CN107817496A - 用于自动车辆的激光雷达对象检测系统 - Google Patents
用于自动车辆的激光雷达对象检测系统 Download PDFInfo
- Publication number
- CN107817496A CN107817496A CN201710817870.1A CN201710817870A CN107817496A CN 107817496 A CN107817496 A CN 107817496A CN 201710817870 A CN201710817870 A CN 201710817870A CN 107817496 A CN107817496 A CN 107817496A
- Authority
- CN
- China
- Prior art keywords
- point
- stroke
- ungrounded
- laser radar
- scan line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 description 27
- 230000011218 segmentation Effects 0.000 description 14
- 230000008569 process Effects 0.000 description 7
- 239000013598 vector Substances 0.000 description 7
- 238000000605 extraction Methods 0.000 description 5
- 238000002372 labelling Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241001269238 Data Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4802—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0088—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
- G06F17/12—Simultaneous equations, e.g. systems of linear equations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/04—Indexing scheme for image data processing or generation, in general involving 3D image data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
- G06T2207/30252—Vehicle exterior; Vicinity of vehicle
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mathematical Physics (AREA)
- Electromagnetism (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- Evolutionary Computation (AREA)
- Multimedia (AREA)
- Operations Research (AREA)
- Algebra (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Game Theory and Decision Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Traffic Control Systems (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/262,467 | 2016-09-12 | ||
US15/262,467 US10031231B2 (en) | 2016-09-12 | 2016-09-12 | Lidar object detection system for automated vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107817496A true CN107817496A (zh) | 2018-03-20 |
CN107817496B CN107817496B (zh) | 2021-05-07 |
Family
ID=59846353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710817870.1A Active CN107817496B (zh) | 2016-09-12 | 2017-09-12 | 适用于自动车辆的对象检测系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10031231B2 (zh) |
EP (1) | EP3293670B1 (zh) |
CN (1) | CN107817496B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108985254A (zh) * | 2018-08-01 | 2018-12-11 | 上海主线科技有限公司 | 一种基于激光的带挂卡车跟踪方法 |
TWI650570B (zh) * | 2018-05-21 | 2019-02-11 | 華創車電技術中心股份有限公司 | 基於光學雷達之行車輔助方法 |
CN111044986A (zh) * | 2019-12-25 | 2020-04-21 | 成都纳雷科技有限公司 | 一种用于雷达目标检测的密度聚类方法及装置 |
CN112183247A (zh) * | 2020-09-14 | 2021-01-05 | 广东工业大学 | 一种基于多光谱影像的激光点云数据分类方法 |
WO2023155389A1 (zh) * | 2022-02-16 | 2023-08-24 | 中国第一汽车股份有限公司 | 三维物体检测方法、装置、存储介质、处理器及系统 |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10031231B2 (en) * | 2016-09-12 | 2018-07-24 | Delphi Technologies, Inc. | Lidar object detection system for automated vehicles |
US10837773B2 (en) * | 2016-12-30 | 2020-11-17 | DeepMap Inc. | Detection of vertical structures based on LiDAR scanner data for high-definition maps for autonomous vehicles |
EP3351899B1 (en) * | 2017-01-24 | 2020-06-17 | Leica Geosystems AG | Method and device for inpainting of colourised three-dimensional point clouds |
US10444759B2 (en) * | 2017-06-14 | 2019-10-15 | Zoox, Inc. | Voxel based ground plane estimation and object segmentation |
