CN107809058A - 一种单片集成半导体随机激光器 - Google Patents

一种单片集成半导体随机激光器 Download PDF

Info

Publication number
CN107809058A
CN107809058A CN201711139130.3A CN201711139130A CN107809058A CN 107809058 A CN107809058 A CN 107809058A CN 201711139130 A CN201711139130 A CN 201711139130A CN 107809058 A CN107809058 A CN 107809058A
Authority
CN
China
Prior art keywords
layer
produced
random
laser
gain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711139130.3A
Other languages
English (en)
Other versions
CN107809058B (zh
Inventor
张明江
张建忠
吕天爽
乔丽君
刘毅
赵彤
王安帮
王云才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201711139130.3A priority Critical patent/CN107809058B/zh
Publication of CN107809058A publication Critical patent/CN107809058A/zh
Priority to US16/622,172 priority patent/US10923881B2/en
Priority to PCT/CN2018/000304 priority patent/WO2019095528A1/zh
Application granted granted Critical
Publication of CN107809058B publication Critical patent/CN107809058B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3086Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1092Multi-wavelength lasing
    • H01S5/1096Multi-wavelength lasing in a single cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2202Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure by making a groove in the upper laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1039Details on the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种单片集成半导体随机激光器由增益区和随机反馈区两部分组成,包括:一衬底;一下限制层,制作在衬底上;一有源层,制作在下限制层上;一上限制层,制作在有源层上;一波导层,为条状,纵向制作在上限制层上面的中间;一P+电极层,用隔离沟将其分为两段,制作在波导层上;一N+电极层,制作在下限制层的背面。其中,分为两段的P+电极层分别对应于增益区和随机反馈区。随机反馈区采用掺杂波导,对增益区发出的光进行随机反馈,进而产生随机激光。本发明采用掺杂波导形成随机谐振腔,是一种新型的单片集成半导体随机激光器,其出射激光的频率、强度都具有随机性,且采用单片集成结构,重量轻、体积小、性能稳定、集成性强。

