg四水合氯化亚铁,室温下搅拌反应;离心,沉淀烘干,通过在惰性气体保护下500 ~ 600 ℃煅烧后获得的;该纳米粒子是由许多超小的氮掺杂碳包覆四氧化三铁二级单元组装而成,二级单元粒径小于5 nm,大大减小了锂离子的传输距离,对电化学性能的提升有很大益处。具有超高的循环稳定性和倍率性能。以其为活性材料制备的锂电池;实验表明具有超高的循环性能和快速充放电能力。
附图说明
图1 石榴状Fe3O4@N-C纳米粒子的透射电镜图片;
图2 单个石榴状Fe3O4@N-C纳米粒子的透射电镜图片;
图3 石榴状Fe3O4@N-C纳米粒子的扫描电镜图片;
图4单个石榴状Fe3O4@N-C纳米粒子的透射电镜图片;
图5石榴状Fe3O4@N-C纳米粒子的面扫描电镜图片;
图6石榴状Fe3O4@N-C纳米粒子在不同电流密度下的充放电循环曲线。
具体实施方式
实施例1 Fe3O4@N-C纳米粒子的负极材料的制备
依次将40 mg聚丙烯酸、100 μL氨水和20 mL去离子水加入到100 mL圆底烧瓶中,搅拌混合均匀后将80 mL异丙醇缓慢滴加入溶液中,滴加完毕后再向溶液中加入50 mg四水合氯化亚铁,室温下搅拌反应3 h。将上述溶液进行离心分离,沉淀在50 oC烘箱中烘干8 h。随后,将固体置于管式炉中,在氩气保护下500 oC煅烧5 h得到石榴状Fe3O4@N-C高性能锂电池负极材料。
实施例2 Fe3O4@N-C高性能锂电池负极材料的制备
依次将50 mg聚丙烯酸、130 μL氨水和23 mL去离子水加入到100 mL圆底烧瓶中,搅拌混合均匀后将100 mL异丙醇缓慢滴加入溶液中,滴加完毕后再向溶液中加入60 mg四水合氯化亚铁,室温下搅拌反应4 h。将上述溶液进行离心分离,沉淀在50 oC烘箱中烘干10 h。随后,将固体置于管式炉中,在氩气保护下600 oC煅烧10 h,得到石榴状Fe3O4@N-C高性能锂电池负极材料。
实施例3 Fe3O4@N-C纳米粒子的负极材料的制备
依次将43 mg聚丙烯酸、150 μL氨水和30 mL去离子水加入到100 mL圆底烧瓶中,搅拌混合均匀后将100 mL异丙醇缓慢滴加入溶液中,滴加完毕后再向溶液中加入100 mg四水合氯化亚铁,室温下搅拌反应5 h。将上述溶液进行离心分离,沉淀在50 oC烘箱中烘干10 h。随后,将固体置于管式炉中,在氩气保护下550 oC煅烧8 h,得到石榴状Fe3O4@N-C高性能锂电池负极材料。
实施例4 Fe3O4@N-C纳米粒子电池的制备
制备出的石榴状Fe3O4@N-C纳米材料用于锂离子电池。以合成的石榴状Fe3O4@N-C纳米材料为活性物质,乙炔黑为导电剂,聚偏氟乙烯(PVDF)为粘结剂,氮甲基吡咯烷酮(NMP)为溶剂。电池的组装过程为:将活性物质 、导电剂、聚偏氟乙烯按78:10:10的重量比准确称量,然后放入玛瑙研钵中充分混合、研磨均匀,然后加入几滴NMP,继续研磨至均匀浆状。将浆料均匀涂于已称量过的铜箔上。然后在真空干燥箱中于120 oC真空干燥12 h至恒重,30MPa下压片,再继续干燥至少2 h,降到室温后取出称重。
实验半电池来测试合成材料的电化学性能,模拟电池的组装在无水无氧、充有氩气的手套箱中完成。将烘干的极片、电池壳和隔膜放入手套箱。以金属锂片为对电极,Celgard240聚丙烯多孔膜做隔膜,1.0 mol/L LiPF6 的EC-DMC(体积比1:1)溶液做电解液,组装成扣式CR2032模拟电池,进行充放电测试。
实验表明所制备的石榴状Fe3O4@N-C锂离子电池负极材料具有超高的循环性能和快速充放电能力。如图6所示,在1 A g-1、10 A g-1和20 A g-1倍率下充放电,1000次充放电循环后容量分别为1063.0 mA h g-1、606.0 mA h g-1和417.1 mA h g-1。
Claims (7)
1.石榴状Fe3O4@N-C纳米粒子,它是采用下述方法制备,包括:
1)、将40 ~ 50 mg聚丙烯酸、100 ~ 200 μL氨水和20 ~ 35 mL去离子水依次加入到容器中,搅拌混合均匀后,将80 ~ 120 mL异丙醇滴加至溶液中,滴加完毕后再向溶液中加入50 ~ 100 mg四水合氯化亚铁,室温下搅拌反应3 ~ 5 h;
2)、将步骤1)得到的混合溶液进行离心分离,沉淀在烘箱中烘干8 ~ 10 h;置于管式炉中,在惰性气体保护下500 ~ 600 ℃煅烧5 ~ 10 h,得到石榴状Fe3O4@N-C高性能锂电池负极材料。
2.根据权利要求1或2所述的石榴状Fe3O4@N-C纳米粒子其特征在于:所述的烘干温度为50℃。
3.根据权利要求1或2所述的石榴状Fe3O4@N-C纳米粒子其特征在于:所述的聚丙烯酸40mg、氨水100 μL和去离子水20 mL;所述的异丙醇80 mL ;所述的四水合氯化亚铁50 mg。
4.根据权利要求1或2所述的石榴状Fe3O4@N-C纳米粒子其特征在于:所述的聚丙烯酸50mg、氨水130 μL和去离子水23 mL;所述的异丙醇100 mL ;所述的四水合氯化亚铁60 mg。
5.根据权利要求1或2所述的石榴状Fe3O4@N-C纳米粒子其特征在于:所述的聚丙烯酸43mg、氨水150μL和去离子水30mL;所述的异丙醇100 mL ;所述的四水合氯化亚铁100 mg。