US20190005667A1 (en) * | 2017-07-24 | 2019-01-03 | Muhammad Zain Khawaja | Ground Surface Estimation |
TWI651686B (zh) * | 2017-11-30 | 2019-02-21 | 國家中山科學研究院 | 一種光學雷達行人偵測方法 |
FR3080922B1 (fr) * | 2018-05-03 | 2020-09-18 | Transdev Group | Dispositif electronique et procede de detection d'un objet via un lidar a balayage, vehicule automobile autonome et programme d'ordinateur associes |
US10434935B1 (en) * | 2018-06-29 | 2019-10-08 | Nissan North America, Inc. | Interactive external vehicle-user communication |
US10627516B2 (en) | 2018-07-19 | 2020-04-21 | Luminar Technologies, Inc. | Adjustable pulse characteristics for ground detection in lidar systems |
US11204605B1 (en) * | 2018-08-03 | 2021-12-21 | GM Global Technology Operations LLC | Autonomous vehicle controlled based upon a LIDAR data segmentation system |
CN110148144B (zh) * | 2018-08-27 | 2024-02-13 | 腾讯大地通途(北京)科技有限公司 | 点云数据的分割方法和装置、存储介质、电子装置 |
CN109188448B (zh) * | 2018-09-07 | 2020-03-06 | 百度在线网络技术(北京)有限公司 | 点云非地面点过滤方法、装置及存储介质 |
WO2020097840A1 (en) * | 2018-11-15 | 2020-05-22 | Beijing Didi Infinity Technology And Development Co., Ltd. | Systems and methods for correcting a high-definition map based on detection of obstructing objects |
CN110869974B (zh) * | 2018-11-19 | 2024-06-11 | 深圳市卓驭科技有限公司 | 点云处理方法、设备及存储介质 |
US11294384B2 (en) * | 2019-06-03 | 2022-04-05 | The Boeing Company | Vehicle navigation using point cloud decimation |
CN112327308B (zh) * | 2019-07-19 | 2024-07-16 | 浙江菜鸟供应链管理有限公司 | 物体检测方法、装置、系统及设备 |
US11556000B1 (en) | 2019-08-22 | 2023-01-17 | Red Creamery Llc | Distally-actuated scanning mirror |
CN112634181B (zh) * | 2019-09-24 | 2024-06-14 | 阿波罗智能技术(北京)有限公司 | 用于检测地面点云点的方法和装置 |
JPWO2021095879A1 (zh) * | 2019-11-13 | 2021-05-20 | ||
US11668798B2 (en) | 2019-11-14 | 2023-06-06 | Nio Technology (Anhui) Co., Ltd. | Real-time ground surface segmentation algorithm for sparse point clouds |
CN111192284B (zh) * | 2019-12-27 | 2022-04-05 | 吉林大学 | 一种车载激光点云分割方法及系统 |
CN111260683B (zh) * | 2020-01-09 | 2023-08-08 | 合肥工业大学 | 一种三维点云数据的目标检测与跟踪方法及其装置 |
US11403482B2 (en) | 2020-01-15 | 2022-08-02 | Aptiv Technologies Limited | Adaptive search for LiDAR-based clustering |
US11668799B2 (en) | 2020-03-20 | 2023-06-06 | Aptiv Technologies Limited | Histogram based L-shape detection of target objects |
US11977165B2 (en) | 2020-08-10 | 2024-05-07 | Waymo Llc | Self-reflection filtering |
CN112200171B (zh) * | 2020-12-07 | 2021-03-23 | 速度时空信息科技股份有限公司 | 一种基于扫描线的道路点云的提取方法 |
CN113205139B (zh) * | 2021-05-06 | 2024-09-13 | 南京云智控产业技术研究院有限公司 | 一种基于密度聚类的无人艇水上球体检测方法 |
DE102021119224A1 (de) * | 2021-07-26 | 2023-01-26 | Valeo Schalter Und Sensoren Gmbh | Clustern von Scanpunkten eines Laserscanners |
KR102618680B1 (ko) * | 2021-09-07 | 2023-12-27 | 충북대학교 산학협력단 | 영상과 라이다를 이용한 실시간 3차원 물체 인식 및 추적하는 시스템 |
DE102022208239A1 (de) | 2022-08-08 | 2024-02-08 | Carl Zeiss Smt Gmbh | Vorrichtung und Verfahren zur Sensorischen Messung Chemischer und/oder Physikalischer Eigenschaften einer Klebeschicht und/oder eines die Klebeschicht Kontaktierenden Mediums, sowie Verfahren zur Herstellung einer entsprechenden Vorrichtung und Verfahren zur Sensorischen Messung |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101702200A (zh) * | 2009-11-03 | 2010-05-05 | 武汉大学 | 一种机载激光雷达点云数据的自动分类方法 |
CN104049259A (zh) * | 2014-07-01 | 2014-09-17 | 南京大学 | 基于虚拟仪器的激光雷达三维成像系统 |
CN104166989A (zh) * | 2014-07-04 | 2014-11-26 | 电子科技大学中山学院 | 一种用于二维激光雷达点云匹配的快速icp方法 |
CN104298998A (zh) * | 2014-09-28 | 2015-01-21 | 北京理工大学 | 一种3d点云的数据处理方法 |
