CN107812518B - 一种高选择性光催化环己烷氧化制备环己烯的方法 - Google Patents

一种高选择性光催化环己烷氧化制备环己烯的方法 Download PDF

Info

Publication number
CN107812518B
CN107812518B CN201711182557.1A CN201711182557A CN107812518B CN 107812518 B CN107812518 B CN 107812518B CN 201711182557 A CN201711182557 A CN 201711182557A CN 107812518 B CN107812518 B CN 107812518B
Authority
CN
China
Prior art keywords
cyclohexane
cyclohexene
oxygen
selectivity
tungsten trioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711182557.1A
Other languages
English (en)
Other versions
CN107812518A (zh
Inventor
贾法龙
杨乐
张礼知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central China Normal University
Original Assignee
Central China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central China Normal University filed Critical Central China Normal University
Priority to CN201711182557.1A priority Critical patent/CN107812518B/zh
Publication of CN107812518A publication Critical patent/CN107812518A/zh
Application granted granted Critical
Publication of CN107812518B publication Critical patent/CN107812518B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种高选择性光催化环己烷氧化制备环己烯的方法。该方法为:在常温常压下将环己烷与氧气混合,以非化学计量比三氧化钨作光催化剂,在光照下催化环己烷发生脱氢反应生成环己烯,所述的非化学计量比三氧化钨结构式为WO3‑X,WO3‑X中存在氧空位。本发明提供的高选择性光催化环己烷脱氢制备环己烯的方法与传统热催化相比,反应条件更加温和,常温常压下即可发生,具有极高的环己烯产物选择性,选择性几乎为100%,可避免环己烯深度脱氢转化为苯副产物;而且利用氧气为环境友好的氧化剂,整个反应过程无污染,有望在环己烯的合成方面得到广泛应用。由此同时也提供了一种利用太阳光能源的绿色合成新途径。

Description

一种高选择性光催化环己烷氧化制备环己烯的方法
技术领域
本发明属于催化领域,具体涉及一种高选择性光催化环己烷脱氢制备环己烯的方法。
背景技术
环己烯主要用于有机合成、萃取及溶剂,也可以通过氧化还原反应制备重要的有机合成中间体,广泛应用于医药、食品、农业产品、聚酯和其它精细化工产品的生产。近些年来,在环己烯直接氧化合成己二酸、环己酮、环己醇等方面取得了较大的进展,同时以环己烯为原料生产尼龙6和尼龙66的生产工艺路线,具有较高的经济效益。环己烯被认为是合成环己酮、环己醇、己二酸等的最佳原料,是一种关联度极大的基础化工原料。随着国内尼龙产品的需求量不断增加,其中一半需要进口,在世界上尼龙6、尼龙66的需求量同样很大,但受生产技术的限制,目前国内环己烯的年产量非常低。现有的环己烯生产方法成本高、效率低、污染严重,急需寻求一种环己烯生产的工艺新途径。
环己烯的合成方法主要有:(1)环己醇脱水制备环己烯,工业上一般是以浓硫酸为催化剂,但浓硫酸腐蚀性强,副反应多,会产生大量的废酸水污染环境,不适宜工业生产;(2)苯选择性加氢制备环己烯,苯加氢制环己烯选择性很低,同时会有大量副产物环己烷产生,反应过程中采用贵金属作为催化剂生产成本高,而且生产过程中采用高压对设备要求较高,存在安全隐患;(3)环己烷脱氢制环己烯,环己烷是石油工业的产物,由于其材料价廉易得,可使低价值的环烷烃转化成高附加值的不饱和烃,实现工业生产的实用价值。
相比之下,第三种方法更为经济和可行。但是传统的热催化反应体系主要存在以下难点:(1)传统的热催化反应的温度较高,通常在450~600℃左右,导致环己烯容易发生进一步脱氢而生成苯;(2)如果采用氧分子作为反应物而参与脱氢反应,就存在氧活化后进攻环己烷而生成环己酮、环己醇和CO2等氧化副产物,导致环己烯的选择性不够理想。所以目前环己烷脱氢制备环己烯的关键是选择合适的催化反应体系及催化剂。
相比于传统热催化体系,光催化反应可在常温常压下进行,反应条件温和,因而引起了研究者的兴趣。近年来,光催化反应被应用于有机物的光化学反应,例如福建物构所研究者利用银修饰纳米氧化锌光催化氧化甲烷(Nature Communications,2016,7:12273)。关于光催化环己烷脱氢的研究也有一些报道,有研究者利用五氧化二钒催化剂光催化氧化环己烷(Green Chemistry,2017,19,311-318),但是反应产物大多为环己酮及环己醇等。
至目前为止,尚未见有文献报道提及在光催化条件下将环己烷高选择性转化为环己烯。因此,如能开发一种能高选择性光催化环己烷脱氢至环己烯的方法,对于有机化工而言意义重大,将具有很好的工业化前景。
发明内容
本发明旨在克服现有技术中存在的不足,提供一种高选择性光催化环己烷脱氢制备环己烯的方法,为环己烯的合成提供了一种新途径,该合成方法条件温和,常温常压即可反应,选择性高。
为了实现上述目的,本发明采用的技术方案如下:
提供一种非化学计量比三氧化钨,其结构式为WO3-X,WO3-X中存在氧空位。
按上述方案,所述的非化学计量比三氧化钨WO3-X是将WO3进行紫外处理得到,所述紫外照射波长为300~360纳米,功率为50~100W。
按上述方案,所述的紫外照射处理时间1~2h,紫外灯照射处理至颜色由淡黄色变成深蓝色。
按上述方案,所述的WO3可采用商业WO3;或为采用以下方法自制得到的WO3纳米线:配置钨酸钠水溶液,调节体系的pH至1~2,继续搅拌直到淡黄色沉淀不再产生,随后加硫酸钾(K2SO4),继续搅拌得到乳白色溶液,然后将上述乳白色溶液转移至内衬聚四氟乙烯的不锈钢反应釜中,密封后在170~190℃下反应20~30h,后处理得到WO3纳米线,纳米线的直径为50~80nm。
按上述方案,所述的后处理为将反应后体系自然冷却至室温,离心分离沉淀并用去离子水清洗,并在60℃下干燥即得。
按上述方案,所述钨酸钠和硫酸钾的质量比为2~3:6~10。
提供一种高选择性光催化环己烷脱氢制备环己烯的方法,在常温常压下将环己烷与氧气混合,以非化学计量比三氧化钨作光催化剂,在光照下催化环己烷发生脱氢反应生成环己烯。
按上述方案,所述的环己烷与氧气的混合气的流量按光照面积为1cm2计算,为600~1800mL·h-1·g催化剂 -1
按上述方案,环己烷与氧气混合的体积比为1:1~2:1。
按上述方案,所述的光照处理为使用氙灯为模拟太阳光源,光照强度为0.4~0.7W·cm-2
按上述方案,上述高选择性光催化环己烷脱氢制备环己烯的方法,具体步骤为:首先在常温常压下将环己烷与氧气按比例混合,然后将混合气通入装载有光催化剂的石英反应池内,在光照下进行连续流动催化反应,催化环己烷发生脱氢反应生成环己烯,不使用其它辅助加热装置。
环己烯广泛应用于医药和其它精细化工产品的生产,现有的环己烯生产方法成本高及污染严重,迫切需要开发新的工艺途径。通过价廉的环己烷脱氢直接制备环己烯一直是科研和工业领域所追求的目标,但由于传统热催化反应过程中环己烯产物容易发生进一步脱氢而生成苯副产物,同时还存在环己烷的过度氧化而产生环己酮和环己醇,导致环己烯的选择性不够理想。
本发明提供的高选择性光催化环己烷脱氢制备环己烯的方法采用非化学计量比的三氧化钨(WO3-X)作为光催化剂,在光照条件下,三氧化钨半导体材料作用于环己烷使其脱氢而形成环己烯,脱去的氢与表面氧结合后生成水而脱去,由此可实现常温常压温和条件下高选择性合成环己烯,且不会有醇酮类氧化副产物的生成。
本发明的优点是:
1.本发明提供的催化剂三氧化钨为非化学计量比三氧化钨,WO3-X中存在氧空位,具有光吸收能力强、化学稳定性高及合成成本低等优点,易于工业化应用。
2.本发明提供的高选择性光催化环己烷脱氢制备环己烯的方法与传统热催化相比,反应条件更加温和,常温常压下即可发生,具有极高的环己烯产物选择性,选择性几乎为100%,可避免环己烯深度脱氢转化为苯副产物;而且利用氧气为环境友好的氧化剂,整个反应过程无污染,有望在环己烯的合成方面得到广泛应用。由此同时也提供了一种利用太阳光能源的绿色合成新途径。
附图说明
图1为三氧化钨纳米线的扫描电子显微镜图,可以看出纳米线的直径约为50纳米左右。
图2为三氧化钨和非化学计量比三氧化钨的拉曼对比图,非化学计量比三氧化钨(WO3-used)在1521和1127cm-1处出现了新峰,表明其中有氧空位产生。
图3为非化学计量比三氧化钨的电子顺磁共振图,氧空位的特征对称峰非常明显。
图4为三氧化钨和非化学计量比三氧化钨对比X射线光电子能谱图,经过分峰拟合,可以看到非化学计量比三氧化钨样品中存在W5+的特征峰,这更进一步证实有氧空位的存在;
图5为三氧化钨纳米线和非化学计量比三氧化钨的催化活性图;
图6为三氧化钨纳米线光催化条件下产物选择性;
图7为非化学计量比三氧化钨光催化和热催化环己烷结果图。
具体实施方式
实施例1
非化学计量比三氧化钨(WO3-X)的合成:取钨酸钠(Na2WO4·2H2O)2g,溶于50ml去离子水,缓慢搅拌同时滴加稀盐酸溶液调节溶液的pH至1.2,继续搅拌直到淡黄色沉淀不再产生。随后加入6g硫酸钾(K2SO4),继续搅拌1h。将上述乳白色溶液转移至内衬聚四氟乙烯的不锈钢反应釜中,密封后在180℃下反应24h。待自然冷却至室温,离心分离沉淀并用去离子水清洗,并在60℃下干燥,得到化学计量比WO3产物。取上述WO3在100W紫外灯(360纳米波长)照射下处理2h,直至颜色由淡黄色变成深蓝色,得到非化学计量比三氧化钨(WO3-X)。相应的样品表征结果见图1,2,3和4。
图1为三氧化钨纳米线的扫描电子显微镜图,可以看出纳米线的直径约为50纳米左右。
图2为三氧化钨和非化学计量比三氧化钨的拉曼对比图,非化学计量比三氧化钨在1521和1127cm-1处出现了新峰,表明其中有氧空位产生。
