CN107815304A - 金纳米生物传感器及其制备方法和在汞离子检测中的应用 - Google Patents

金纳米生物传感器及其制备方法和在汞离子检测中的应用 Download PDF

Info

Publication number
CN107815304A
CN107815304A CN201711020535.5A CN201711020535A CN107815304A CN 107815304 A CN107815304 A CN 107815304A CN 201711020535 A CN201711020535 A CN 201711020535A CN 107815304 A CN107815304 A CN 107815304A
Authority
CN
China
Prior art keywords
dna
solution
biology sensor
preparation
gold nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711020535.5A
Other languages
English (en)
Inventor
王公轲
王双莉
侯慧敏
闫长领
陈得军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN201711020535.5A priority Critical patent/CN107815304A/zh
Publication of CN107815304A publication Critical patent/CN107815304A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于重金属检测技术领域,具体涉及一种金纳米生物传感器及其制备方法和在汞离子检测中的应用。本发明的纳米金的粒径为13 nm左右,相比于以前的小粒径的金纳米粒子,大粒径的金纳米粒子有相对大的表面积,可以引入短链DNA来调节含荧光发色团的长链DNA数目从而降低检测限,同时大粒径金纳米粒子对荧光发色团有更好的猝灭能力。检测时不需要掩蔽剂,而且在其他金属离子共存时可以选择性检测Hg2+。检测方法非常简单,快速,易操作。

Description

金纳米生物传感器及其制备方法和在汞离子检测中的应用
技术领域
本发明属于重金属检测技术领域,具体涉及一种金纳米生物传感器及其制备方法和在汞离子检测中的应用。
汞在生活和生产中应用非常广泛,在环境中存在着各种各样的污染源。汞污染的毒性非常大、污染源非常广,一旦进入生态系统,将会对动植物和人类的健康产生极大的危害,严重影响着威胁整个生态系统的安全。因此,设计一种快速、方便、高灵敏检测汞金属的方法也成为了人们的当务之急。传统检测汞的方法有:荧光分析、诱导耦合等离子体质譜、X射线吸收光谱、原子吸收或发射光谱,但是由于仪器昂贵、操作复杂、不利于现场检测等缺点,大大限制了应用。
近年来,金纳米粒子由于独特的结构和光学性质在生物传感和分子工程上有很广泛的应用,基于金纳米粒子的生物传感器也越来越受到人们的关注。Willner课题组利用没有功能化的金纳米粒子和单链DNA在加入汞离子前后的构型变化情况,成功实现了对汞离子的快速检测.不过,该方法需要引入有毒的掩蔽剂来避免二价铅离子的干扰。Pang等设计了特定的DNA序列用于改善该生物传感器的离子选择性,但是灵敏度过低,检测限为16 nM。Cheng把DNA功能化的金纳米当作比色探针,设计了一种对汞离子的检测方法。然而,此方法选择性不高,因而在实际检测中受到了很多的限制。
发明内容
本发明的内容就是提供了一种基于Hg2+诱导的DNA构型的变化和供受体之间的能量共振转移所设计的检测汞离子的生物传感器,并且实现了简单,快速,高选择性和高灵敏的特性。
为实现上述目的,本发明采用的技术方案是,一种金纳米生物传感器的制备方法,包括纳米金的制备、DNA溶液的配制和DNA修饰。
具体的包括以下步骤:一种金纳米生物传感器的制备方法,包括以下步骤:
(1)纳米金的制备:将100 mL质量分数为 0.01% 的氯金酸水溶液,加热至沸腾,剧烈搅拌下快速加入3.5 mL 质量分数为1% 的柠檬酸三钠溶液,溶液由浅黄色变为酒红色后,继续恒温加热搅拌15分钟,关闭热源,搅拌至室温,所得金纳米粒子经纤维素膜过滤,后再通过离心(4℃、10000r/min、10min)进行浓缩得到高浓度的纳米金溶液;
(2)DNA溶液的配制:
将DNA溶于含有100 mM TCEP的20 mM 的MOPS-HCl缓冲溶液 (pH 7.4)中,使DNA最终浓度为100μM,将溶液混匀后,反应2h后备用;
所述DNA由摩尔比为1︰5的短链DNA(5 '-SH-CCCCCCCCCC-3 ')和长链DNA(5 '-SH-C10-CTTCTTTCTTCCCCCTTGTTTGTTG-FAM-3 ')组成;
(3)DNA的修饰:
将步骤(2)所得DNA溶液与步骤(1)所得高浓度的纳米金(Au NPs)溶液于10 mM的MOPS-HCl缓冲溶液 (pH 7.4) 中反应24小时后,向混合溶液中滴加1 M NaCl/100 mM PBS (pH7.4)溶液,使NaCl的最终浓度为0.1 M, 陈化40小时后,通过离心法(离心条件为:4℃、14000r/min、10min;然后用0.1 M PBS 洗涤3次,离心条件同上)将溶液中游离的DNA除去。
本发明采用粒径为13 ±2 nm的金纳米粒子。当金纳米粒子尺寸过大时,其表面具有不稳定性,容易聚合沉降,使检测剂失效(图1为35nm的纳米金透射电镜图);尺寸过小时,修饰在金纳米粒子表面的DNA又会包覆住金纳米,使得对汞离子检测的失效(图2为7nm的Au-DNA示意图)。因此我们采用粒径为13 ±2 nm的金纳米粒子。
当金纳米粒子上修饰的DNA数目较少时,金纳米粒子不能稳定存在,在陈化过程中极易团聚,无法得到Au NPs-DNA纳米探针。在金纳米粒子表面修饰过多的DNA时,Au NPs-DNA拥有较强的静电排斥作用,在高盐情况下仍能稳定存在。当Hg2+与Au NPs-DNA的T碱基特异性结合时,DNA的构象由直链折叠为发卡结构以此实现Hg2+的检测,由于位阻效应使高密度的DNA分子从金纳米粒子表面脱落到溶液中,导致背景信号高、灵敏度低,从而影响到荧光检测。因此,我们通过引入短链DNA来调控金纳米粒子的修饰。我们同样也在长链DNA的3′端追加了10个C碱基,这样引入的短链DNA不会对发卡结构的形成产生空间位阻,短链DNA可形成保护层,保护层可使得长链DNA在修饰数目较少的情况下也不会造成金纳米粒子的团聚。图3为13 nm 左右Au NPs-DNA的透射电镜图,由于DNA磷酸骨架带有负电,静电斥力使得金核更加紧凑,故其粒径相比Au NPs更小些,外形呈球形,SH-DNA的保护使得Au NPs-DNA分散性更好。
本发明所设计的生物传感器灵敏度与长链DNA-FAM和短链DNA的比率密切相关,在100 nM Hg2+存在下,使其nthe helper oligonucleotides: nthe long strands of DNA–FAM=1:2,1:3,1:4,1:5,1:6,1:7,通过对比5种不同修饰配比Au NPs-DNA的荧光强度变化进行验证。最后发现纳米探针在比率(n the helper oligonucleotides: nthe long strands of DNA–FAM) 为1:2时,将会导致纳米颗粒在盐化过程中有纳米颗粒聚沉。当纳米探针上DNA修饰的比率为1:3或1:4时,金纳米粒子比表面积比较大,表面修饰的DNA密度较低时,由于金纳米粒子对荧光发色团FAM有吸附作用,DNA处于弓形状态,造成于荧光发色团FAM与金纳米粒子距离拉近,因此Hg2+的添加不会产生很大的荧光变化。当纳米探针上DNA修饰的比率为1:6或1:7时,由于空间位阻和DNA链之间存在静电斥力,Hg2+添加后形成的发卡结构会使高密度的DNA链从金纳米粒子表面脱落,造成背景信号高和低灵敏度,使得金纳米粒子不能完全猝灭荧光剂。因此我们采用纳米探针上DNA修饰的比率为1:5作为本实验设计的生物传感修饰比率。
本发明采用两种长度不同的DNA与纳米金制成捕获探针,其中长链DNA为一端(5 '端)带有巯基另一端(3 '端)标记有荧光基团FAM的单链DNA,短链DNA为仅在一端(5 '端)带有巯基的单链DNA;纳米 金是整个探针的核心,DNA分子利用所带的巯基通过金硫键自组装到纳米金表面上。处于随意状态的DNA通过与汞的特异性结合形成发卡结构,长链DNA所连的荧光基团FAM通过发卡结构靠近纳米金表面,导致单链DNA两端的供体和受体之间荧光共振能量转移,从而造成荧光信号的变化,此变化对Hg2+有很高的灵敏性和特异性。
本发明与现有技术相比具有以下显著优点:首先,相比于以前的小粒径的金纳米粒子,大粒径的金纳米粒子有相对大的表面积,可以引入短链DNA来调节含荧光发色团的长链DNA数目从而降低检测限,同时大粒径金纳米粒子对荧光发色团有更好的猝灭能力。第二,检测时不需要掩蔽剂,而且在其他金属离子共存时可以选择性检测Hg2+。第三,检测方法非常简单,快速,易操作。
附图说明
图1 为35nm的纳米金透射电镜图;
图2 为7nm的Au-DNA结构示意图;
图3 为13 nm左右SH-DNA修饰的Au NPs的透射电镜图;
图4 为五种不同修饰配比的Au NPs–DNA在100 nM Hg2+存在时荧光强度变化;
图5 为不同Hg2+浓度下 (0、10、20、40、60、80、100、120、140、160、200、300、400、500和600 nM) A) Au-DNA-FAM的荧光强度变化;B) Au-DNA-FAM的荧光差值变化;
图6为不同金属离子: Ca2+和Mg2+ (各 1 mM), 和 Cu2+、Fe2+、Cd2+、Pb22+、Zn2+、Ni2+、Mn2 +、Co2+ (各 1 μM)与Hg2+ (100 nM)浓度下,Au-DNA-FAM探针的荧光强度变化;
图7为汞离子诱导的荧光强度随时间变化曲线。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明的保护范围不限于此。
以下实施例中所用长链DNA(5′-SH-C10-CTTCTTTCTTCCCCCTTGTTTGTTG-FAM-3′)和短链DNA(5′-SH-CCCCCCCCCC-3′)由本领域常规技术合成,具体由上海生工有限公司合成。
实施例1
一种金纳米生物传感器的制备方法,包括以下步骤:
(1)纳米金的制备:将100 mL质量分数为 0.01% 的氯金酸水溶液,加热至沸腾,剧烈搅拌下快速加入3.5 mL 质量分数为1% 的柠檬酸三钠溶液,溶液由浅黄色变为酒红色后,继续恒温加热搅拌15分钟,关闭热源,搅拌至室温,所得金纳米粒子经纤维素膜过滤,后再通过离心(4℃、10000r/min、10min)进行浓缩得到高浓度的纳米金溶液;
(2)DNA溶液的配制:
将DNA溶于含有100 mM TCEP的20 mM 的MOPS-HCl缓冲溶液 (pH 7.4)中,使DNA最终浓度为100μM,将溶液混匀后,反应2h后备用;所述DNA长链DNA(5′-SH-C10-CTTCTTTCTTCCCCCTTGTTTGTTG-FAM-3′)和短链DNA(5′-SH-CCCCCCCCCC-3′)组成;
(3)DNA的修饰:
将步骤(2)所得DNA溶液与步骤(1)所得高浓度的纳米金(Au NPs)溶液于10 mM的MOPS-HCl缓冲溶液 (pH 7.4) 中反应24小时后,向混合溶液中滴加1 M NaCl/100 mM PBS (pH7.4)溶液,使NaCl的最终浓度为0.1 M,陈化40小时后,通过离心法(离心条件为:4℃、14000r/min、10min;然后用0.1 M PBS 洗涤3次,离心条件同上)将溶液中游离的DNA除去。
图3为13 nm 左右Au NPs-DNA的透射电镜图,由于DNA磷酸骨架带有负电,静电斥力使得金核更加紧凑,故其粒径相比Au NPs更小些,外形呈球形,SH-DNA的保护使得AuNPs-DNA分散性更好。
本发明所设计的生物传感器灵敏度与长链DNA-FAM和短链DNA的比率密切相关,在100 nM Hg2+存在下,可通过对比5种不同修饰配比Au NPs-DNA的荧光强度变化进行验证(短链DNA和长链DNA的摩乐比分别为1:2,1:3,1:4,1:5,1:6,1:7,将10 nM不同修饰配比的AuNPs-DNA和100 nM的Hg2+于2000 μL的50 mMTris-CH3COOH, pH 7.4缓冲溶液中测其荧光强度的变化。)。如图4所示,长短链DNA修饰配比可对Hg2+诱导的荧光强度变化产生很大的影响。当纳米探针在比率(n the helper oligonucleotides: nthe long strands of DNA–FAM) 为1:2时,将会导致纳米颗粒在盐化过程中有纳米颗粒聚沉。当纳米探针上DNA修饰的比率为1:3或1:4时,金纳米粒子比表面积比较大,表面修饰的DNA密度较低时,由于金纳米粒子对荧光发色团FAM有吸附作用,DNA处于弓形状态,造成于荧光发色团FAM与金纳米粒子距离拉近,因此Hg2+的添加不会产生很大的荧光变化。当纳米探针上DNA修饰的比率为1:6或1:7时,由于空间位阻和DNA链之间存在静电斥力,Hg2+添加后形成的发卡结构会使高密度的DNA链从金纳米粒子表面脱落,造成背景信号高和低灵敏度,使得金纳米粒子不能完全猝灭荧光剂。因此我们采用纳米探针上DNA修饰的比率为1:5作为本实验设计的生物传感修饰比率。
检测范围和灵敏度:将10 nM Au NPs-DNA和不同浓度的硝酸汞溶液(1~600 nM)于50 mM Tris-CH3COOH, pH 7.4 缓冲溶液中,反应十分钟后,于荧光比色皿中测定不同浓度下Au NPs-DNA荧光强度的变化,并绘制猝灭曲线,计算该生物传感器的检测限。如图5A所示,483 nm激发下,于515 nm处有发射峰,随着Hg2+浓度的增大,荧光强度越来越低,FAM发色团逐渐被金纳米粒子猝灭,Hg2+在低浓度范围下,也能够和长链DNA发生特异性结合,虽然变化很小但是很精确。图5 B中插入的拟合曲线可以作为检测汞离子浓度的标准曲线。在20nM <Hg2+ <90 nM的浓度范围内,汞离子浓度和荧光强度变化呈线性关系。由于发卡结构的形成需要几个汞离子和一个DNA分子特异性结合,汞离子浓度低于20 nM时荧光强度变化和汞离子浓度并不是线性关系。Hg2+浓度在为400 nM时反应已经达到了平衡,随着汞浓度的增加荧光强度差值没有太大的变化,按照3倍的信噪比可计算出Hg2+最低检测限为8 nM。
选择性检测:Ca2+、Mg2+、Cu2+、Fe2+、Cd2+、Pb2+、Zn2+、Ni2+、Mn2+和Co2+等二价金属离子均为硝酸盐。将10 nM Au NPs-DNA 探针溶液分别和浓度为100 nM 的Hg2+,1 mM的 Ca2+和Mg2+,1 μM的Cu2+、Fe2+、Cd2+、Pb2+、Zn2+、Ni2+、Mn2+和Co2+于2000 μL的50 mM Tris-CH3COOH,pH 7.4缓冲溶液中,测其荧光强度变化。
如图6所示为10 nM Au NPs-DNA 探针溶液对不同金属离子的荧光强度变化的研究,由图可知,只有100 nM的Hg2+会引起较大的荧光强度变化,其他金属离子的存在基本对生物传感器的荧光强度没有太大影响,略微的信号变化是由于加入的金属盐离子强度对AuNPs-DNA上的DNA 有一定的静电屏蔽,表明本传感器对Hg2+有很好的选择性。
为了模拟汞污染的水体环境,将1 mM的 Ca2+和 Mg2+, 1 μM的 Cu2+、Fe2+、Cd2+、Pb2 +、Zn2+、Ni2+、Mn2+和 Co2+同时加入自来水样中,将不同浓度的汞标准溶液加入自来水样中,使汞标准溶液最终浓度为30.0 nM、55.0 nM、125.0 nM,将本发明所设计的生物传感器检测自来水样中汞离子的浓度并把检测结果与汞标准溶液的浓度相比较。
本生物传感器的高灵敏和高选择性使得其在应用方面显示了很大的潜力。通过生物传感器检测环境水样中汞离子的浓度和传统的ICP-MS检测作比较,由于自来水样通过ICP-MS没有测得汞离子的存在,就把标准汞溶液和其它一些二价金属离子一起加入到水中来模拟水样环境。如表1所示,期望值和实际值有很好的一致性,我们可以看到这些样品的覆盖度在96%-102%。表明了我们的生物传感器能够很好的检测水样中汞的含量,本方法操作简便,适用于环境水样中Hg2+的测定。
表1 用上面所提到的实验方法水样中测得Hg2+的数据如下所示
序列表
<110> 河南师范大学
<120> 金纳米生物传感器及其制备方法和在汞离子检测中的应用
<130> 2017
<141> 2017-10-27
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 35
<212> DNA
<213> 人工序列(长链)
<400> 1
cccccccccc cttctttctt cccccttgtt tgttg 35
<210> 2
<211> 10
<212> DNA
<213> 人工序列(短链)
<400> 2
cccccccccc 10

Claims (3)

1.一种金纳米生物传感器的制备方法,其特征在于包括以下步骤:
(1)纳米金的制备:将100 mL质量分数为 0.01% 的氯金酸水溶液,加热至沸腾,剧烈搅拌下快速加入3.5 mL 质量分数为1% 的柠檬酸三钠溶液,溶液由浅黄色变为酒红色后,继续恒温加热搅拌15分钟,关闭热源,搅拌至室温,经纤维素膜过滤,后再通过离心进行浓缩得到纳米金溶液;
(2)DNA溶液的配制:
将DNA溶于含有100 mM TCEP的20 mM 的MOPS-HCl缓冲溶液 (pH 7.4)中,使DNA最终浓度为100μM,将溶液混匀后,反应2h后备用;
所述DNA由摩尔比为1︰5的短链DNA 5 '-SH-CCCCCCCCCC-3 '和长链DNA 5 '-SH-C10-CTTCTTTCTTCCCCCTTGTTTGTTG-FAM-3 '组成;
(3)DNA的修饰:
将步骤(2)所得DNA溶液与步骤(1)所得纳米金溶液于10 mM的MOPS-HCl缓冲溶液中反应24小时后,向混合溶液中滴加1 M NaCl/100 mM PBS溶液,使NaCl的最终浓度为0.1 M,陈化40小时后,通过离心法将溶液中游离的DNA除去。
2.采用权利要求1方法制备的金纳米生物传感器。
3.权利要求1方法制备的金纳米生物传感器在在汞离子检测中的应用。
CN201711020535.5A 2017-10-27 2017-10-27 金纳米生物传感器及其制备方法和在汞离子检测中的应用 Pending CN107815304A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711020535.5A CN107815304A (zh) 2017-10-27 2017-10-27 金纳米生物传感器及其制备方法和在汞离子检测中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711020535.5A CN107815304A (zh) 2017-10-27 2017-10-27 金纳米生物传感器及其制备方法和在汞离子检测中的应用

Publications (1)

Publication Number Publication Date
CN107815304A true CN107815304A (zh) 2018-03-20

Family

ID=61604321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711020535.5A Pending CN107815304A (zh) 2017-10-27 2017-10-27 金纳米生物传感器及其制备方法和在汞离子检测中的应用

Country Status (1)

Country Link
CN (1) CN107815304A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113084192A (zh) * 2021-04-13 2021-07-09 杭州苏铂科技有限公司 一种常温下一步合成金纳米星的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245387A (zh) * 2008-01-22 2008-08-20 中国科学院上海应用物理研究所 一种用于dna检测的纳米金信号探针及其制备方法和dna检测的方法
CN102183433A (zh) * 2011-02-25 2011-09-14 中国科学院化学研究所 一种检测水样中汞离子浓度的方法
CN103290132A (zh) * 2013-06-18 2013-09-11 中国科学院广州生物医药与健康研究院 一种用于检测汞离子的核酸纳米金生物传感器及试剂盒

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245387A (zh) * 2008-01-22 2008-08-20 中国科学院上海应用物理研究所 一种用于dna检测的纳米金信号探针及其制备方法和dna检测的方法
CN102183433A (zh) * 2011-02-25 2011-09-14 中国科学院化学研究所 一种检测水样中汞离子浓度的方法
CN103290132A (zh) * 2013-06-18 2013-09-11 中国科学院广州生物医药与健康研究院 一种用于检测汞离子的核酸纳米金生物传感器及试剂盒

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
唐文: "金纳米生物传感器的构建及在金属检测中的应用", 《河南师范大学硕士学位论文》 *
唐文等: "DNA功能化的纳米金荧光法检测汞离子(Ⅱ)", 《河南师范大学学报(自然科学版)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113084192A (zh) * 2021-04-13 2021-07-09 杭州苏铂科技有限公司 一种常温下一步合成金纳米星的方法

Similar Documents

Publication Publication Date Title
Chullasat et al. A facile optosensing protocol based on molecularly imprinted polymer coated on CdTe quantum dots for highly sensitive and selective amoxicillin detection
Xu et al. Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: A sensitive platform for one-step fluorescence detection of prostate specific antigen
Ye et al. Formation of N, S-codoped fluorescent carbon dots from biomass and their application for the selective detection of mercury and iron ion
Yang et al. Polyethyleneimine-functionalized carbon dots as a fluorescent probe for doxorubicin hydrochloride by an inner filter effect
Wang et al. Polydiacetylene liposome-encapsulated alginate hydrogel beads for Pb 2+ detection with enhanced sensitivity
CN104927867B (zh) 一种二价铜离子的比率荧光探针及其制备方法和应用
He et al. Self‐Assembly of Mn‐doped ZnS quantum dots/octa (3‐aminopropyl) octasilsequioxane octahydrochloride nanohybrids for optosensing DNA
Ban et al. A highly sensitive fluorescence assay for 2, 4, 6-trinitrotoluene using amine-capped silicon quantum dots as a probe
US7807265B2 (en) Partially passivated quantum dots, process for making, and sensors therefrom
Qu et al. Ratiometric detection of Zn 2+ and Cd 2+ based on self-assembled nanoarchitectures with dual emissions involving aggregation enhanced emission (AEE) and its application
Wang et al. Fabrication of an “ion-imprinting” dual-emission quantum dot nanohybrid for selective fluorescence turn-on and ratiometric detection of cadmium ions
CN105675676B (zh) 用于检测汞离子或半胱氨酸的电化学dna传感器及其制备方法和应用
EP1161490A4 (en) NANOPARTICLES IN LIEU OF LUMINESCENCE PROBES
Zhang et al. Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing
JP2008540308A (ja) シリカ系フォトルミネセンスセンサーおよび使用方法
Jiang et al. Surface molecular imprinting on CdTe quantum dots for fluorescence sensing of 4-nitrophenol
CN103264165A (zh) 一种以单链dna为模板合成银纳米簇的方法
CN108517208A (zh) 稀土比率荧光探针的制备方法及其Cu2+检测应用
CN110938430A (zh) 一种硅、氮共掺杂碳量子点及其制备方法和应用
Dong et al. Polymerizing dopamine onto Q-graphene scaffolds towards the fluorescent nanocomposites with high aqueous stability and enhanced fluorescence for the fluorescence analysis and imaging of copper ions
Guo et al. Hydrothermal synthesis of blue-emitting silicon quantum dots for fluorescent detection of hypochlorite in tap water
CN103884701A (zh) 一种汞离子的检测方法
Zhang et al. Facile and sensitive detection of protamine by enhanced room-temperature phosphorescence of Mn-doped ZnS quantum dots
CN110508828A (zh) 基于l-甲硫氨酸的橙红色荧光铜纳米团簇的制备方法
CN113340860A (zh) 用于检测Fe3+的锰掺杂碳点、Mn-CDs溶液、试纸及其制备方法、检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180320

RJ01 Rejection of invention patent application after publication