CN105354811A (zh) * | 2015-10-30 | 2016-02-24 | 北京自动化控制设备研究所 | 一种地面用多线三维激光雷达点云数据的滤波方法 |
US9296393B2 (en) * | 2013-10-08 | 2016-03-29 | Hyundai Motor Company | Apparatus and method for recognizing vehicle |
CN105793730A (zh) * | 2013-06-14 | 2016-07-20 | 优步技术公司 | 对象运动的基于激光雷达的分类 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8751154B2 (en) * | 2008-04-24 | 2014-06-10 | GM Global Technology Operations LLC | Enhanced clear path detection in the presence of traffic infrastructure indicator |
US8803966B2 (en) * | 2008-04-24 | 2014-08-12 | GM Global Technology Operations LLC | Clear path detection using an example-based approach |
US8332134B2 (en) * | 2008-04-24 | 2012-12-11 | GM Global Technology Operations LLC | Three-dimensional LIDAR-based clear path detection |
US8224097B2 (en) * | 2008-06-12 | 2012-07-17 | Sri International | Building segmentation for densely built urban regions using aerial LIDAR data |
US8605998B2 (en) * | 2011-05-06 | 2013-12-10 | Toyota Motor Engineering & Manufacturing North America, Inc. | Real-time 3D point cloud obstacle discriminator apparatus and associated methodology for training a classifier via bootstrapping |
GB201116959D0 (en) * | 2011-09-30 | 2011-11-16 | Bae Systems Plc | Vehicle localisation with 2d laser scanner and 3d prior scans |
US8798372B1 (en) * | 2012-03-07 | 2014-08-05 | Hrl Laboratories, Llc | Method for detecting bridges using lidar point cloud data |
US9488492B2 (en) * | 2014-03-18 | 2016-11-08 | Sri International | Real-time system for multi-modal 3D geospatial mapping, object recognition, scene annotation and analytics |
US9830509B2 (en) * | 2015-06-29 | 2017-11-28 | Nokia Technologies Oy | Method and apparatus for constructing a digital elevation model utilizing ground points captured by ground-based LiDAR |
US10031231B2 (en) * | 2016-09-12 | 2018-07-24 | Delphi Technologies, Inc. | Lidar object detection system for automated vehicles |
-
2016
- 2016-09-12 US US15/262,467 patent/US10031231B2/en active Active
-
2017
- 2017-08-30 EP EP17188612.0A patent/EP3293670B1/en active Active
- 2017-09-12 CN CN201710817870.1A patent/CN107817496B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101702200A (zh) * | 2009-11-03 | 2010-05-05 | 武汉大学 | 一种机载激光雷达点云数据的自动分类方法 |
CN105793730A (zh) * | 2013-06-14 | 2016-07-20 | 优步技术公司 | 对象运动的基于激光雷达的分类 |
US9296393B2 (en) * | 2013-10-08 | 2016-03-29 | Hyundai Motor Company | Apparatus and method for recognizing vehicle |
CN104049259A (zh) * | 2014-07-01 | 2014-09-17 | 南京大学 | 基于虚拟仪器的激光雷达三维成像系统 |
CN104166989A (zh) * | 2014-07-04 | 2014-11-26 | 电子科技大学中山学院 | 一种用于二维激光雷达点云匹配的快速icp方法 |
CN104298998A (zh) * | 2014-09-28 | 2015-01-21 | 北京理工大学 | 一种3d点云的数据处理方法 |
CN105354811A (zh) * | 2015-10-30 | 2016-02-24 | 北京自动化控制设备研究所 | 一种地面用多线三维激光雷达点云数据的滤波方法 |
Non-Patent Citations (2)
Title |
---|
HUILIN YIN: "Spherical Coordinates Based Methods of Ground Extraction and Objects Segmentation Using 3-D LiDAR Sensor", 《IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE》 * |
程健: "基于三维激光雷达的实时目标检测", 《中国优秀硕士学位论文全文数据库》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI650570B (zh) * | 2018-05-21 | 2019-02-11 | 華創車電技術中心股份有限公司 | 基於光學雷達之行車輔助方法 |
CN108985254A (zh) * | 2018-08-01 | 2018-12-11 | 上海主线科技有限公司 | 一种基于激光的带挂卡车跟踪方法 |
CN111044986A (zh) * | 2019-12-25 | 2020-04-21 | 成都纳雷科技有限公司 | 一种用于雷达目标检测的密度聚类方法及装置 |
CN111044986B (zh) * | 2019-12-25 | 2022-05-10 | 成都纳雷科技有限公司 | 一种用于雷达目标检测的密度聚类方法及装置 |
CN112183247A (zh) * | 2020-09-14 | 2021-01-05 | 广东工业大学 | 一种基于多光谱影像的激光点云数据分类方法 |
CN112183247B (zh) * | 2020-09-14 | 2023-08-08 | 广东工业大学 | 一种基于多光谱影像的激光点云数据分类方法 |
WO2023155389A1 (zh) * | 2022-02-16 | 2023-08-24 | 中国第一汽车股份有限公司 | 三维物体检测方法、装置、存储介质、处理器及系统 |
Also Published As
Publication number | Publication date |
---|---|
US20180074203A1 (en) | 2018-03-15 |
CN107817496B (zh) | 2021-05-07 |
EP3293670A1 (en) | 2018-03-14 |
US10031231B2 (en) | 2018-07-24 |
EP3293670B1 (en) | 2019-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107817496A (zh) | 用于自动车辆的激光雷达对象检测系统 | |
CN107818557A (zh) | 用于自动车辆的增强型相机对象检测 | |
US11798173B1 (en) | Moving point detection | |
US11798281B2 (en) | Systems and methods for utilizing machine learning models to reconstruct a vehicle accident scene from video | |
Lagrange et al. | Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks | |
Chen et al. | Gaussian-process-based real-time ground segmentation for autonomous land vehicles | |
Yao et al. | Extraction and motion estimation of vehicles in single-pass airborne LiDAR data towards urban traffic analysis | |
Siegemund et al. | A temporal filter approach for detection and reconstruction of curbs and road surfaces based on conditional random fields | |
Deng et al. | Nerf-loam: Neural implicit representation for large-scale incremental lidar odometry and mapping | |
Arora et al. | Mapping the static parts of dynamic scenes from 3D LiDAR point clouds exploiting ground segmentation | |
Park et al. | Nonparametric background model-based LiDAR SLAM in highly dynamic urban environments | |
Bruno et al. | Analysis and fusion of 2d and 3d images applied for detection and recognition of traffic signs using a new method of features extraction in conjunction with deep learning | |
Palazzolo et al. | Change detection in 3d models based on camera images | |
Landsiedel et al. | Road geometry estimation for urban semantic maps using open data | |
Börcs et al. | A model-based approach for fast vehicle detection in continuously streamed urban LIDAR point clouds | |
JP6894395B2 (ja) | 情報取得装置及び情報集計システム並びに情報集計装置 | |
Laghmara et al. | 2.5 D evidential grids for dynamic object detection | |
Rieken et al. | A LiDAR-based real-time capable 3D perception system for automated driving in urban domains | |
Lauer et al. | TeleAgro+ analysis framework for agricultural telematics data | |
Zhang et al. | Object tracking method based on data computing | |
Wang et al. | Laser-based detection and tracking of dynamic objects | |
Hodges | Deep learning based vision for driverless vehicles in hazy environmental conditions | |
Guo et al. | Hierarchical road understanding for intelligent vehicles based on sensor fusion | |
Onen | LiDAR and Radar-Based Occupancy Grid Mapping for Autonomous Driving Exploiting Clustered Sparsity | |
Moreira | Scene understanding from 3D point clouds and RGB images for autonomous driving |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20181203 Address after: Babado J San Michaele Applicant after: Delphi Technologies, Inc. Address before: michigan Applicant before: DELPHI TECHNOLOGIES, Inc. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240819 Address after: Luxembourg Patentee after: Anbofu Technology (2) Co.,Ltd. Country or region after: Luxembourg Address before: Babado J San Michaele Patentee before: Delphi Technologies, Inc. Country or region before: Barbados |
|
TR01 | Transfer of patent right |