图3为非化学计量比三氧化钨的电子顺磁共振图,氧空位的特征对称峰非常明显。
图4为三氧化钨和非化学计量比三氧化钨对比X射线光电子能谱图,经过分峰拟合,可以看到非化学计量比三氧化钨样品中存在W5+的特征峰,这更进一步证实有氧空位的存在;
光催化条件下环己烷的催化转化:
以上述合成的三氧化钨为催化剂,取50mg装入石英反应池进行催化性能评价。在常温常压下首先将环己烷与氧气按2:1比例混合,然后将混合气通过装载有光催化剂的石英反应池,混合气的流量为700mL h-1g催化剂 -1(按光照面积为1cm2计算),光催化过程使用氙灯为模拟太阳光源,光照强度为0.5W cm-2。同时利用气相色谱分析气体产物,图5的结果表明当以化学计量比WO3为催化剂时,环己烷并没有环己烯和其它产物生成。但是当以非化学计量比三氧化钨WO3-X为催化剂时,有环己烯生成且生成速率非常稳定。图6的结果进一步说明气体产物中环己烯的选择性几乎为100%,产物中没有检测到其它副产物(如苯,环己醇或环己酮等)。
纯热条件下环己烷的催化转化(对比实验):以上述合成的非化学计量比三氧化钨WO3-X为催化剂,取50mg装入石英反应池进行催化性能评价。在常温常压下首先将环己烷与氧气按2:1比例混合,然后将混合气通过装载有光催化剂的石英反应池,混合气的流量控制在700mL h-1g催化剂 -1。整个反应过程在避光条件下进行,仅仅利用加热方式控制反应池内的温度。同时利用气相色谱分析气体产物,表1的结果表明在纯热条件下,若反应温度低于200度,WO3-X不能催化环己烷的转化。但是当温度高于200度时,反应产物都是副产物苯,环己烯的选择性几乎为0。这说明在纯热条件WO3-X并不能催化环己烷到环己烯。
表1纯热条件下WO3-x催化环己烷转化的结果
热催化反应温度(℃) 室温 100 150 200 250
环己烯产物选择性(%) 无产物 无产物 无产物 0 0
苯产物选择性(%) 无产物 无产物 无产物 100 100
实施例2
非化学计量比三氧化钨(WO3-X)的合成:取钨酸钠(Na2WO4·2H2O)2g,溶于50ml去离子水,缓慢搅拌同时滴加稀盐酸溶液调节溶液的pH至1.2,继续搅拌直到淡黄色沉淀不再产生。随后加入8g硫酸钾(K2SO4),继续搅拌1h。将上述乳白色溶液转移至内衬聚四氟乙烯的不锈钢反应釜中,密封后在170℃下反应28h。待自然冷却至室温,离心分离沉淀并用去离子水清洗,并在60℃下干燥,得到化学计量比WO3产物。取上述WO3在80W紫外灯(320纳米波长)照射下处理2h,直至颜色由淡黄色变成深蓝色,得到非化学计量比三氧化钨(WO3-X)。
光催化条件下环己烷的催化转化:
以上述合成的三氧化钨为催化剂,取50mg装入石英反应池进行催化性能评价。在常温常压下首先将环己烷与氧气按2:1比例混合,然后将混合气通过装载有光催化剂的石英反应池,混合气的流量为900mL h-1g催化剂 -1(按光照面积为1cm2计算),光催化过程使用氙灯为模拟太阳光源,光照强度为0.7W cm-2。同时利用气相色谱分析气体产物,结果表明环己烯生生成速率为39mmol h-1g-1,环己烯的选择性几乎为100%。
实施例3
取商品化WO3在100W紫外灯(360纳米波长)照射下处理2h,直至颜色由淡黄色变成深蓝色,得到非化学计量比三氧化钨(WO3-X)。
光催化条件下环己烷的催化转化:
以上述合成的三氧化钨为催化剂,取50mg装入石英反应池进行催化性能评价。在常温常压下首先将环己烷与氧气按2:1比例混合,然后将混合气通过装载有光催化剂的石英反应池,混合气的流量为700mL h-1g催化剂 -1(按光照面积为1cm2计算),光催化过程使用氙灯为模拟太阳光源,光照强度为0.5W cm-2。同时利用气相色谱分析气体产物,结果表明环己烯生成,生成速率为10mmol h-1g-1,环己烯的选择性几乎为100%。