6. 一种锂电池负极片的制备方法:用权利要求1所述的石榴状Fe3O4@N-C纳米粒子为活性物质,乙炔黑为导电剂,聚偏氟乙烯为粘结剂,氮甲基吡咯烷酮为溶剂;混合后,研磨成浆;120 oC真空干重,压片,干燥。
7. 根据权利要求6所述的一种锂电池负极片的制备方法,其特征在于:所述的活性物质 、导电剂、粘结剂的重量比为:78:10:10。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710897213.2A CN107845787B (zh) | 2017-09-28 | 2017-09-28 | 石榴状Fe3O4@N-C锂电池负极材料制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710897213.2A CN107845787B (zh) | 2017-09-28 | 2017-09-28 | 石榴状Fe3O4@N-C锂电池负极材料制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107845787A true CN107845787A (zh) | 2018-03-27 |
CN107845787B CN107845787B (zh) | 2020-04-14 |
Family
ID=61662086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710897213.2A Expired - Fee Related CN107845787B (zh) | 2017-09-28 | 2017-09-28 | 石榴状Fe3O4@N-C锂电池负极材料制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107845787B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109014245A (zh) * | 2018-09-03 | 2018-12-18 | 大连理工大学 | 一种氮掺杂碳包覆磁性纳米粒子复合微球及其制备方法 |
CN116855813A (zh) * | 2023-08-22 | 2023-10-10 | 吉林省宝利科贸有限公司 | 一种多面体纳米高熵材料及其制备方法与应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103208624A (zh) * | 2013-03-27 | 2013-07-17 | 东北师范大学 | 单分散核壳结构Fe3O4@C纳米复合锂电池负极材料的制备方法 |
CN105185994A (zh) * | 2015-08-31 | 2015-12-23 | 中原工学院 | 一种掺杂石墨烯的多孔碳/四氧化三铁纳米纤维锂电池负极材料及其制备方法 |
-
2017
- 2017-09-28 CN CN201710897213.2A patent/CN107845787B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103208624A (zh) * | 2013-03-27 | 2013-07-17 | 东北师范大学 | 单分散核壳结构Fe3O4@C纳米复合锂电池负极材料的制备方法 |
CN105185994A (zh) * | 2015-08-31 | 2015-12-23 | 中原工学院 | 一种掺杂石墨烯的多孔碳/四氧化三铁纳米纤维锂电池负极材料及其制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109014245A (zh) * | 2018-09-03 | 2018-12-18 | 大连理工大学 | 一种氮掺杂碳包覆磁性纳米粒子复合微球及其制备方法 |
CN116855813A (zh) * | 2023-08-22 | 2023-10-10 | 吉林省宝利科贸有限公司 | 一种多面体纳米高熵材料及其制备方法与应用 |
CN116855813B (zh) * | 2023-08-22 | 2024-02-09 | 吉林省宝利科贸有限公司 | 一种多面体纳米高熵材料及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN107845787B (zh) | 2020-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | 3D holey graphene/polyacrylonitrile sulfur composite architecture for high loading lithium sulfur batteries | |
Yi et al. | Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries | |
Li et al. | Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries | |
Wang et al. | Metal-organic-framework-derived NC-Co film as a shuttle-suppressing interlayer for lithium sulfur battery | |
Yao et al. | Preparation of ZnFe2O4/α-Fe2O3 nanocomposites from sulfuric acid leaching liquor of jarosite residue and their application in lithium-ion batteries | |
CN105118972B (zh) | 金属氢氧化物包覆碳硫的锂硫电池正极材料及其制备方法和应用 | |
Xu et al. | Efficient implementation of kilogram-scale, high-capacity and long-life Si-C/TiO2 anodes | |
CN102468485B (zh) | 一种钛酸锂复合材料、其制备方法和应用 | |
Du et al. | Review of metal oxides as anode materials for lithium-ion batteries | |
CN103779564B (zh) | 高性能磷酸钒钠对称型钠离子电池材料及其制备方法和应用 | |
CN107482182B (zh) | 碳包覆离子掺杂磷酸锰锂电极材料及其制备方法 | |
Xu et al. | Efficient synthesis of Cu3P nanoparticles confined in 3D nitrogen-doped carbon networks as high performance anode for lithium/sodium-ion batteries | |
Jia et al. | Electrochemical sodium storage of copper hexacyanoferrate with a well-defined open framework for sodium ion batteries | |
Chen et al. | In-situ thermally fabricated porous and heterogeneous yolk-shell selenides wrapped in carbon as anode for high-performance hybrid lithium-ion capacitors | |
CN104934574A (zh) | 一种用于锂离子电池的超高密度四氧化三钴/多孔石墨烯纳米复合负极材料的制备方法 | |
Cao et al. | Sodium vanadate nanowires@ polypyrrole with synergetic core-shell structure for enhanced reversible sodium-ion storage | |
CN102856553A (zh) | 一种水热合成碳包覆磷酸铁锂的制备方法 | |
CN105845904A (zh) | 一种钠离子电池金属氧化物/聚吡咯空心纳米管负极复合材料及其制备方法 | |
Liu et al. | Progress of metal-phosphide electrodes for advanced sodium-ion batteries | |
CN106558689A (zh) | 一种原位电化学方法制备双连续相混合金属硒化物的方法及其应用 | |
CN104577047B (zh) | 二元硫化物与c纳米复合负极材料及其制备方法 | |
Wei et al. | Zn@ C core–shell nanocomposite for rechargeable aqueous Zn//MnO2 batteries with long lifetime | |
CN107863496A (zh) | 锂离子电池负极材料及其制备方法 | |
Shangguan et al. | Sublimed sulfur powders as novel effective anode additives to enhance the high-rate capabilities of iron anodes for advanced iron-based secondary batteries | |
CN108400296B (zh) | 异质元素掺杂四氧化三铁/石墨烯负极材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200414 Termination date: 20200928 |
|
CF01 | Termination of patent right due to non-payment of annual fee |