Description

一种单片集成半导体随机激光器
技术领域
本发明涉及半导体激光器领域,具体是涉及一种单片集成半导体随机激光器。
背景技术
近年来,随机激光器由于其特殊的反馈机制和广阔的应用前景得到了广泛的研究。在传统的激光器中,光学谐振腔决定了激光的模式,即决定了激光的出射频率。随机激光器随机光反馈形成随机谐振腔,取代了传统激光器中的光学谐振腔,其出射激光的频率、强度都具有随机性。
2009年,墨西哥E.I.Chaikina等人提出了基于分布式布拉格光栅反馈的Er / Ge共掺单模光纤随机激光器(Lizã r N, Puente N P, Chaikina E I, et al. Single-modeEr-doped fiber random laser with distributed Bragg grating feedback[J].Optics Express, 2009, 17(2):395-404.),其使用掩模板技术在掺杂光纤中刻蚀布拉格光栅,通过大量随机分布的布拉格光栅增加了谐振腔的有效长度,并且以这种方式提高了系统的效率和频率选择性。
2010年,Sergei K. Turitsyn等人提出了随机分布式光反馈光纤激光器(Turitsyn S K, Babin S A, El-Taher A E, et al. Random distributed feedbackfibre laser[J]. Optics Express, 2012, 20(27):28033.)。其利用泵浦光注入光纤中产生的后向瑞利散射和拉曼效应放大,产生了随机激光。
2012年,北京化工大学公开了一种随机光纤激光器系统,采用全光纤化连接结构,将光纤激光器作为泵浦光源,利用光纤中的瑞利后向散射光放大形成激光(见中国专利:随机光纤激光器,专利号:ZL201210328766.3)。光在光纤中传播时产生的瑞利散射光较弱,在反馈过程中,由于光纤长度、光纤材料及分立器件结构缺陷等原因导致部分反馈光损耗。
2013年,马向阳等人提出了一种基于双重SiO2-ZnO结构的电抽运随机激光器(见中国专利:基于双重SiO2-ZnO结构的电抽运随机激光器、其制备方法及用途 ,专利号:201210490468.4)。在硅衬底的正面自下而上依次沉积有第一ZnO薄膜、第一SiO2薄膜、第二ZnO薄膜、第二SiO2薄膜和半透明电极,在硅衬底背面沉积有欧姆接触电极,即制得了基于双重SiO2-ZnO结构的电抽运随机激光器,阈值电流显著降低,光输出功率明显提高。
2015年,电子科技大学公开了一种随机激光器(见中国专利:随机激光器、随机谐振腔制造及探测微小颗粒浓度的方法,专利号:201510513253.3),采用泵浦光源、激光反射镜等器件,通过在随机激光器谐振腔内壁涂有纳米TiO2颗粒和紫外胶混合而成的随机介质薄膜,在多重散射作用下,实现了随机激光的可控输出。该发明工艺复杂、技术要求高,这些都将对最终随机激光的产生有较大影响。
2015年,渥太华大学鲍晓毅课题组提出了一种新型的F-P腔的布里渊随机激光器(Xu Y, Xiang D, Ou Z, et al. Random Fabry–Perot resonator-based sub-kHzBrillouin fiber laser to improve spectral resolution in linewidth measurement[J]. Optics Letters, 2015, 40(9):1920.),并通过实验验证了该随机激光器改善了线宽测量中的光谱分辨率,实现了低于0.9 KHz的线宽表征精度。由于单模光纤中瑞利散射系数较小,这种随机激光器需要较长(几十千米)的单模光纤。
2017年,Heba A. Shawki等人提出一种随机光纤激光器(Shawki H A, Kotb H E,Khalil D. Narrow line width semiconductor optical amplifier based randomlaser[C]// SPIE LASE. 2017:100832C.),其中半导体光放大器(SOA)是激光的增益介质,采用1 km的单模光纤提供瑞利后向散射取代传统的光学谐振腔,产生随机激光。
然而,上述随机激光的产生都是利用电致发光材料或光纤中的瑞利散射加上外部分立元件搭建而成的随机激光器,其体积庞大,易受环境影响,输出不稳定。要真正实现随机激光器的实用化和产业化,必须研制体积小、性能稳定的集成随机激光器。
发明内容
本发明是提供一种单片集成半导体随机激光器。本发明采用掺杂波导,光束在掺杂波导内随机反馈形成随机谐振腔,进而使随机激光器出射激光的频率、强度都具有随机性,且制作简便、易于集成。采用单片集成结构,具有重量轻、体积小、性能稳定、集成性强等优点。
本发明公开了一种单片集成半导体随机激光器,由增益区和随机反馈区两部分组成,具体包括:
一衬底;
一下限制层,其制作在衬底上;
一有源层,其制作在下限制层上;
一上限制层,其制作在有源层上;
一波导层,为条状,其纵向制作在上限制层上面的中间;
一P+电极层,其是用隔离沟将其分为两段,制作在波导层上;
一N+电极层,其制作在下限制层的背面。
其中,分为两段的P+电极层分别对应于增益区和随机反馈区。
其中所述的增益区为整个芯片提供增益,其对应的有源层部分为多量子阱材料;增益区的长度为300±50μm;
其中所述的随机反馈区对增益区所述发出的光进行随机反馈,其对应的有源层部分为体材料;该随机反馈区对应的有源层部分引入掺杂;随机反馈区的长度为300±50μm。
本发明采用单片集成结构,具有重量轻、体积小、性能稳定、集成性强等优点,对推动随机激光在科学研究、基础应用、工程技术等领域的应用具有重要的意义和价值。
附图说明
图1是本发明的结构示意图。图中:1-N+电极层,2-衬底,3-下限制层,4-有源层,5-上限制层,6-波导层,7- P+电极层,8-隔离沟,9-掺杂波导,A-增益区,B-随机反馈区。
具体实施方式
参阅图1所示,本发明公开了一种单片集成半导体随机激光器,由增益区A和随机反馈区B两部分组成。具体包括:
一衬底2;
一下限制层3,其制作在衬底2上, 厚度为80至200nm,用于垂直方向限制载流子和光子;
一有源层4,其制作在下限制层3上,厚度为80至200nm,其中增益区A对应的有源层部分为多量子阱材料,用于受激辐射产生光子,增益峰值波长对应1310nm或1550nm;随机反馈区B对应的有源层部分为体材料;
一上限制层5,其制作在有源层4上,和下限制层3共同作用,用于垂直方向限制载流子和光子;
一波导层6,为条状,其纵向制作在上限制层上面的中间,其作用主要为对光进行导引;
一P+电极层7,制作在波导层6上,其是用隔离沟8将其分为两段,隔离沟8是通过注入He+离子或者刻蚀的方式使之成为高阻区,从而实现各电极之间的电隔离;
一N+电极层1,其制作在衬底2的背面。
其中,分为两段的P+电极层7分别对应于增益区A和随机反馈区B;
其中所述的增益区A为整个芯片提供增益,其对应的有源层4部分为多量子阱材料;增益区的长度为300±50μm;
其中所述的随机反馈区B对增益区A所述发出的光进行随机反馈,该随机反馈区对应的有源层4部分为体材料,并引入掺杂波导9;随机反馈区B的长度为300±50μm;
其中所述的一种单片集成半导体随机激光器在增益区A一侧的端面为自然解离端面,反射率为0.32;随机反馈区B一侧的端面为出光端面,若需提高出光功率镀增透膜,反射率可减小到0.1,最终从该端面输出随机激光。
本发明采用掺杂波导形成随机谐振腔,是一种新型的单片集成随机激光器。光束在掺杂波导内发生随机反馈形成随机谐振腔,掺杂波导对入射光的随机反馈决定了辐射激光的特性,因此随机激光器出射激光的频率、强度都具有随机性。且采用单片集成结构,具有重量轻、体积小、性能稳定、集成性强等优点。
以上所述的具体实施例,对本发明一种单片集成半导体随机激光器进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种单片集成半导体随机激光器,其特征在于,包括:
一衬底;
一下限制层,其制作在衬底上;
一有源层,其制作在下限制层上;
一上限制层,其制作在有源层上;
一波导层,为条状,其纵向制作在上限制层上面的中间;
一P+电极层,其是用隔离沟将其分为两段,制作在波导层上;
一N+电极层,其制作在下限制层的背面;
其中,分为两段的P+电极层分别对应于增益区和随机反馈区。
2.根据权利要求1所述的一种单片集成半导体随机激光器,其特征在于,其中所述的增益区为整个芯片提供增益,增益区对应的有源层部分为多量子阱材料;增益区的长度为300±50μm。
3.根据权利要求1所述的一种单片集成半导体随机激光器,其特征在于,其中所述的随机反馈区对增益区发出的光进行随机反馈,随机反馈区对应的有源层部分为体材料;该随机反馈区对应的有源层部分引入掺杂;随机反馈区的长度为300±50μm。
CN201711139130.3A 2017-11-16 2017-11-16 一种单片集成半导体随机激光器 Active CN107809058B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201711139130.3A CN107809058B (zh) 2017-11-16 2017-11-16 一种单片集成半导体随机激光器
US16/622,172 US10923881B2 (en) 2017-11-16 2018-08-27 Monolithic integrated semiconductor random laser
PCT/CN2018/000304 WO2019095528A1 (zh) 2017-11-16 2018-08-27 一种单片集成半导体随机激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711139130.3A CN107809058B (zh) 2017-11-16 2017-11-16 一种单片集成半导体随机激光器