Claims (9)

1.一种高选择性光催化环己烷脱氢制备环己烯的方法,其特征在于:在常温常压下将环己烷与氧气混合,以非化学计量比三氧化钨作光催化剂,在光照下催化环己烷发生脱氢反应生成环己烯,所述的非化学计量比三氧化钨结构式为WO3-X,WO3-X中存在氧空位。
2.根据权利要求1所述的方法,其特征在于:所述的环己烷与氧气的混合气的流量按光照面积为1cm2计算,为600 ~ 1800 mL· h-1 ·g催化剂 -1
3.根据权利要求1所述的方法,其特征在于:环己烷与氧气混合的体积比为1:1 ~ 2:1。
4.根据权利要求1所述的方法,其特征在于:所述的光照为使用氙灯为模拟太阳光源,光照强度为0.4~0.7 W ·cm-2
5.根据权利要求1所述的方法,其特征在于:具体步骤为:首先在常温常压下将环己烷与氧气按比例混合,然后将混合气通入装载有光催化剂的石英反应池内,在光照下进行连续流动催化反应,催化环己烷发生脱氢反应生成环己烯,不使用其它辅助加热装置。
6.根据权利要求1所述的方法,其特征在于:所述的非化学计量比三氧化钨WO3-X是将WO3进行紫外照射处理得到,所述紫外照射波长为300~360纳米,功率为50~100W。
7.根据权利要求6所述的方法,其特征在于:所述的紫外照射处理时间1~2h,紫外灯照射处理至颜色由淡黄色变成深蓝色。
8.根据权利要求6所述的方法,其特征在于:所述的WO3为商业WO3;或为采用以下方法自制得到的WO3纳米线:配置钨酸钠水溶液,调节体系的pH至1~2,继续搅拌直到淡黄色沉淀不再产生,随后加硫酸钾,继续搅拌得到乳白色溶液,然后将上述乳白色溶液转移至内衬聚四氟乙烯的不锈钢反应釜中,密封后在170~190℃下反应20~30h,后处理得到WO3纳米线,纳米线的直径为50~80nm。
9.根据权利要求8所述的方法,其特征在于:所述钨酸钠和硫酸钾的质量比为2~3:6~10。
CN201711182557.1A 2017-11-23 2017-11-23 一种高选择性光催化环己烷氧化制备环己烯的方法 Active CN107812518B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711182557.1A CN107812518B (zh) 2017-11-23 2017-11-23 一种高选择性光催化环己烷氧化制备环己烯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711182557.1A CN107812518B (zh) 2017-11-23 2017-11-23 一种高选择性光催化环己烷氧化制备环己烯的方法

Publications (2)

Publication Number Publication Date
CN107812518A CN107812518A (zh) 2018-03-20
CN107812518B true CN107812518B (zh) 2020-08-04

Family

ID=61609930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711182557.1A Active CN107812518B (zh) 2017-11-23 2017-11-23 一种高选择性光催化环己烷氧化制备环己烯的方法

Country Status (1)

Country Link
CN (1) CN107812518B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109634019B (zh) * 2018-12-29 2023-10-20 五邑大学 一种电致变色器件及其制造方法
CN113845416B (zh) * 2020-06-28 2023-09-05 中国石油化工股份有限公司 一种催化氧化环烷烃制备含氧有机化合物的方法
CN114573441A (zh) * 2020-12-02 2022-06-03 中国科学院大连化学物理研究所 一种催化环己烯氧化制备己二酸的方法
CN112961021B (zh) * 2021-03-17 2022-03-29 中国科学院山西煤炭化学研究所 氧缺陷三氧化钨在光催化烯烃异构化中的应用及光催化烯烃异构化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104646046A (zh) * 2015-03-11 2015-05-27 湖南大学 一种选择性氧化环己烷的新方法
CN104874389A (zh) * 2015-05-05 2015-09-02 上海应用技术学院 一种具有氧空位介孔WO3-x可见光催化剂及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104646046A (zh) * 2015-03-11 2015-05-27 湖南大学 一种选择性氧化环己烷的新方法
CN104874389A (zh) * 2015-05-05 2015-09-02 上海应用技术学院 一种具有氧空位介孔WO3-x可见光催化剂及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films;L. Su et al.;《Solar Energy Materials & Solar Cells》;19990621;第58卷;第133-140页 *
Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4;Xu Chun Song et al.;《Materials Letters》;20061230;第61卷;第3904–3908页 *
Visible and infrared photochromic properties of amorphous WO3-x films;Yeon-Gon Mo等;《J. Vac. Sci. Technol. A》;19990909;第17卷(第5期);第2933-2938页 *
Yeon-Gon Mo等.Visible and infrared photochromic properties of amorphous WO3-x films.《J. Vac. Sci. Technol. A》.1999,第17卷(第5期),第2933-2938页. *

Also Published As

Publication number Publication date
CN107812518A (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
CN107812518B (zh) 一种高选择性光催化环己烷氧化制备环己烯的方法
Bellardita et al. Photocatalytic formation of H2 and value-added chemicals in aqueous glucose (Pt)-TiO2 suspension
Zhu et al. Z scheme system ZnIn2S4/RGO/BiVO4 for hydrogen generation from water splitting and simultaneous degradation of organic pollutants under visible light
Ziarati et al. Black hollow TiO2 nanocubes: Advanced nanoarchitectures for efficient visible light photocatalytic applications
Li et al. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction
Palmisano et al. Photocatalysis: a promising route for 21st century organic chemistry
Dai et al. Efficient solar-driven hydrogen transfer by bismuth-based photocatalyst with engineered basic sites
Hao et al. Modification of heterogeneous photocatalysts for selective organic synthesis
Fang et al. Controllable oxidation of cyclohexane to cyclohexanol and cyclohexanone by a nano-MnOx/Ti electrocatalytic membrane reactor
Umer et al. Montmorillonite dispersed single wall carbon nanotubes (SWCNTs)/TiO2 heterojunction composite for enhanced dynamic photocatalytic H2 production under visible light
Wang et al. Photocatalytic carbon–carbon bond formation with concurrent hydrogen evolution on the Pt/TiO2 nanotube
Bai et al. Flower-like Bi2O2CO3-mediated selective oxidative coupling processes of amines under visible light irradiation
Zhang et al. The cascade synthesis of α, β-unsaturated ketones via oxidative C–C coupling of ketones and primary alcohols over a ceria catalyst
CN103896765A (zh) 一种气相光催化部分氧化甲醇合成甲酸甲酯的负载型纳米Ag催化剂的制备及其应用
Sola et al. Photocatalytic H2 production from ethanol (aq) solutions: The effect of intermediate products
CN100577287C (zh) 表面修饰有助催化剂的半导体TiO2光催化剂及其制备方法和用途
CN109759041A (zh) 一种中空片状结构二氧化钛纳米管光催化材料及其制备方法
CN104646046A (zh) 一种选择性氧化环己烷的新方法
Lu et al. Room temperature aqueous solution synthesis of pinacol (C6) by photocatalytic CC coupling of isopropanol
CN110787830B (zh) 一种负载氧化钌的氮化碳空心管光催化剂及其制备与应用
Wang et al. Photocatalytic C− H activation and C− C coupling of monohydric alcohols
Ciambelli et al. Reaction mechanism of cyclohexane selective photo-oxidation to benzene on molybdena/titania catalysts
Feng et al. Phase-dependent photocatalytic selective oxidation of cyclohexane over copper vanadates
CN111333487A (zh) 一种光催化氧化甲烷制备甲醇的方法
CN110721685B (zh) 一种复合光催化材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180320

Assignee: Wuhan Nanwang Environmental Protection Technology Research Co.,Ltd.

Assignor: CENTRAL CHINA NORMAL University

Contract record no.: X2023980053268

Denomination of invention: A method of highly selective photocatalytic oxidation of cyclohexane to prepare cyclohexene

Granted publication date: 20200804

License type: Common License

Record date: 20231220

EE01 Entry into force of recordation of patent licensing contract