CN107808778A - 一种碳微球/镍钴氢氧化物核壳结构的电极复合材料的设计 - Google Patents

一种碳微球/镍钴氢氧化物核壳结构的电极复合材料的设计 Download PDF

Info

Publication number
CN107808778A
CN107808778A CN201711004818.0A CN201711004818A CN107808778A CN 107808778 A CN107808778 A CN 107808778A CN 201711004818 A CN201711004818 A CN 201711004818A CN 107808778 A CN107808778 A CN 107808778A
Authority
CN
China
Prior art keywords
carbosphere
shell structure
core shell
nickel
nickel cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711004818.0A
Other languages
English (en)
Inventor
曲玉宁
王静
张焦
王静茹
刘林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201711004818.0A priority Critical patent/CN107808778A/zh
Publication of CN107808778A publication Critical patent/CN107808778A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种碳微球/镍钴氢氧化物核壳结构的电极复合材料的设计的方法。电极材料作为超级电容器的主要组成部分,是决定其性能的重要因素。使用金属化合物作为电极材料可以提供额外的赝电容,从而大幅提高超级电容器的比电容。α‑Ni(OH)2和α‑Co(OH)2是具有水滑石层状结构的材料,有很高的理论比电容,但导电性一般,因此本发明通过设计碳微球/镍钴氢氧化物核壳结构来提高材料的导电性,同时获得镍钴协同效应,实现更高的比电容与更好的稳定性。主要采用简单的两步合成碳微球/镍钴氢氧化物核壳结构的材料。首先对碳微球进行不同温度的预处理以增加碳微球表面的含氧官能团,然后通过原位沉淀法合成碳微球/镍钴氢氧化物核壳结构的电极材料,有望在未来作为电极材料应用于超级电容器中。

Description

一种碳微球/镍钴氢氧化物核壳结构的电极复合材料的设计
技术领域
本发明涉及一种碳微球/镍钴氢氧化物核壳结构的复合材料的设计及储能性能的研究,具体涉及利用原位沉淀的方法制备负载量不同的核壳结构的复合材料的方法。
背景技术
近年来,便携式和可穿戴式电子产品的飞速发展促进了体型小,重量轻,灵活且可穿戴的能量存储装置的发展,以满足人类社会日益增长的需求。超级电容器是广泛使用的能量存储设备,它具有高的功率密度、循环寿命长、快速充电/放电等好处。尽管性能优异,但当前的超级电容器存储能量比可充电电池低约一个数量级。碳基超级电容器的能量密度可以通过增加电极材料的比表面积,优化碳的形貌或利用有机、离子电解液扩展工作电压范围来提高。但是,由于固有的双电层电荷存储机制,碳基电容器的能量密度仍然不能满足高能量储能装置的需求。传统的超级电容器在大体积的包装材料中使用液体电解质密封,其往往过于庞大大,笨重同时不能灵活的应用。解决该问题的最有效方法之一是使用环保的水系电解质组装非对称固态超级电容器。非对称固态超级电容器使用不同的碳基金属氧化物的电极材料,在不同的工作电压范围内具有稳定的电化学行为,使其能够在0~2.0V的宽工作电压范围上可逆地充/放电,满足高能量电容器的需求。
目前,过渡金属氧化物或双氢氧化物由于实用性良好和环境友好,主要用非对称超级电容器中的正极。Ni(OH)2具有α和β两种相结构,其中α-Ni(OH)2是羟基缺陷相,其理论比电容高达3750F/g,在超级电容器、可充电碱电池等领域得到了广泛的研究。但α-Ni(OH)2的导电性差(10-5-10-9S cm-1),导致其倍率性能、循环性能不高,文献研究表明二元或者三元镍基氢氧化物复合材料相较于单金属氢氧化物体系具有明显的优势,Ni-Mn、Mn-Cu、Ni-Co等二元氢氧化物体系的相关研究报道证明其电化学性能得到了显著提高。Co因其材料导电性好、成本低、来源广泛而备受青睐,加入钴元素后,不仅可以提供氢氧化镍的导电性和电化学过程中的利用率,还可以改善其充放电特性。Co(OH)2具有良好的导电性,但表现出来的电容性能相对较低,可逆性较差。Ni(OH)2作为电极材料所面临的主要问题是导电性差,以及充放电过程中(尤其是大电流密度下)发生的体积膨胀。为提高他们的电化学性能,如前所述调整其纳米尺度范围内的形貌和将其与其他导电材料复合。Co(OH)2具有和Ni(OH)2形似的结构以及很高的理论比电容,在充放电过程中行程CoOOH是良导体。因而将Ni(OH)2和其复合制备Ni-Co二元氢氧化物体系也因其合成方法简单多样、成本低廉以及性能优越引起广泛关注。Co(OH)2材料具有良好的导电性,且其结构与Ni(OH)2相同。在Ni(OH)2中掺入钴以后,电化学反应产生的CoOOH在充放电过程中可以作为良导体,因而可以提高镍基材料的导电性。此外,加入钴元素后可以提高材料的析氧过电位,而且Ni-Co二元氢氧化物体系合成方法简单多样、成本低廉以及性能优越引起了广定的关注。二元金属氢氧化物比单金属氢氧化物的分层结构更好,可以促进电荷从活性材料到集流体的运输,使Ni和Co共同作用产生有效的赝电容性能。特别是具有约3000F/g的高理论电容的Ni-Co二元氢氧化物因为其前途广泛而受到重视。
如何进一步提高电极材料的利用率,制备具有良好柔韧性、高比容量、高能量密度和功率密度的超级电容器仍然是目前众多研究人员的研究热点。而电极材料作为决定超级电容器性能的关键因素之一,更是目前各方研究的重中之重。一方面利用金属氧化物作为电极提高电容器的能量密度,另一方面由于金属氧化物作为电极其导电性能,倍率性能和循环性能都比较低。基于这两点,利用金属氧化物负载在碳基载体上作为电极,二元或者三元金属氧化物的的理论的高比容量和金属氧化物之间的协同作用来提高复合材料的比电容,碳基载体提高电容器的倍率性能、循环性能。本专利主要利用碳微球作为载体,原位沉淀不同比例的镍钴氢氧化物进而制备核壳结构的复合物,此种方法文献及专利中未见报道。
发明内容
为实现本发明所提供的技术方案是:
(1)在室温下混合10ml HNO3(65%)和30mL H2SO4(98%),然后将1g碳微球加入100ml三口瓶中,用滴管分多次将混酸加入并缓慢搅拌,在一定温度下搅拌回流2-5小时,反产品洗至中性,60℃下真空干燥24h,即得功能化的碳微球;
(2)将一定物质量之比的镍盐和钴盐和一定量的碱溶解在90mL水中得到透明的粉红色溶液,然后搅拌加入60mg的功能化碳微球,反应混合物转移到250mL圆底烧瓶中,并在120℃油浴中回流8小时,冷却至室温后,真空过滤,洗涤干燥即得碳微球/镍钴氢氧化物核壳结构的复合材料。
为更好理解本发明,下面结合实施例对本发明做进一步地详细说明,但是本发明要求保护的范围并不局限于实施例表示的范围。
实施例1:
(1)在室温下混合10ml HNO3(65%)和30mL H2SO4(98%),然后将1g碳微球加入100ml三口瓶中,用滴管分多次将混酸加入并缓慢搅拌,在一定温度下搅拌回流4小时,反产品洗至中性,60℃下真空干燥24h,即得功能化的碳微球;
(2)将物质量之比为1∶2的硝酸镍和醋酸钴分别为0.4mmol和0.8mmol尿素5mmol溶解在90mL水中得到透明的粉红色溶液,然后搅拌加入60mg的功能化碳微球,反应混合物转移到250mL圆底烧瓶中,并在120℃油浴中回流8小时,冷却至室温后,真空过滤,洗涤干燥即得碳微球/镍钴氢氧化物核壳结构的复合材料。
实施例2:改变硝酸镍和醋酸钴的的物质量之比为1∶1,其他步骤同实施例1,即得碳微球/镍钴氢氧化物核壳结构的复合材料。
实施例3:改变硝酸镍和醋酸钴为氯化镍和氯化钴,其他步骤同实施例1,即得碳微球/镍钴氢氧化物核壳结构的复合材料。
实施例4:改变碱源尿素为氨水,其他步骤同实施例1,即得碳微球/镍钴氢氧化物核壳结构的复合材料。

Claims (3)

1.一种碳微球/镍钴氢氧化物核壳结构的电极复合材料的设计,具体步骤如下:
(1)在室温下混合10ml HNO3(65%)和30mL H2SO4(98%),然后将1g碳微球加入100ml三口瓶中,用滴管分多次将混酸加入并缓慢搅拌,在一定温度下搅拌回流2~5小时,反产品洗至中性,60℃下真空干燥24h,即得功能化的碳微球;
(2)将一定物质量之比的镍盐和钴盐和一定量的碱溶解在90mL水中得到透明的粉红色溶液,然后搅拌加入60mg的功能化碳微球,反应混合物转移到250mL圆底烧瓶中,并在120℃油浴中回流8小时,冷却至室温后,真空过滤,洗涤干燥即得碳微球/镍钴氢氧化物核壳结构的复合材料。
2.一种如权利要求1所述的一种碳微球/镍钴氢氧化物核壳结构的电极复合材料的设计,其特征在于:镍盐和钴盐可以是硝酸镍和硝酸钴,氯化镍和氯化钴,醋酸镍和醋酸钴。
3.一种如权利要求1所述的一种碳微球/镍钴氢氧化物核壳结构的电极复合材料的设计,其特征在于:碱可以是尿素,氨水,氢氧化钠,氢氧化钾。
CN201711004818.0A 2017-10-19 2017-10-19 一种碳微球/镍钴氢氧化物核壳结构的电极复合材料的设计 Pending CN107808778A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711004818.0A CN107808778A (zh) 2017-10-19 2017-10-19 一种碳微球/镍钴氢氧化物核壳结构的电极复合材料的设计

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711004818.0A CN107808778A (zh) 2017-10-19 2017-10-19 一种碳微球/镍钴氢氧化物核壳结构的电极复合材料的设计

Publications (1)

Publication Number Publication Date
CN107808778A true CN107808778A (zh) 2018-03-16

Family

ID=61592271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711004818.0A Pending CN107808778A (zh) 2017-10-19 2017-10-19 一种碳微球/镍钴氢氧化物核壳结构的电极复合材料的设计

Country Status (1)

Country Link
CN (1) CN107808778A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108492998A (zh) * 2018-03-21 2018-09-04 青海民族大学 一种钴镍双氢氧化物/碳微球复合电极材料的制备方法
CN110666157A (zh) * 2019-09-27 2020-01-10 郑州航空工业管理学院 一种核壳结构C@CoNi复合材料及其制备方法和应用
CN113186560A (zh) * 2021-03-30 2021-07-30 广州费舍尔人工智能技术有限公司 一种富Ni3+的钴酸镍修饰碳球电极催化剂
WO2022126842A1 (zh) * 2020-12-14 2022-06-23 苏州大学 利用三元NiO纳米片@双金属CeCuOx微片核壳结构复合材料低温热处理甲苯的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JUAN XU等: ""Facile synthesis of core–shell nanostructured hollow carbon nanospheres@nickel cobalt double hydroxides as high-performance electrode materials for supercapacitors"", 《DALTON TRANSACTIONS》 *
许并社 等: ""银/碳微球复合材料的制备和表征"", 《中国材料进展》 *
闫翎鹏 等: ""两种碳微球作为聚合物太阳能电池受体材料的研究"", 《第十一届全国新型炭材料学术研讨会论文集》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108492998A (zh) * 2018-03-21 2018-09-04 青海民族大学 一种钴镍双氢氧化物/碳微球复合电极材料的制备方法
CN110666157A (zh) * 2019-09-27 2020-01-10 郑州航空工业管理学院 一种核壳结构C@CoNi复合材料及其制备方法和应用
WO2022126842A1 (zh) * 2020-12-14 2022-06-23 苏州大学 利用三元NiO纳米片@双金属CeCuOx微片核壳结构复合材料低温热处理甲苯的方法
CN113186560A (zh) * 2021-03-30 2021-07-30 广州费舍尔人工智能技术有限公司 一种富Ni3+的钴酸镍修饰碳球电极催化剂

Similar Documents

Publication Publication Date Title
Le et al. MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors
Vijayakumar et al. CuCo2O4 flowers/Ni-foam architecture as a battery type positive electrode for high performance hybrid supercapacitor applications
Zhai et al. Co 3 O 4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li 2 O 2 for smart lithium–oxygen batteries
Guo et al. Synthesis of carbon self-repairing porous g-C3N4 nanosheets/NiCo2S4 nanoparticles hybrid composite as high-performance electrode materials for supercapacitors
Mohamed et al. Bimetallic Co–W–S chalcogenides confined in N, S-codoped porous carbon matrix derived from metal–organic frameworks for highly stable electrochemical supercapacitors
US11410819B2 (en) Method for preparing super capacitor electrode material Ni doped CoP3/foam nickel
Wang et al. Construction of CoMoO4@ Ni3S2 core-shell heterostructures nanorod arrays for high-performance supercapacitors
CN106548876B (zh) 表层氧化的碳纳米管阵列/石墨烯/二氧化锰复合电极
CN106548877B (zh) 碳纳米管阵列/聚苯胺/二氧化铈复合材料电极及其制备方法和应用
Guan et al. Facile synthesis of double-layered CoNiO2/CoO nanowire arrays as multifunction electrodes for hydrogen electrocatalysis and supercapacitors
Wang et al. May 3D nickel foam electrode be the promising choice for supercapacitors?
CN107808778A (zh) 一种碳微球/镍钴氢氧化物核壳结构的电极复合材料的设计
Zhang et al. Synthesis of honeycomb-like NiS2/NiO nano-multiple materials for high performance supercapacitors
CN109767924B (zh) 一种ldh基超级电容器复合电极材料及制备方法与用途
Pan et al. Fabrication of porous Co/NiO core/shell nanowire arrays for electrochemical capacitor application
CN105719846B (zh) 一种硫化钴/碳复合材料的制备方法及其产品与应用
Wang et al. Dual hybrid effect endowing nickel–cobalt sulfides with enhanced cycling stability for asymmetrical supercapacitors
CN106710886A (zh) 一种高容量蜂窝结构的ZnCo2S4纳米材料及其制备和应用
CN109904008A (zh) 一种复合纳米材料、其制备方法及电极
Wang et al. Polypyrrole decorated cobalt carbonate hydroxide on carbon cloth for high performance flexible supercapacitor electrodes
CN101740230B (zh) 一种超级电容电池用碳复合负极材料
Prasankumar et al. Functional carbons for energy applications
Lu et al. Preparation of metal sulfide electrode materials derived based on metal organic framework and application of supercapacitors
Zheng et al. Unique core-shell Co2 (OH) 2CO3@ MOF nanoarrays with remarkably improved cycling life for high performance pseudocapacitors
CN109755498A (zh) 一种碱性二次电池铁基负极添加剂,制备方法和使用该添加剂的铁基负极板及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180316