Publications (2)

Publication Number Publication Date
CN107809058A true CN107809058A (zh) 2018-03-16
CN107809058B CN107809058B (zh) 2020-09-04

Family

ID=61580492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711139130.3A Active CN107809058B (zh) 2017-11-16 2017-11-16 一种单片集成半导体随机激光器

Country Status (3)

Country Link
US (1) US10923881B2 (zh)
CN (1) CN107809058B (zh)
WO (1) WO2019095528A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899759A (zh) * 2018-08-15 2018-11-27 武汉光迅科技股份有限公司 一种混合集成混沌半导体激光器芯片及激光器
CN109167250A (zh) * 2018-08-15 2019-01-08 武汉光迅科技股份有限公司 一种集成混沌激光器芯片及激光器
WO2019095528A1 (zh) * 2017-11-16 2019-05-23 太原理工大学 一种单片集成半导体随机激光器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11567274B2 (en) * 2020-08-17 2023-01-31 Molex, Llc Optical module
CN114050473A (zh) * 2021-11-10 2022-02-15 中国科学院半导体研究所 单片集成窄线宽耦合腔半导体激光器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070091967A1 (en) * 2005-10-06 2007-04-26 Xiaoming Tao Laser emitting material, method for making the same and use thereof
CN103229371A (zh) * 2009-09-10 2013-07-31 利兹大学 装置
US20150132507A1 (en) * 2012-05-25 2015-05-14 University Of Leeds Medium For Random Laser And Manufacturing Process of the Same
TW201527801A (zh) * 2014-01-03 2015-07-16 Univ Nat Taiwan 具有任意相位與振幅元件之部分任意雷射照明系統及裝置
CN104953468A (zh) * 2014-03-25 2015-09-30 中国科学院半导体研究所 四段式放大反馈混沌光发射激光器结构
JP2016162866A (ja) * 2015-02-27 2016-09-05 国立大学法人群馬大学 ランダムレーザー素子及びランダムレーザー素子の製造方法
EP3148017A1 (en) * 2015-09-25 2017-03-29 Consejo Superior De Investigaciones Cientificascs CSIC Random laser
US20170153179A1 (en) * 2014-06-30 2017-06-01 King's College London Random laser detector
EP3236547A1 (en) * 2016-04-21 2017-10-25 Université de Strasbourg Random lasing photo-curable composition for use as random lasing gain medium

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455836A (en) * 1994-11-23 1995-10-03 Northern Telecom Limited Optical Q-switching to generate ultra short pulses in diode lasers
JP3387746B2 (ja) * 1996-07-31 2003-03-17 キヤノン株式会社 屈曲チャンネルストライプの偏波変調可能な半導体レーザ
US6876680B2 (en) * 2001-09-28 2005-04-05 The Furukawa Electric Co., Ltd. Semiconductor laser device, semiconductor laser module, and optical fiber amplifier
KR100519921B1 (ko) * 2002-12-17 2005-10-10 한국전자통신연구원 초고주파 펄스 광원소자
US20090283746A1 (en) * 2008-05-15 2009-11-19 Palo Alto Research Center Incorporated Light-emitting devices with modulation doped active layers
CN102801091B (zh) 2012-09-06 2014-06-18 北京化工大学 随机光纤激光器
CN102931583B (zh) 2012-11-26 2014-06-25 浙江大学 基于双重SiO2-ZnO结构的电抽运随机激光器、其制备方法及用途
CN103107484A (zh) * 2013-01-22 2013-05-15 燕山大学 基于波导结构的随机激光器
US9252555B2 (en) * 2014-03-05 2016-02-02 University Of Ottawa Frequency-stabilized random distributed feedback fiber ring laser with low intensity noise
CN104501843B (zh) * 2014-12-17 2017-02-22 电子科技大学 一种基于随机反馈的外腔型光纤激光传感器
CN105006729B (zh) 2015-08-20 2017-10-13 电子科技大学 随机激光器、随机谐振腔制造及探测微小颗粒浓度的方法
CN107221829A (zh) * 2017-06-13 2017-09-29 合肥工业大学 基于纳米颗粒掺杂的无序聚合物光纤随机激光器
CN107809058B (zh) * 2017-11-16 2020-09-04 太原理工大学 一种单片集成半导体随机激光器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070091967A1 (en) * 2005-10-06 2007-04-26 Xiaoming Tao Laser emitting material, method for making the same and use thereof
CN103229371A (zh) * 2009-09-10 2013-07-31 利兹大学 装置
US20150132507A1 (en) * 2012-05-25 2015-05-14 University Of Leeds Medium For Random Laser And Manufacturing Process of the Same
TW201527801A (zh) * 2014-01-03 2015-07-16 Univ Nat Taiwan 具有任意相位與振幅元件之部分任意雷射照明系統及裝置
CN104953468A (zh) * 2014-03-25 2015-09-30 中国科学院半导体研究所 四段式放大反馈混沌光发射激光器结构
US20170153179A1 (en) * 2014-06-30 2017-06-01 King's College London Random laser detector
JP2016162866A (ja) * 2015-02-27 2016-09-05 国立大学法人群馬大学 ランダムレーザー素子及びランダムレーザー素子の製造方法
EP3148017A1 (en) * 2015-09-25 2017-03-29 Consejo Superior De Investigaciones Cientificascs CSIC Random laser
EP3236547A1 (en) * 2016-04-21 2017-10-25 Université de Strasbourg Random lasing photo-curable composition for use as random lasing gain medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095528A1 (zh) * 2017-11-16 2019-05-23 太原理工大学 一种单片集成半导体随机激光器
US10923881B2 (en) 2017-11-16 2021-02-16 Taiyuan University Of Technology Monolithic integrated semiconductor random laser
CN108899759A (zh) * 2018-08-15 2018-11-27 武汉光迅科技股份有限公司 一种混合集成混沌半导体激光器芯片及激光器
CN109167250A (zh) * 2018-08-15 2019-01-08 武汉光迅科技股份有限公司 一种集成混沌激光器芯片及激光器
CN109167250B (zh) * 2018-08-15 2019-11-12 武汉光迅科技股份有限公司 一种集成混沌激光器芯片及激光器

Also Published As

Publication number Publication date
US20200203919A1 (en) 2020-06-25
WO2019095528A1 (zh) 2019-05-23
US10923881B2 (en) 2021-02-16
CN107809058B (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN107809058A (zh) 一种单片集成半导体随机激光器
CN107658693B (zh) 一种基于随机光栅反馈的单片集成混沌激光器芯片
US11152763B2 (en) INP-based monolithic integrated chaotic semiconductor laser chip capable of feeding back randomly diffused light
Pavesi Silicon-Based Light Sources for Silicon Integrated Circuits.
CN103579894B (zh) 一种基于混合增益的多波长随机光纤激光器
US8619358B2 (en) Electrically pumped extrinsic semiconductor optical amplifier with slot waveguide
Ab Rahman et al. Ultrashort pulse soliton fiber laser generation with integration of antimony film saturable absorber
CN102460295B (zh) 采用内嵌金属富勒烯的光学装置、系统和方法
CN107809059A (zh) 基于随机分布布拉格反射光栅的InP基单片集成混沌半导体激光器芯片
JP2017033981A (ja) 量子カスケードレーザ
CN107749564B (zh) 高散射掺杂光波导反馈产生混沌光的单片集成激光器芯片
CN102244351B (zh) 基于单壁碳纳米管的被动锁模器件的制备方法
CN110147023B (zh) 一种基于石墨烯和硅基纳米线的拉曼放大器及其制备方法
Zhou et al. Design of an on-chip electrically driven, position-adapted, fully integrated erbium-based waveguide amplifier for silicon photonics
CN111082295B (zh) 基于腙类有机物的锁模脉冲光源及制备方法
CN107749563B (zh) 基于随机光栅的单片集成半导体随机激光器
CN112213813A (zh) 一种超宽带高增益的多芯光纤光源
CN1706080A (zh) 具有用于提供波长稳定化的衍射光栅的泵浦激光器的无扭折工作
CN202103310U (zh) 一种基于单壁碳纳米管的被动锁模器件及光纤激光器
Sia et al. Compact, ultra-tunable InGaSb/AlGaAsSb Si external cavity laser at the Mid-Infrared (MIR)
US20090080486A1 (en) Laser Device Using an Inorganic Electro-Luminescent Material Doped With a Rare-Earth Element
CN114400501B (zh) 基于分布式布拉格反射光栅的单片集成混沌半导体激光器
Tu Hybrid integration for on-chip optical emission and amplification in the near infrared
Cox III 2.1. Analog Optical Links: Models, Measures and Limits of Performances
Ferrara et al. Study of Raman amplification in nanostructured materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant