CN107808306B - 基于标签库的业务对象的切分方法、电子装置及存储介质 - Google Patents
基于标签库的业务对象的切分方法、电子装置及存储介质 Download PDFInfo
- Publication number
- CN107808306B CN107808306B CN201710905107.4A CN201710905107A CN107808306B CN 107808306 B CN107808306 B CN 107808306B CN 201710905107 A CN201710905107 A CN 201710905107A CN 107808306 B CN107808306 B CN 107808306B
- Authority
- CN
- China
- Prior art keywords
- client
- customer
- target
- labels
- label
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/38—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Finance (AREA)
- Strategic Management (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Entrepreneurship & Innovation (AREA)
- General Physics & Mathematics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Economics (AREA)
- Game Theory and Decision Science (AREA)
- Library & Information Science (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种基于标签库的业务对象的切分方法,属于数据分析领域。一种基于标签库的业务对象的切分方法,步骤如下:S1、构建客户数据库,采集客户信息并对所述客户信息进行预处理,给每个客户ID在一个或多个维度上匹配至少一个标签以形成一个客户集;S2、将客户数据库加载至系统内存中;S3、建立目标客户群,从加载至系统内存中的客户数据库中取出具有待筛选标签的客户集;S4、建立目标客户子群,将所述目标客户群根据待切分维度上所关联的各标签切分成若干个目标客户子群后分别保存并输出。本发明通过采用内存筛选技术,提高了筛选速度;同时还通过采用维度切分的方法,实现对目标客户群的快速切分并一次输出多个目标客户子群。
Description
技术领域
本发明涉及一种计算机技术领域,特别涉及一种基于标签库的业务对象的切分方法、电子装置及存储介质。
背景技术
营销指的是企业发现或挖掘准消费者需求,从整体氛围的营造以及自身产品形态的营造去推广和销售产品,主要是深挖产品的内涵,切合准消费者的需求,从而让消费者深刻了解该产品进而购买该产品的过程。
但是,不同的客户偏好不同,自然对营销活动的接受程度不同。在营销策划时,如何从海量的客户信息中准确定位出适合本次营销活动的客户显得尤为重要。
现有技术中,通常采用对现有客户进行标签化处理,然后通过标签筛选出合适的客户。这种方法虽然可以定位到准备的客户,但是当客户数量十分庞大时,其筛选过程非常长,每筛选一个标签都需要使用相当长的时间,而要准确定位客户,通常需要筛选至少三个以上的标签,如此会进一步增加筛选所用的时间;而且,每次筛选后只能显示出与具体某个标签相关联的客户,如果针对筛选出的客户只是按某一维度上的标签进行分类营销时,需要按各个标签进行多次筛选,费时又费力。
因此,营销人员在制定营销活动计划时,急需一种能快速筛选客户,并能对筛选出的客户进行准确快速切分的方法。
发明内容
本发明要解决的技术问题是为了克服现有技术中筛选客户不够准确快速的问题,提出了一种基于标签库的业务对象的切分方法、电子装置及存储介质,通过内存筛选技术结合自动切分到最小营销粒度,进行高度精细化和快速地客户筛选。
本发明是通过下述技术方案来解决上述技术问题:
一种基于标签库的业务对象的切分方法,包括如下步骤:
S1、构建客户数据库,采集客户信息并对所述客户信息进行预处理,给每个客户ID在一个或多个维度上匹配至少一个标签以形成一个客户集;
S2、将客户数据库加载至系统内存中;
S3、建立目标客户群,根据待筛选标签从加载至系统内存中的客户数据库中取出具有所述待筛选标签的客户集;
S4、建立目标客户子群,将所述目标客户群根据待切分维度上所关联的各标签切分成若干个目标客户子群后分别保存并输出。
其中,步骤S1所述的构建客户数据库具体包括以下分步骤:
S11、建立维度-标签库,通过程序和/或人工采集并整理的方式,将采集到的客户信息进行整理归类,以生成多维度,并在各维度上关联相应的一个或多个标签;
S12、建立客户-标签库,给采集到的每个客户信息分配一个客户ID,并给每个客户ID根据所述客户信息匹配一个或多个维度上的标签,最终对应每个客户ID形成一个客户集保存在所述客户数据库中。
其中,步骤S3所述的建立目标客户群具体包括以下分步骤:
S31、获取待筛选标签;
S32、将待筛选标签与客户数据库中预存的每个客户集中的标签进行一一比对;
S33、根据比对顺序,依次将具有与所述待筛选标签一样标签的客户集取出并形成一个集合进行暂存;
S34、检测是否有下一个待筛选标签,若是执行步骤S35,若否则执行步骤S36;
S35、再次获取待筛选标签,将待筛选标签与经上一步骤得到的暂存的集合中的每个客户集中的标签进行一一比对,再执行步骤S33;
S36、将上一步骤得到的暂存的集合作为目标客户群保存,并清除所述目标客户群之前得到的各集合。
其中,步骤S4所述的目标客户子群具体包括以下分步骤:
S41、获取待切分维度;
S42、统计所述目标客户群中所述客户集在所述切分维度下的标签种类,并给每种标签建立一个以该标签为名称的集合;
S43、用一个集合的名称与目标客户群下的客户集在所述切分维度下的标签进行一一比对,判断两者是否匹配,若匹配则执行步骤S44;若不匹配则执行直接执行步骤S45;
S44、将具有与所述集合的名称相匹配的标签的客户集取出暂存到所述集合中,并在所述目标客户群中删除该客户集;
S45、判断所述集合的名称是否与所述目标客户群下的所有客户集在所述切分维度下的标签进行了一一比对,若是则执行步骤S47,若否则执行步骤S46;
S46、用所述集合的名称继续与目标客户群下的客户集在所述切分维度下的标签进行一一比对,判断两者是否匹配,若匹配则执行步骤S44;若不匹配则执行步骤S45;
S47、判断是否所有集合的名称都已完成比对,若否则执行步骤S43,若是则执行步骤S48;
S48、将各个集合作为目标客户子群保存并输出。
一种电子装置,包括存储器和处理器,所述存储器上存储有可被所述处理器执行的基于标签库的业务对象的切分系统,所述基于标签库的业务对象的切分系统包括:
客户数据库,预存有若干客户信息,每个所述客户信息分配有一个客户ID,且每个所述客户ID在一个或多个维度上匹配至少一个标签以形成一个客户集;
加载模块,用于加客户数据库在筛选之前加载到系统内存中;
筛选模块,根据待筛选标签从客户数据库中筛选出具有待筛选标签的客户集保存为目标客户群;
切分模块,将目标客户群根据待切分维度上所关联的各标签切分成若干个目标客户子群后分别保存并输出。
其中,所述客户信息通过程序和/或人工采集并整理。
优选地,所述筛选模块包括:
筛选标签输入子模块,用于获取待筛选标签并将其发送至筛选子模块;
筛选子模块,用于根据收到的待筛选标签,从所述客户数据库中筛选出具有所述待筛选标签的客户集,并将筛选出的所述客户集暂存成目标客户群的集合。
优选地,所述切分模块包括:
切分维度输入子模块,用于获取待切分维度并将其发送至计数子模块;
建立集合子模块,用于统计所述目标客户群中所述客户集在所述切分维度下的标签种类,给每种标签建立一个以该标签为名称的集合;
切分子模块,用于将所述目标客户群中的客户集按所述切分维度下的标签分类,并暂存到具有与所述切分维度下的标签相匹配的名称的各个集合中;
输出子模块,将所述各个集合作为目标客户子群输出。
一种计算机可读存储介质,所述计算机可读存储介质内存储有基于标签库的业务对象的切分系统,所述基于标签库的业务对象的切分系统可被至少一个处理器所执行,以使所述至少一个处理器执行前述任一项所述的基于标签库的业务对象的切分方法的步骤。
本发明的积极进步效果在于:本发明通过采用内存筛选技术,大大提高了筛选速度;同时,还通过采用维度切分的方法,可实现对筛选出的目标客户群的快速切分并一次输出多个目标客户子群,大大方便了营销人员在策划营销方案时对目标客户的选取。
附图说明
图1示出了本发明电子装置一实施例的硬件架构示意图;
图2示出了本发明电子装置中基于标签库的业务对象的切分系统一实施例的程序模块示意图;
图3示出了本发明电子装置中基于标签库的业务对象的切分系统另一实施例中筛选模块的程序模块示意图;
图4示出了本发明电子装置中基于标签库的业务对象的切分系统又一实施例中切分模块的程序模块示意图;
图5示出了本发明基于标签库的业务对象的切分方法的一实施例的流程示意图;
图6示出了本发明基于标签库的业务对象的切分方法的另一实施例中建立目标客户群的流程示意图;
图7示出了本发明基于标签库的业务对象的切分方法的另一实施例中建立目标客户子群的流程示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
首先,本发明提出一种电子装置。
参阅图1所示,是本发明电子装置一实施例的硬件架构示意图。本实施例中,所述电子装置1是一种能够按照事先设定或者存储的指令,自动进行数值计算和/或信息处理的设备。例如,可以是智能手机、平板电脑、笔记本电脑、台式计算机、机架式服务器、刀片式服务器、塔式服务器或机柜式服务器(包括独立的服务器,或者多个服务器所组成的服务器集群)等。如图所示,所述电子装置2至少包括,但不限于,可通过系统总线相互通信连接存储器21、处理器22、网络接口23、以及基于标签库的业务对象的切分系统20。其中:
所述存储器21至少包括一种类型的计算机可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。在一些实施例中,所述存储器21可以是所述电子装置2的内部存储单元,例如该电子装置2的硬盘或内存。在另一些实施例中,所述存储器21也可以是所述电子装置2的外部存储设备,例如该电子装置2上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。当然,所述存储器21还可以既包括所述电子装置2的内部存储单元也包括其外部存储设备。本实施例中,所述存储器21通常用于存储安装于所述电子装置2的操作系统和各类应用软件,例如所述基于标签库的业务对象的切分系统20的程序代码等。此外,所述存储器21还可以用于暂时地存储已经输出或者将要输出的各类数据。
所述处理器22在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器、或其他数据处理芯片。该处理器22通常用于控制所述电子装置2的总体操作,例如执行与所述电子装置2进行数据交互或者通信相关的控制和处理等。本实施例中,所述处理器22用于运行所述存储器21中存储的程序代码或者处理数据,例如运行所述的基于标签库的业务对象的切分系统20等。
所述网络接口23可包括无线网络接口或有线网络接口,该网络接口23通常用于在所述电子装置2与其他电子装置之间建立通信连接。例如,所述网络接口23用于通过网络将所述电子装置2与外部终端相连,在所述电子装置2与外部终端之间的建立数据传输通道和通信连接等。所述网络可以是企业内部网(Intranet)、互联网(Internet)、全球移动通讯系统(Global System of Mobile communication,GSM)、宽带码分多址(Wideband CodeDivision Multiple Access,WCDMA)、4G网络、5G网络、蓝牙(Bluetooth)、Wi-Fi等无线或有线网络。
需要指出的是,图1仅示出了具有组件21-23的电子装置2,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。
在一实施例中,存储于存储器21中的基于标签库的业务对象的切分系统20可被至少一处理器22所执行,以实现如下步骤:
第一步,构建客户数据库,具体为采集客户信息并对所述客户信息进行预处理,给每个客户ID在一个或多个维度上匹配至少一个标签以形成一个客户集。
第二步,将客户数据库加载至系统内存中,主要是为了在对客户数据库中的客户集进行筛选前,提前将客户数据库加载至系统内存,之后直接在系统内存中进行客户信息的筛选,以起到提高了筛选的速度。
第三步,建立目标客户群,根据待筛选标签从加载至系统内存中的客户数据库中取出具有所述待筛选标签的客户集。
第四步,建立目标客户子群,将所述目标客户群根据待切分维度上所关联的各标签切分成若干个目标客户子群后分别保存并输出。
在本实施例中,客户数据库是后续目标客户筛选的基础,所述客户信息可以包括客户的姓名、性别、年龄、归属地、联系电话、职业、爱好等信息,所述客户ID可以直接使用客户的姓名,对除客户姓名以外的信息进行归类,每个类别的名称即为维度,具体的信息内容即为标签。
在另一实施例中,在前一实施例的基础上,给出了构建客户数据库的实现步骤,具体为:
先建立维度-标签库,通过程序和/或人工采集并整理的方式,将采集到的客户信息进行整理归类,以生成多维度,并在各维度上关联相应的一个或多个标签。
然后再建立客户-标签库,给采集到的每个客户信息分配一个客户ID,并给每个客户ID根据所述客户信息匹配一个或多个维度上的标签,最终对应每个客户ID形成一个客户集保存在所述客户数据库中。
在又一实施例中,基于前述另一实施例的基础上,给出了建立目标客户群的具体实现步骤,如下:
第一步,获取待筛选标签,将待筛选标签与客户数据库中预存的每个客户集中的标签进行一一比对;
第二步,根据比对顺序,依次将具有与所述待筛选标签一样标签的客户集取出并形成一个集合进行暂存,并检测是否有下一个待筛选标签;若是则再次获取待筛选标签,将待筛选标签与经上一步骤得到的暂存的集合中的每个客户集中的标签进行一一比对,循环本步骤;若否则将得到的暂存的集合作为目标客户群保存,并清除所述目标客户群之前得到的各集合。
本技术方案中,目标客户群的筛选是层层递进式的,通常都经过多轮筛选后才能准确定位到目标客户。
下面以要筛选出年龄在25-35岁之间,有车一族,且生日为7月22日-7月28日内的目标客户为例加以具体说明,具体筛选流程如下:
1、从客户数据库中取出具有标签为25岁、26岁、27岁、……35岁的客户集暂存为第一级集合;
2、从第一级集合中取出具有标签为有车的客户集暂存为第二级集合;
3、从第二级集合中取出分别具有标签为7月22日、7月23日、......7月28日的客户集暂存为第三级集合;
4、检测是否还有筛选条件,若没有,则将最后一级集合作为目标客户群保存,并删除之前几级集合;具体到本例中,将第三级集合作为目标客户群保存,并删除第一级和第二级集合。
在再一实施例中,基于前述又一实施例的基础上,给出了建立目标客户子群的具体实现步骤,如下:
第一步,获取待切分维度,并统计所述目标客户群中所述客户集在所述切分维度下的标签种类,给每种标签建立一个以该标签为名称的集合;
第二步,用一个集合的名称与目标客户群下的客户集在所述切分维度下的标签进行一一比对,判断两者是否匹配:
若不匹配则再判断所述集合的名称是否与所述目标客户群下的所有客户集在所述切分维度下的标签进行了一一比对:
若否重复本步骤;若是则将具有与所述集合的名称相匹配的标签的客户集取出暂存到所述集合中,并在所述目标客户群中删除该客户集,然后进一步判断所述集合的名称是否与所述目标客户群下的所有客户集在所述切分维度下的标签进行了一一比对:
若否则重复本步骤;若是则再判断是否所有集合的名称都已完成比对,若否则重复本步骤;若是则将各个集合作为目标客户子群保存并输出。
本实施例中,在目标客户群已经筛选出的基础上,只要输入切分维度,便可将所述目标客户群按所述切分维度下的各标签进行自动切分成若干目标客户子群,代替了原来每个目标客户子群都要通过标签从目标客户群中筛选一次后输出的方式,即若干个目标客户子群需要操作若干次的筛选和输出动作。对于营销人员而言,本实施例中的切分更高效快速。
接上例,将筛选出的年龄在25-35岁之间,有车一族,且生日为7月22日-7月28日内的目标客户群进一步按生日进行切分成若干目标客户子群为例加以具体说明,具体切分流程如下:
1、统计出目标客户群中生日日期的种类,并以每个生日日期建立一个名词为该生日日期的集合,即假设目标客户群中包含有生日为7月22日-7月28日七种生日日期,则分别建立名称为7月22日、7月23日、......7月28日的集合;
2、从目标客户群中取出生日日期为7月22日的所有客户集存入名称为7月22日的集合中,并将取出的客户集从目标客户群中删除;再目标客户群中取出生日日期为7月23日的所有客户集存入名称为7月23日的集合中,并将取出的客户集从目标客户群中删除;以此类推,直到将目标客户群中生日日期为7月28日的所有客户集存入名称为7月28日的集合中为止;
3,将各集合作为目标客户子群保存并输出。
需要说明的是,在其他的实施例中,所述基于标签库的业务对象的切分系统20还可以被分割为一个或者多个程序模块,所述一个或者多个程序模块被存储于存储器11中,并由一个或多个处理器(本实施例为处理器12)所执行,以完成本发明。其中,本发明所称的程序模块是指能够完成特定功能的一系列计算机程序指令段。
例如,图2示出了所述基于标签库的业务对象的切分系统20一实施例的程序模块示意图,该实施例中,所述基于标签库的业务对象的切分系统20可以被分割为客户数据库201、加载模块202、筛选模块203和切分模块204。其中,程序模块201-204所实现的功能或操作步骤均与上文类似,此处不再详述,示例性地:
客户数据库201中预存有若干客户信息,每个所述客户信息分配有一个客户ID,且每个所述客户ID在一个或多个维度上匹配至少一个标签以形成一个客户集;
加载模块202用于加客户数据库201在筛选之前加载到系统内存中;
筛选模块203用于根据待筛选标签从客户数据库201中筛选出具有待筛选标签的客户集保存为目标客户群;这里所述待筛选标签可以是一个或多个,通常为多个。
切分模块204用于将目标客户群根据待切分维度上所关联的各标签切分成若干个目标客户子群后分别保存并输出。
另例如,图3示出了所述基于标签库的业务对象的切分系统20另一实施例中筛选模块203的程序模块示意图,该实施例中,所述筛选模块203还可以进一步被分割为筛选标签输入子模块2031和筛选子模块2032。其中程序模块2031-2032所实现的功能或操作步骤均与上文类似,此处不再详述,示例性地:
筛选标签输入子模块2031用于获取待筛选标签并将其发送至筛选子模块32;
筛选子模块2032用于根据收到的待筛选标签从所述客户数据库1中筛选出具有所述待筛选标签的客户集,并将筛选出的所述客户集暂存成目标客户群的集合。
又例如,图4示出了所述基于标签库的业务对象的切分系统20又一实施例中切分模块204的程序模块示意图,该实施例中,所述切分模块204还可以进一步被分割为切分维度输入子模块2041、建立集合子模块2042、切分子模块2043和输出子模块2044。其中程序模块2041-2044所实现的功能或操作步骤均与上文类似,此处不再详述,示例性地:
切分维度输入子模块2041用于获取待切分维度并将其发送至计数子模块;
建立集合子模块2042用于统计所述目标客户群中所述客户集在所述切分维度下的标签种类,给每种标签建立一个以该标签为名称的集合;
切分子模块2043用于将所述目标客户群中的客户集按所述切分维度下的标签分类,并暂存到具有与所述切分维度下的标签相匹配的名称的各个集合中;
输出子模块2044将所述各个集合作为目标客户子群输出。
其次,本发明提出一种基于标签库的业务对象的切分方法。
在一实施例中,如图5所示,所述基于标签库的业务对象的切分方法包括如下步骤:
步骤S1,构建客户数据库,采集客户信息并对所述客户信息进行预处理,给每个客户ID在一个或多个维度上匹配至少一个标签以形成一个客户集。
步骤S2,将客户数据库加载至系统内存中。
通过步骤S2,在对客户数据库中的客户集进行筛选前,提前将客户数据库加载至系统内存,之后直接在系统内存中进行客户信息的筛选,大大提高了筛选的速度。
步骤S3,建立目标客户群,根据待筛选标签从加载至系统内存中的客户数据库中取出具有所述待筛选标签的客户集。
步骤S4,建立目标客户子群,将所述目标客户群根据待切分维度上所关联的各标签切分成若干个目标客户子群后分别保存并输出。
在本技术方案中,所述步骤S1中建立的客户数据库为后续目标客户筛选的基础,所述客户信息包括客户的姓名、性别、年龄、归属地、联系电话、职业、爱好等信息,所述客户ID可以直接使用客户的姓名,对除客户姓名以外的信息进行归类,每个类别的名称即为维度,具体的信息内容即为标签。
基于上述实施例,在又一实施例中,所述步骤1具体包括以下分步骤:
步骤S11,建立维度-标签库,通过程序和/或人工采集并整理的方式,将采集到的客户信息进行整理归类,以生成多维度,并在各维度上关联相应的一个或多个标签。
步骤S12,建立客户-标签库,给采集到的每个客户信息分配一个客户ID,并给每个客户ID根据所述客户信息匹配一个或多个维度上的标签,最终对应每个客户ID形成一个客户集保存在所述客户数据库中。
基于上述实施例,在另一实施例中,如图6所示,所述步骤3具备包括以下分步骤:
步骤S31,获取待筛选标签。
步骤S32,将待筛选标签与客户数据库中预存的每个客户集中的标签进行一一比对。
步骤S33,根据比对顺序,依次将具有与所述待筛选标签一样标签的客户集取出并形成一个集合进行暂存。
步骤S34,检测是否有下一个待筛选标签,若是执行步骤S35,若否则执行步骤S36。
步骤S35,再次获取待筛选标签,将待筛选标签与经上一步骤得到的暂存的集合中的每个客户集中的标签进行一一比对,再执行步骤S33;
步骤S36,将上一步骤得到的暂存的集合作为目标客户群保存,并清除所述目标客户群之前得到的各集合。
本实施例中,目标客户群的筛选是层层递进式的,通常都经过多轮筛选后才能准确定位到目标客户。
下面以要筛选出年龄在25-35岁之间,有车一族,且生日为7月22日-7月28日内的目标客户为例说明其具体步骤:
1、从客户数据库中取出具有标签为25岁、26岁、27岁、……35岁的客户集暂存为第一级集合;
2、从第一级集合中取出具有标签为有车的客户集暂存为第二级集合;
3、从第二级集合中取出分别具有标签为7月22日、7月23日、......7月28日的客户集暂存为第三级集合;
4、检测是否还有筛选条件,若没有,则将最后一级集合作为目标客户群保存,并删除之前几级集合;具体到本例中,将第三级集合作为目标客户群保存,并删除第一级和第二级集合。
基于上述实施例,在再一实施例中,如图7所示,所述步骤4具备包括以下分步骤:
S41、获取待切分维度;
S42、统计所述目标客户群中所述客户集在所述切分维度下的标签种类,并给每种标签建立一个以该标签为名称的集合;
S43、用一个集合的名称与目标客户群下的客户集在所述切分维度下的标签进行一一比对,判断两者是否匹配,若匹配则执行步骤S44;若不匹配则执行直接执行步骤S45;
S44、将具有与所述集合的名称相匹配的标签的客户集取出暂存到所述集合中,并在所述目标客户群中删除该客户集;
S45、判断所述集合的名称是否与所述目标客户群下的所有客户集在所述切分维度下的标签进行了一一比对,若是则执行步骤S47,若否则执行步骤S46;
S46、用所述集合的名称继续与目标客户群下的客户集在所述切分维度下的标签进行一一比对,判断两者是否匹配,若匹配则执行步骤S44;若不匹配则执行步骤S45;
S47、判断是否所有集合的名称都已完成比对,若否则执行步骤S43,若是则执行步骤S48;
S48、将各个集合作为目标客户子群保存并输出。
本实施例中,在目标客户群已经筛选出的基础上,只要输入切分维度,便可将所述目标客户群按所述切分维度下的各标签进行自动切分成若干目标客户子群,代替了原来每个目标客户子群都要通过标签从目标客户群中筛选一次后输出的方式,即若干个目标客户子群需要操作若干次的筛选和输出动作。对于营销人员而言,本技术方案中的切分更高效快速。
接上例,以将筛选出的年龄在25-35岁之间,有车一族,且生日为7月22日-7月28日内的目标客户群进一步按生日进行切分成若干目标客户子群说明其具体步骤:
1、统计出目标客户群中生日日期的种类,并以每个生日日期建立一个名词为该生日日期的集合,即假设目标客户群中包含有生日为7月22日-7月28日七种生日日期,则分别建立名称为7月22日、7月23日、......7月28日的集合;
2、从目标客户群中取出生日日期为7月22日的所有客户集存入名称为7月22日的集合中,并将取出的客户集从目标客户群中删除;再目标客户群中取出生日日期为7月23日的所有客户集存入名称为7月23日的集合中,并将取出的客户集从目标客户群中删除;以此类推,直到将目标客户群中生日日期为7月28日的所有客户集存入名称为7月28日的集合中为止;
3、将各集合作为目标客户子群保存并输出。
此外,本发明还提出一种计算机可读存储介质,该计算机可读存储介质上存储有所述基于标签库的业务对象的切分系统20,该基于标签库的业务对象的切分系统20被一个或多个处理器执行时实现上述基于标签库的业务对象的切分方法或电子装置的操作。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。
Claims (7)
1.一种基于标签库的业务对象的切分方法,其特征在于,包括如下步骤:
S1、构建客户数据库,采集客户信息并对所述客户信息进行预处理,给每个客户ID在一个或多个维度上匹配至少一个标签以形成一个客户集;
S2、将客户数据库加载至系统内存中;
S3、建立目标客户群,根据待筛选标签从加载至系统内存中的客户数据库中取出具有所述待筛选标签的客户集;
S4、建立目标客户子群,将所述目标客户群根据待切分维度上所关联的各标签切分成若干个目标客户子群后分别保存,并一次输出多个所述目标客户子群;步骤S4所述的目标客户子群具体包括以下分步骤:
S41、获取待切分维度;
S42、统计所述目标客户群中所述客户集在所述切分维度下的标签种类,并给每种标签建立一个以该标签为名称的集合;
S43、用一个集合的名称与目标客户群下的客户集在所述切分维度下的标签进行一一比对,判断两者是否匹配,若匹配则执行步骤S44;若不匹配则执行直接执行步骤S45;
S44、将具有与所述集合的名称相匹配的标签的客户集取出暂存到所述集合中,并在所述目标客户群中删除该客户集;
S45、判断所述集合的名称是否与所述目标客户群下的所有客户集在所述切分维度下的标签进行了一一比对,若是则执行步骤S47,若否则执行步骤S46;
S46、用所述集合的名称继续与目标客户群下的客户集在所述切分维度下的标签进行一一比对,判断两者是否匹配,若匹配则执行步骤S44;若不匹配则执行步骤S45;
S47、判断是否所有集合的名称都已完成比对,若否则执行步骤S43,若是则执行步骤S48;
S48、将各个集合作为目标客户子群保存,并一次输出多个所述目标客户子群,以实现按所述切分维度下的各标签进行自动切分成若干目标客户子群。
2.根据权利要求1所述基于标签库的业务对象的切分方法,其特征在于,步骤S1所述的构建客户数据库具体包括以下分步骤:
S11、建立维度-标签库,通过程序和/或人工采集并整理的方式,将采集到的客户信息进行整理归类,以生成多维度,并在各维度上关联相应的一个或多个标签;
S12、建立客户-标签库,给采集到的每个客户信息分配一个客户ID,并给每个客户ID根据所述客户信息匹配一个或多个维度上的标签,最终对应每个客户ID形成一个客户集保存在所述客户数据库中。
3.根据权利要求1所述基于标签库的业务对象的切分方法,其特征在于,步骤S3所述的建立目标客户群具体包括以下分步骤:
S31、获取待筛选标签;
S32、将待筛选标签与客户数据库中预存的每个客户集中的标签进行一一比对;
S33、根据比对顺序,依次将具有与所述待筛选标签一样标签的客户集取出并形成一个集合进行暂存;
S34、检测是否有下一个待筛选标签,若是执行步骤S35,若否则执行步骤S36;
S35、再次获取待筛选标签,将待筛选标签与经上一步骤得到的暂存的集合中的每个客户集中的标签进行一一比对,再执行步骤S33;
S36、将上一步骤得到的暂存的集合作为目标客户群保存,并清除所述目标客户群之前得到的各集合。
4.一种电子装置,包括存储器和处理器,其特征在于,所述存储器上存储有可被所述处理器执行的基于标签库的业务对象的切分系统,所述基于标签库的业务对象的切分系统包括:
客户数据库,预存有若干客户信息,每个所述客户信息分配有一个客户ID,且每个所述客户ID在一个或多个维度上匹配至少一个标签以形成一个客户集;
加载模块,用于加客户数据库在筛选之前加载到系统内存中;
筛选模块,根据待筛选标签从客户数据库中筛选出具有待筛选标签的客户集保存为目标客户群;
切分模块,将目标客户群根据待切分维度上所关联的各标签切分成若干个目标客户子群后分别保存,并一次输出多个所述目标客户子群;所述切分模块包括:
切分维度输入子模块,用于获取待切分维度并将其发送至计数子模块;
建立集合子模块,用于统计所述目标客户群中所述客户集在所述切分维度下的标签种类,给每种标签建立一个以该标签为名称的集合;
切分子模块,用于将所述目标客户群中的客户集按所述切分维度下的标签分类,并暂存到具有与所述切分维度下的标签相匹配的名称的各个集合中;
输出子模块,将所述各个集合作为目标客户子群一次输出,以实现按所述切分维度下的各标签进行自动切分成若干目标客户子群。
5.根据权利要求4所述的电子装置,其特征在于,所述客户信息通过程序和/或人工采集并整理。
6.根据权利要求4所述的电子装置,其特征在于,所述筛选模块包括:
筛选标签输入子模块,用于获取待筛选标签并将其发送至筛选子模块;
筛选子模块,用于根据收到的待筛选标签,从所述客户数据库中筛选出具有所述待筛选标签的客户集,并将筛选出的所述客户集暂存成目标客户群的集合。
7.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质内存储有基于标签库的业务对象的切分系统,所述基于标签库的业务对象的切分系统可被至少一个处理器所执行,以使所述至少一个处理器执行如权利要求1-3中任一项所述的基于标签库的业务对象的切分方法的步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710905107.4A CN107808306B (zh) | 2017-09-28 | 2017-09-28 | 基于标签库的业务对象的切分方法、电子装置及存储介质 |
PCT/CN2018/083086 WO2019062079A1 (zh) | 2017-09-28 | 2018-04-13 | 基于标签库的业务对象的切分方法、电子装置及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710905107.4A CN107808306B (zh) | 2017-09-28 | 2017-09-28 | 基于标签库的业务对象的切分方法、电子装置及存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107808306A CN107808306A (zh) | 2018-03-16 |
CN107808306B true CN107808306B (zh) | 2021-03-26 |
Family
ID=61584247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710905107.4A Active CN107808306B (zh) | 2017-09-28 | 2017-09-28 | 基于标签库的业务对象的切分方法、电子装置及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107808306B (zh) |
WO (1) | WO2019062079A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107808306B (zh) * | 2017-09-28 | 2021-03-26 | 平安科技(深圳)有限公司 | 基于标签库的业务对象的切分方法、电子装置及存储介质 |
CN108846453A (zh) * | 2018-05-30 | 2018-11-20 | 湖南鑫蜀山网络科技有限公司 | 一种具备丰富微信客户标签系统的电子设备 |
CN109816420A (zh) * | 2018-12-13 | 2019-05-28 | 深圳壹账通智能科技有限公司 | 客户数据处理方法、装置、计算机设备及存储介质 |
CN109857773B (zh) * | 2018-12-21 | 2022-03-01 | 厦门市美亚柏科信息股份有限公司 | 一种自动分析服务号码的方法和装置 |
CN110162518B (zh) * | 2019-04-16 | 2023-10-31 | 平安科技(深圳)有限公司 | 数据分组方法、装置、电子设备及存储介质 |
CN112184321A (zh) * | 2020-10-12 | 2021-01-05 | 郝晨曦 | 一种客户数据快速筛选方法、装置及系统 |
CN112527918B (zh) * | 2020-12-04 | 2024-08-06 | 广州橙行智动汽车科技有限公司 | 一种数据处理的方法和装置 |
CN113194039B (zh) * | 2021-04-23 | 2023-01-31 | 京东科技信息技术有限公司 | 系统数据流量的切分方法和装置、电子设备和存储介质 |
CN113377833A (zh) * | 2021-06-08 | 2021-09-10 | 中电福富信息科技有限公司 | 基于电信大数据的不满意服务标签的构建方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1858782A (zh) * | 2005-12-05 | 2006-11-08 | 华为技术有限公司 | 一种基于用户业务数据生成用户群的方法及装置 |
CN102542481A (zh) * | 2010-12-27 | 2012-07-04 | 中国移动通信集团浙江有限公司 | 自适应营销的实现方法、系统和装置 |
CN103746898A (zh) * | 2013-12-25 | 2014-04-23 | 新浪网技术(中国)有限公司 | 基于采样分析的电子邮件发送方法和系统 |
CN106815356A (zh) * | 2017-01-20 | 2017-06-09 | 泰华智慧产业集团股份有限公司 | 基于语义分析的精确目标用户消息推送方法及系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102129631B (zh) * | 2010-01-13 | 2015-04-22 | 阿里巴巴集团控股有限公司 | Spu属性聚合的方法、设备和系统 |
US8630902B2 (en) * | 2011-03-02 | 2014-01-14 | Adobe Systems Incorporated | Automatic classification of consumers into micro-segments |
CN104090888B (zh) * | 2013-12-10 | 2016-05-11 | 深圳市腾讯计算机系统有限公司 | 一种用户行为数据的分析方法和装置 |
CN103699495A (zh) * | 2013-12-27 | 2014-04-02 | 乐视网信息技术(北京)股份有限公司 | 数据切分的传输装置与系统 |
CN107808306B (zh) * | 2017-09-28 | 2021-03-26 | 平安科技(深圳)有限公司 | 基于标签库的业务对象的切分方法、电子装置及存储介质 |
-
2017
- 2017-09-28 CN CN201710905107.4A patent/CN107808306B/zh active Active
-
2018
- 2018-04-13 WO PCT/CN2018/083086 patent/WO2019062079A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1858782A (zh) * | 2005-12-05 | 2006-11-08 | 华为技术有限公司 | 一种基于用户业务数据生成用户群的方法及装置 |
CN102542481A (zh) * | 2010-12-27 | 2012-07-04 | 中国移动通信集团浙江有限公司 | 自适应营销的实现方法、系统和装置 |
CN103746898A (zh) * | 2013-12-25 | 2014-04-23 | 新浪网技术(中国)有限公司 | 基于采样分析的电子邮件发送方法和系统 |
CN106815356A (zh) * | 2017-01-20 | 2017-06-09 | 泰华智慧产业集团股份有限公司 | 基于语义分析的精确目标用户消息推送方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
WO2019062079A1 (zh) | 2019-04-04 |
CN107808306A (zh) | 2018-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107808306B (zh) | 基于标签库的业务对象的切分方法、电子装置及存储介质 | |
CN110503565B (zh) | 行为风险识别方法、系统、设备及可读存储介质 | |
US20120254710A1 (en) | Risk charts for failure mode and effect analysis | |
US10839504B2 (en) | User interface for managing defects | |
CN112541745A (zh) | 用户行为数据分析方法、装置、电子设备及可读存储介质 | |
CN107679740A (zh) | 业务员筛选激活方法、电子装置及计算机可读存储介质 | |
EP3770841A1 (en) | Demand prediction system and method | |
CN110956269A (zh) | 数据模型的生成方法、装置、设备以及计算机存储介质 | |
CN111090822A (zh) | 业务对象的推送方法及装置 | |
WO2019062011A1 (zh) | 目标客户群的构建方法、电子装置及存储介质 | |
CN108536356A (zh) | 坐席信息处理方法、装置及计算机可读存储介质 | |
CN111191123A (zh) | 业务信息推送方法、装置、可读存储介质和计算机设备 | |
CN110650170B (zh) | 用于推送信息的方法和装置 | |
CN110807050B (zh) | 性能分析方法、装置、计算机设备及存储介质 | |
CN112579621A (zh) | 数据展示方法、装置、电子设备及计算机存储介质 | |
CN111291051A (zh) | 运价数据处理方法及装置、存储介质及电子设备 | |
CN111950623B (zh) | 数据稳定性监控方法、装置、计算机设备及介质 | |
CN109726188B (zh) | 物流日志的处理方法、装置、计算机设备和可读存储介质 | |
CN109800265B (zh) | 数据加载方法、装置、设备及计算机可读存储介质 | |
CN118013299A (zh) | 一种用于建设任务的进度统计方法和系统 | |
CN111353751B (zh) | 批量补卡的还原方法和装置 | |
WO2019085345A1 (zh) | 客户抽样试营销方法、电子装置及计算机可读存储介质 | |
CN116501375A (zh) | 数据字典版本管理方法、装置、计算机设备及存储介质 | |
CN112836827B (zh) | 模型训练方法、装置以及计算机设备 | |
CN115622884A (zh) | 配置数据的变更处理方法、装置和计算机设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |