CN107804446B - 用于水下航行器的三自由度仿水翼推进机构及其运动学控制方法 - Google Patents

用于水下航行器的三自由度仿水翼推进机构及其运动学控制方法 Download PDF

Info

Publication number
CN107804446B
CN107804446B CN201710938769.1A CN201710938769A CN107804446B CN 107804446 B CN107804446 B CN 107804446B CN 201710938769 A CN201710938769 A CN 201710938769A CN 107804446 B CN107804446 B CN 107804446B
Authority
CN
China
Prior art keywords
servo
controller
hydrofoil
bevel gear
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710938769.1A
Other languages
English (en)
Other versions
CN107804446A (zh
Inventor
王鹏
赵亮
田时雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201710938769.1A priority Critical patent/CN107804446B/zh
Publication of CN107804446A publication Critical patent/CN107804446A/zh
Application granted granted Critical
Publication of CN107804446B publication Critical patent/CN107804446B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/30Propulsive elements directly acting on water of non-rotary type
    • B63H1/36Propulsive elements directly acting on water of non-rotary type swinging sideways, e.g. fishtail type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/52Tools specially adapted for working underwater, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Abstract

本发明公开了一种用于水下航行器的三自由度仿水翼推进机构及其运动学控制方法,用于解决现有水下仿水翼推进装置实用性差的技术问题。技术方案是所述推进机构由锥齿轮机构、翻转运动机构、仿生水翼和固定底座四部分组成。锥齿轮机构有两个自由度,可以带动整个翻转运动机构和仿生水翼实现运动幅值可调的竖直拍动、水平划动,从而使仿生水翼翼尖实现翼尖轨迹的调节;翻转机构独立驱动仿生水翼的翻转运动。为实现仿生水翼翼尖轨迹的调节,本发明公开了一种推进机构的运动学控制方法。从而既可以实现仿生水翼翼尖轨迹的调节,又可独立调节仿生水翼在任意位置迎水面积,更好地模拟生物的扑翼运动,实用性好。

Description

用于水下航行器的三自由度仿水翼推进机构及其运动学控制 方法
技术领域
本发明涉及一种水下仿水翼推进装置,具体涉及一种用于水下航行器的三自由度仿水翼推进机构。还涉及这种三自由度仿水翼推进机构的运动学控制方法。
背景技术
水下航行器作为一种水下无人移动平台,在海洋资源探索、海洋科学考察和军事等领域有着广阔的应用前景。目前的水下航行器多采用螺旋桨推进,单个螺旋桨推进器只能产生固定方向的推进力,然而,在自然界的水生动物中,海龟、海豚、企鹅等动物都采用鳍状肢体运动,有学者研究发现,仿生推进较同功率螺旋桨推进器有更高的推进效率。海龟等生物在水中游动时,身体躯干不作大幅度摆动,依靠鳍状前肢的扑动产生动力,称之为扑翼推进方式。扑翼推进方式融合了鸟类飞行和鱼类游动两种运动特性,又能独立控制单翼运动姿态并协调双翼一起运动达到矢量推进的效果。因此,尽管此类动物具有较大的体形,但是它们却具有爆发力强、机动性高、稳定性好、噪声低等特点。将这种推进方式应用于水下无人航行器,将极大地提高水下无人航行器推进效率。
文献1“申请公布号是CN101003301A的中国发明专利”中公开了一种水下仿水翼推进装置,该装置包括仿生水翼、水翼拍动单元、水翼旋转单元和底板固定单元。该推进装置的仿生水翼安装在水翼拍动单元上,水翼拍动单元又和水翼旋转单元连接在一起。但由于仅有两个自由度,这种装置在控制仿生水翼翼尖按照8字形运动轨迹运动时,不能随意调节仿生水翼在某一位置下的迎水面积。
文献2“申请公布号是CN102079382A的中国发明专利”中公开了一种水下机械式仿生扑翼推进器,该推进器由水平运动机构、竖直运动机构、翻转运动机构、仿生扑翼、固定底板五部分组成。整个机构运动过程为:电机驱动偏置曲柄滑块机构运动,带动水平滑块在水平滑块运动导轨中左右运动;同时,电机驱动凸轮推杆机构,带动竖直滑块相对水平滑块作竖直方向上的运动,两个运动叠加实现扑翼末梢运动轨迹的拟合,同时带动翻转运动机构运动,从而实现扑翼的翻转运动。该推进器可以在控制仿生水翼翼尖按照8字形运动轨迹运动时,通过翻转运动机构调节仿生水翼的迎水面积,使得扑翼向前运动时迎水面积小、向后划水时迎水面积大。但是受到连杆、凸轮等机械结构的限制,实际应用中一旦推进器机构中连杆、凸轮等零件尺寸确定,水平运动机构的水平运动幅值、竖直运动机构的竖直运动幅值以及翻转运动机构的运动幅值将相应确定,同一个推进器可实现的仿生运动轨迹的可行域受到限制,无法调节仿生水翼翼尖轨迹,而实际水生生物在通过水翼扑翼运动时,不同前进速度下水翼翼尖的轨迹是不同的。
发明内容
为了克服现有水下仿水翼推进装置实用性差的不足,本发明提供一种用于水下航行器的三自由度仿水翼推进机构及其运动学控制方法。所述推进机构由锥齿轮机构、翻转运动机构、仿生水翼和固定底座四部分组成。锥齿轮机构有两个自由度,可以带动整个翻转运动机构和仿生水翼实现运动幅值可调的竖直拍动、水平划动,从而使仿生水翼翼尖实现翼尖轨迹的调节;翻转机构独立驱动仿生水翼的翻转运动。为实现仿生水翼翼尖轨迹的调节,本发明公开了一种推进机构的运动学控制方法。从而既可以实现仿生水翼翼尖轨迹的调节,又可独立调节仿生水翼在任意位置迎水面积,更好地模拟生物的扑翼运动,实用性好。
本发明解决其技术问题所采用的技术方案是:一种用于水下航行器的三自由度仿水翼推进机构,其特点是:由锥齿轮机构、翻转运动机构、仿生水翼15和固定底座四部分组成。所述固定底座包括第一伺服舵机固定件4和第二伺服舵机固定件5。所述锥齿轮机构包括第一伺服舵机1、第一舵盘16、第一锥齿轮8、第一锥齿轮轴7、第一轴向限位螺钉19、第二伺服舵机2、第二舵盘17、第二锥齿轮10、第二锥齿轮轴9、第二轴向限位螺钉20、第三锥齿轮12、第三锥齿轮轴11、第三轴向限位螺钉21和中心支撑架13。第一伺服舵机1通过第一伺服舵机固定件4安装在水下航行器上,第一伺服舵机1输出轴与第一舵盘16连接,第一舵盘16与第一锥齿轮轴7连接,第一锥齿轮8固定在第一锥齿轮轴7上,第一锥齿轮轴7右端穿过中心支撑架13,使用第一轴向限位螺钉19限制中心支撑架13相对于第一锥齿轮轴7的轴向运动;第二伺服舵机2通过第二伺服舵机固定件5安装在水下航行器上,第二伺服舵机2输出轴与第二舵盘17连接,第二舵盘17与第二锥齿轮轴9连接,第二锥齿轮10固定在第二锥齿轮轴9上,第二锥齿轮轴9左端穿过中心支撑架13,使用第二轴向限位螺钉20限制中心支撑架13相对于第二锥齿轮轴9的轴向运动;第三锥齿轮12固定在第三锥齿轮轴11上,第三锥齿轮轴11下端穿过中心支撑架13,使用第三轴向限位螺钉21限制中心支撑架13相对于第三锥齿轮轴11的轴向运动。所述第一锥齿轮8、第二锥齿轮10、第三锥齿轮12的模数、齿数均相等,第一锥齿轮8与第三锥齿轮12垂直啮合,第二锥齿轮10与第三锥齿轮12垂直啮合。第三锥齿轮12初始安装位置为其中心轴线处于竖直平面。所述翻转运动机构包括第三伺服舵机3、第三舵盘18和水翼连接轴14。第三伺服舵机3输出轴接第三舵盘18,第三舵盘18与水翼连接轴14连接,水翼连接轴14与仿生水翼15连接;第三伺服舵机3通过伺服舵机连接件6与第二锥齿轮轴9上端连接。
所述仿生水翼15边缘具有柔性。
一种上述用于水下航行器的三自由度仿水翼推进机构的运动学控制方法,其特点是包括以下步骤:
步骤一、对三自由度仿水翼推进机构进行运动学建模,抽象出数学模型,以分析指导机构的运动控制。
(a)锥齿轮机构建模。
在第一伺服舵机1、第二伺服舵机2的驱动下,第三锥齿轮12做空间定点转动。该定点运动分解为绕自身对称轴旋转的自转运动和绕第一伺服舵机1中心轴线旋转的周转运动,用自转角度θy和周转角度θp两个参数确定第三锥齿轮12的空间姿态,根据齿轮啮合关系以及刚体运动学知识,得到第一伺服舵机1、第二伺服舵机2的转动角度与第三锥齿轮12的姿态角的关系:
根据公式(1):
θ1=θpy2=θyp (2)
式中,θ1为第一伺服舵机1的转动角度,θ2为第二伺服舵机2的转动角度,θy为第三锥齿轮12的自转角度,θp为第三锥齿轮12的周转角度。
(b)水翼运动学建模。
第三伺服舵机3与第三锥齿轮12连接在一起,具有相同的运动规律,第三伺服舵机3转角θ3直接控制仿生水翼15绕轴的横滚角θr,且有
θ3=θr (3)
式中,θ3为第三伺服舵机3转角,θr为仿生水翼15绕轴的横滚角。
综上,用θy、θp和θr三个角度确定仿生水翼15的空间姿态,描述仿生水翼15相对于惯性参考系的空间姿态的矩阵为:
已知水翼上一点在水翼坐标系中的位置坐标Bp,则该点在惯性参考系中的空间坐标为:
步骤二、建立机构的逆运动学,找到三维空间下的仿生水翼15翼尖运动轨迹坐标与机构关节空间下的第一伺服舵机1、第二伺服舵机2转角θ1、θ2之间的关系。
已知水翼上一点Bp=[R 0 0]T在惯性坐标系中的坐标Ep=[px py pz]T,则根据公式(4):
根据公式(5)求解描述仿生水翼15空间姿态角θy、θp
根据公式(2)、公式(6),得到θ1、θ2Ep=[px py pz]T关系:
步骤三、输入所需的仿生水翼15翼尖一点Bp=[R 0 0]T在惯性坐标系中的运动轨迹,在目标轨迹上取n个目标轨迹点,这些目标轨迹点在惯性坐标系中的坐标为Epi=[pixipiy piz]T,(i=1,2,3,...,n),通过公式(7)求解每一个目标轨迹点Epi所对应的第一伺服舵机1、第二伺服舵机2转角θi1、θi2
步骤四、根据仿生水翼15翼尖处于不同位置时的水翼翼板迎水面积,确定仿生水翼15翼尖处于不同位置时的水翼横滚角θr,根据公式(3)求解第三伺服舵机3转角θ3
步骤五、用步骤三、步骤四求解的机构关节空间下的关节角θ1、θ2和θ3数据直接控制角度输出的第一伺服舵机1、第二伺服舵机2和第三伺服舵机3,使仿生水翼15完成目标运动状态。
本发明的有益效果是:所述推进机构由锥齿轮机构、翻转运动机构、仿生水翼和固定底座四部分组成。锥齿轮机构有两个自由度,可以带动整个翻转运动机构和仿生水翼实现运动幅值可调的竖直拍动、水平划动,从而使仿生水翼翼尖实现翼尖轨迹的调节;翻转机构独立驱动仿生水翼的翻转运动。为实现仿生水翼翼尖轨迹的调节,本发明公开了一种推进机构的运动学控制方法。从而既可以实现仿生水翼翼尖轨迹的调节,又可独立调节仿生水翼在任意位置迎水面积,更好地模拟生物的扑翼运动,实用性好。
以下结合附图和实施例详细说明本发明。
附图说明
图1是本发明用于水下航行器的三自由度仿水翼推进机构的运动简图。
图2是本发明用于水下航行器的三自由度仿水翼推进机构的的立体示意图。
图3是本发明用于水下航行器的三自由度仿水翼推进机构的的立体分解图。
图4是本发明用于水下航行器的三自由度仿水翼推进机构的的锥齿轮机构的运动学模型。
图5是本发明用于水下航行器的三自由度仿水翼推进机构的翼尖做8字形运动的轨迹示意图。
图6是本发明用于水下航行器的三自由度仿水翼推进机构的翼尖做划水运动的轨迹示意图。
图中,1-第一伺服舵机,2-第二伺服舵机,3-第三伺服舵机,4-第一伺服舵机固定件,5-第二伺服舵机固定件,6-伺服舵机连接件,7-第一锥齿轮轴,9-第二锥齿轮轴,11-第三锥齿轮轴,8-第一锥齿轮,10-第二锥齿轮,12-第三锥齿轮,13-中心支撑架,14-水翼连接轴,15-仿生水翼,16-第一舵盘,17-第二舵盘,18-第三舵盘,19-第一轴向限位螺钉,20-第二轴向限位螺钉,21-第三轴向限位螺钉。
具体实施方式
以下实施例参照图1-6。
装置实施例。本发明一种用于水下航行器的三自由度仿水翼推进机构,由锥齿轮机构、翻转运动机构、仿生水翼、固定底座四部分组成。仿生水翼15安装在翻转运动机构上,翻转运动机构又和锥齿轮机构连接在一起,锥齿轮机构安装在固定底座上。
所述固定底座包括第一伺服舵机固定件4、第二伺服舵机固定件5。
所述锥齿轮机构包括第一伺服舵机1、第一舵盘16、第一锥齿轮8、第一锥齿轮轴7、第一轴向限位螺钉19、第二伺服舵机2、第二舵盘17、第二锥齿轮10、第二锥齿轮轴9、第二轴向限位螺钉20、第三锥齿轮12、第三锥齿轮轴11、第三轴向限位螺钉21、中心支撑架13。第一伺服舵机1通过第一伺服舵机固定件4安装在水下航行器上,第一伺服舵机1输出轴与第一舵盘16连接,第一舵盘16与第一锥齿轮轴7连接,第一锥齿轮8固定在第一锥齿轮轴7上,第一锥齿轮轴7右端穿过中心支撑架13,使用第一轴向限位螺钉19限制中心支撑架13相对于第一锥齿轮轴7的轴向运动;第二伺服舵机2通过第二伺服舵机固定件5安装在水下航行器上,第二伺服舵机2输出轴与第二舵盘17连接,第二舵盘17与第二锥齿轮轴9连接,第二锥齿轮10固定在第二锥齿轮轴9上,第二锥齿轮轴9左端穿过中心支撑架13,使用第二轴向限位螺钉20限制中心支撑架13相对于第二锥齿轮轴9的轴向运动;第三锥齿轮12固定在第三锥齿轮轴11上,第三锥齿轮轴11下端穿过中心支撑架13,使用第三轴向限位螺钉21限制中心支撑架13相对于第三锥齿轮轴11的轴向运动。所述第一锥齿轮8、第二锥齿轮10、第三锥齿轮12模数、齿数均相等,第一锥齿轮8与第三锥齿轮12垂直啮合,第二锥齿轮10与第三锥齿轮12垂直啮合。第三锥齿轮12初始安装位置为其中心轴线处于竖直平面。
所述仿生水翼15有一定翼形,水翼边缘具有柔性。
所述翻转运动机构包括第三伺服舵机3、第三舵盘18、水翼连接轴14。第三伺服舵机3输出轴接第三舵盘18,第三舵盘18与水翼连接轴14连接,水翼连接轴14与仿生水翼15连接;第三伺服舵机3再通过伺服舵机连接件6与第二锥齿轮轴9上端连接。
本实施方式中,将两套三自由度仿水翼推进机构对称安装到水下航行器的两侧。第一锥齿轮轴7、第二锥齿轮轴9中心轴线指向水下航行器的前后方向,第一锥齿轮轴7靠近水下航行器的头部,第三锥齿轮轴11的中心轴线初始位置指向航行器顶部。
三自由度仿水翼推进机构工作时,翻转运动机构直接独立驱动仿生水翼15做翻转运动,以改变其迎水面积。锥齿轮机构有两个自由度,可以带动整个翻转运动机构和仿生水翼15实现一定运动幅值的竖直拍动、水平划动,从而使仿生水翼15翼尖按照预定运动轨迹运动。因为水下航行器左右对称安装了两套推进机构,两套推进机构的运动是各自独立的。
方法实施例1。
步骤一、对三自由度仿水翼推进机构进行运动学建模,抽象出数学模型,以分析指导机构的运动控制。
为了描述水翼以及机构的运动,建立惯性参考坐标系OXYZ,记作坐标系{E},取第一锥齿轮轴7、第二锥齿轮轴9和第三锥齿轮轴11的交点为惯性坐标系原点,以第一锥齿轮8和第二锥齿轮10的对称中心轴线为OY轴,正方向指向第二锥齿轮10,取竖直向上为OZ轴正方向,根据右手法则,OX轴与机构初始状态下水翼连接轴14的中心轴线重合。
此外,建立与仿生水翼15固连的水翼坐标系oxyz,记作坐标系{B},坐标原点与惯性坐标系坐标原点重合,ox轴与水翼连接轴14的中心轴线始终重合,oz轴始终垂直于仿生水翼15纵对称面,oy轴根据右手法则确定。
(a)锥齿轮机构建模。
在第一伺服舵机1、第二伺服舵机2的驱动下,第三锥齿轮12做空间定点转动。该定点运动分解为绕自身对称轴旋转的自转运动和绕第一伺服舵机1中心轴线旋转的周转运动,用自转角度θy和周转角度θp两个参数确定第三锥齿轮12的空间姿态,根据齿轮啮合关系以及刚体运动学知识,得到第一伺服舵机1、第二伺服舵机2的转动角度与第三锥齿轮12的姿态角的关系:
根据公式(1):
θ1=θpy2=θyp (2)
式中,θ1为第一伺服舵机1的转动角度,θ2为第二伺服舵机2的转动角度,θy为第三锥齿轮12的自转角度,θp为第三锥齿轮12的周转角度。
(b)水翼运动学建模。
第三伺服舵机3与第三锥齿轮12连接在一起,具有相同的运动规律,第三伺服舵机3转角θ3直接控制仿生水翼15绕轴的横滚角θr,且有
θ3=θr (3)
式中,θ3为第三伺服舵机3转角,θr为仿生水翼15绕轴的横滚角。
综上,用θy、θp和θr三个角度确定仿生水翼15的空间姿态,描述仿生水翼15相对于惯性参考系的空间姿态的矩阵为:
已知水翼上一点在水翼坐标系中的位置坐标Bp,则该点在惯性参考系中的空间坐标为:
步骤二、建立机构的逆运动学,找到三维空间下的仿生水翼15翼尖运动轨迹坐标与机构关节空间下的第一伺服舵机1、第二伺服舵机2转角θ1、θ2之间的关系。
已知水翼上一点Bp=[R 0 0]T在惯性坐标系中的坐标Ep=[px py pz]T,则根据公式(4):
根据公式(5)求解描述仿生水翼15空间姿态角θy、θp
根据公式(2)、公式(6),得到θ1、θ2Ep=[px py pz]T关系:
步骤三、取仿生水翼15旋转轴上一固定点Bp=[R 0 0]T,R=201.9mm,所输入的仿生水翼15翼尖目标轨迹为一处于R=201.9mm的球面上的8字形轨迹,在目标轨迹上取n个目标轨迹点,这些目标轨迹点在惯性坐标系中的坐标为Epi=[pixi piy piz]T,(i=1,2,3,...,n),此处取n=32,前十个目标轨迹点的坐标为:
将目标轨迹点代入(7)式,即可求解出能够使机构带动水翼上固定点Bp到达这些目标轨迹点所需的机构关节空间下的关节角θ1、θ2
序号 θ<sub>1</sub>/° θ<sub>2</sub>/° 序号 θ<sub>1</sub>/° θ<sub>2</sub>/°
1 0 65.32814 6 0 6.786512
2 16.40296 70.28802 7 7.000337 -2.79038
3 31.76804 70.9981 8 12.41212 -13.9719
4 45.36 67.73806 9 14.76253 -24.901
5 56.73157 61.57681 10 12.96186 -34.0547
步骤四、根据仿生水翼15翼尖处于8字形轨迹不同位置时的水翼翼板迎水面积,确定仿生水翼15翼尖处于不同位置时的水翼横滚角θr,根据公式(3)求解第三伺服舵机3转角θ3
步骤五、用步骤三、步骤四求解的机构关节空间下的关节角θ1、θ2和θ3数据直接控制角度输出的第一伺服舵机1、第二伺服舵机2和第三伺服舵机3,使仿生水翼15完成目标运动状态。
方法实施例2.
当三自由度仿水翼机构做划水运动时,取仿生水翼15旋转轴上一固定点Bp=[R 00]T为参考点,则该点的运动轨迹近似为一段弧线,仿生水翼15运动过程中仿生水翼15横滚角θr存在变化。为了实现这种运动,机构运动学控制方法步骤与具体实施方式一相同,区别在于步骤三第一伺服舵机1、第二伺服舵机2转角θ1、θ2求解过程中,所输入的仿生水翼15翼尖目标轨迹为一条位于水平面XOY上的弧线,通过公式(7)求解得到第一伺服舵机1、第二伺服舵机2转角θ1、θ2

Claims (3)

1.一种用于水下航行器的三自由度仿水翼推进机构,其特征在于:由锥齿轮机构、翻转运动机构、仿生水翼(15)和固定底座四部分组成;所述固定底座包括第一伺服舵机固定件(4)和第二伺服舵机固定件(5);所述锥齿轮机构包括第一伺服舵机(1)、第一舵盘(16)、第一锥齿轮(8)、第一锥齿轮轴(7)、第一轴向限位螺钉(19)、第二伺服舵机(2)、第二舵盘(17)、第二锥齿轮(10)、第二锥齿轮轴(9)、第二轴向限位螺钉(20)、第三锥齿轮(12)、第三锥齿轮轴(11)、第三轴向限位螺钉(21)和中心支撑架(13);第一伺服舵机(1)通过第一伺服舵机固定件(4)安装在水下航行器上,第一伺服舵机(1)输出轴与第一舵盘(16)连接,第一舵盘(16)与第一锥齿轮轴(7)连接,第一锥齿轮(8)固定在第一锥齿轮轴(7)上,第一锥齿轮轴(7)右端穿过中心支撑架(13),使用第一轴向限位螺钉(19)限制中心支撑架(13)相对于第一锥齿轮轴(7)的轴向运动;第二伺服舵机(2)通过第二伺服舵机固定件(5)安装在水下航行器上,第二伺服舵机(2)输出轴与第二舵盘(17)连接,第二舵盘(17)与第二锥齿轮轴(9)连接,第二锥齿轮(10)固定在第二锥齿轮轴(9)上,第二锥齿轮轴(9)左端穿过中心支撑架(13),使用第二轴向限位螺钉(20)限制中心支撑架(13)相对于第二锥齿轮轴(9)的轴向运动;第三锥齿轮(12)固定在第三锥齿轮轴(11)上,第三锥齿轮轴(11)下端穿过中心支撑架(13),使用第三轴向限位螺钉(21)限制中心支撑架(13)相对于第三锥齿轮轴(11)的轴向运动;所述第一锥齿轮(8)、第二锥齿轮(10)、第三锥齿轮(12)的模数、齿数均相等,第一锥齿轮(8)与第三锥齿轮(12)垂直啮合,第二锥齿轮(10)与第三锥齿轮(12)垂直啮合;第三锥齿轮(12)初始安装位置为其中心轴线处于竖直平面;所述翻转运动机构包括第三伺服舵机(3)、第三舵盘(18)和水翼连接轴(14);第三伺服舵机(3)输出轴接第三舵盘(18),第三舵盘(18)与水翼连接轴(14)连接,水翼连接轴(14)与仿生水翼(15)连接;第三伺服舵机(3)通过伺服舵机连接件(6)与第二锥齿轮轴(9)上端连接。
2.根据权利要求1所述的用于水下航行器的三自由度仿水翼推进机构,其特征在于:所述仿生水翼(15)边缘具有柔性。
3.一种权利要求1所述用于水下航行器的三自由度仿水翼推进机构的运动学控制方法,其特征在于包括以下步骤:
步骤一、对三自由度仿水翼推进机构进行运动学建模,抽象出数学模型,以分析指导机构的运动控制;
(a)锥齿轮机构建模;
在第一伺服舵机(1)、第二伺服舵机(2)的驱动下,第三锥齿轮(12)做空间定点转动;该定点转动分解为绕自身对称轴旋转的自转运动和绕第一伺服舵机(1)中心轴线旋转的周转运动,用自转角度θy和周转角度θp两个参数确定第三锥齿轮(12)的空间姿态,根据齿轮啮合关系以及刚体运动学知识,得到第一伺服舵机(1)、第二伺服舵机(2)的转动角度与第三锥齿轮(12)的姿态角的关系:
根据公式(1):
θ1=θpy2=θyp (2)
式中,θ1为第一伺服舵机(1)的转动角度,θ2为第二伺服舵机(2)的转动角度,θy为第三锥齿轮(12)的自转角度,θp为第三锥齿轮(12)的周转角度;
(b)水翼运动学建模;
第三伺服舵机(3)与第三锥齿轮(12)连接在一起,具有相同的运动规律,第三伺服舵机(3)转角θ3直接控制仿生水翼(15)绕轴的横滚角θr,且有
θ3=θr (3)
式中,θ3为第三伺服舵机(3)转角,θr为仿生水翼(15)绕轴的横滚角;
综上,用θy、θp和θr三个角度确定仿生水翼(15)的空间姿态,描述仿生水翼(15)相对于惯性参考系的空间姿态的矩阵为:
已知水翼上一点在水翼坐标系中的位置坐标Bp,则该点在惯性参考系中的空间坐标为:
步骤二、建立机构的逆运动学,找到三维空间下的仿生水翼(15)翼尖运动轨迹坐标与机构关节空间下的第一伺服舵机(1)、第二伺服舵机(2)转角θ1、θ2之间的关系;
已知水翼上一点Bp=[R 0 0]T在惯性坐标系中的坐标Ep=[px py pz]T,则根据公式(4):
根据公式(5)求解描述仿生水翼(15)空间姿态角θy、θp
根据公式(2)、公式(6),得到θ1、θ2Ep=[px py pz]T关系:
步骤三、输入所需的仿生水翼(15)翼尖一点Bp=[R 0 0]T在惯性坐标系中的运动轨迹,在目标轨迹上取n个目标轨迹点,这些目标轨迹点在惯性坐标系中的坐标为Epi=[pixi piypiz]T,(i=1,2,3,...,n),通过公式(7)求解每一个目标轨迹点Epi所对应的第一伺服舵机(1)、第二伺服舵机(2)转角θi1、θi2
步骤四、根据仿生水翼(15)翼尖处于不同位置时的水翼翼板迎水面积,确定仿生水翼(15)翼尖处于不同位置时的水翼横滚角θr,根据公式(3)求解第三伺服舵机(3)转角θ3
步骤五、用步骤三、步骤四求解的机构关节空间下的关节角θ1、θ2和θ3数据直接控制角度输出的第一伺服舵机(1)、第二伺服舵机(2)和第三伺服舵机(3),使仿生水翼(15)完成目标运动状态。
CN201710938769.1A 2017-09-26 2017-09-26 用于水下航行器的三自由度仿水翼推进机构及其运动学控制方法 Expired - Fee Related CN107804446B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710938769.1A CN107804446B (zh) 2017-09-26 2017-09-26 用于水下航行器的三自由度仿水翼推进机构及其运动学控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710938769.1A CN107804446B (zh) 2017-09-26 2017-09-26 用于水下航行器的三自由度仿水翼推进机构及其运动学控制方法

Publications (2)

Publication Number Publication Date
CN107804446A CN107804446A (zh) 2018-03-16
CN107804446B true CN107804446B (zh) 2019-04-19

Family

ID=61592669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710938769.1A Expired - Fee Related CN107804446B (zh) 2017-09-26 2017-09-26 用于水下航行器的三自由度仿水翼推进机构及其运动学控制方法

Country Status (1)

Country Link
CN (1) CN107804446B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108661850B (zh) * 2018-04-13 2020-03-24 中国航天空气动力技术研究院 一种系绳式洋流发电机运动轨迹控制方法
CN108820170B (zh) * 2018-08-03 2024-04-26 兰州交通大学 一种三自由度仿生机器鱼胸鳍嵌套式推进机构
CN109533249B (zh) * 2018-11-24 2020-08-18 天津大学 一种仿生型水下航行器扑翼推进装置
CN112109863A (zh) * 2019-06-21 2020-12-22 深圳光启空间技术有限公司 一种伺服驱动装置及使用该装置的仿生鱼
CN111439359B (zh) * 2020-04-09 2023-10-31 浙江大学 双凸轮结构潜水器舵

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229104B2 (ja) * 1994-02-04 2001-11-12 三菱重工業株式会社 振動翼制御推進機付ビークル
US6908286B2 (en) * 2003-07-10 2005-06-21 Sikorsky Aircraft Corporation Main rotor shaft mounted hydraulic pressure system
CN201002714Y (zh) * 2007-01-19 2008-01-09 哈尔滨工程大学 一种水下仿水翼推进装置
CN206297718U (zh) * 2016-11-08 2017-07-04 山东科技大学 一种仿生机械鱼尾部推进机构

Also Published As

Publication number Publication date
CN107804446A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
CN107804446B (zh) 用于水下航行器的三自由度仿水翼推进机构及其运动学控制方法
CN110588931B (zh) 一种基于胸鳍与螺旋桨混合推进的水下仿生航行器
CN110588932B (zh) 基于摆动胸鳍与背腹式尾鳍联合推进的水下仿生航行器
CN100584695C (zh) 一种仿生海龟水下机器人
CN102514697B (zh) 仿生机器魟鱼及其运动方式
CN104015904B (zh) 多组合推进式柔性仿生机器鱼
CN100491197C (zh) 双体机器鱼
CN106005323A (zh) 一种仿生水下滑翔机及其推进方法
CN201002714Y (zh) 一种水下仿水翼推进装置
CN201143991Y (zh) 一种仿生海龟水下机器人
Du et al. Design and control of a two-motor-actuated tuna-inspired robot system
Wu et al. Mechatronic design and implementation of a novel gliding robotic dolphin
CN105151298A (zh) 一种可实现俯仰和偏航独立调控的尾翼调节机构与扑翼机
CN109204744A (zh) 一种仿生推进水下滑翔机
CN103213664A (zh) 双驱动仿生胸鳍骨架
CN104724269A (zh) 一种空间机动尾摆推进装置
CN207000790U (zh) 一种仿生推进水下滑翔机
CN209814271U (zh) 一种四自由度扑翼飞行器装置
Sun et al. Design, hydrodynamic analysis, and testing of a bioinspired controllable wing mechanism with multi-locomotion modes for hybrid-driven underwater gliders
US20070023569A1 (en) Apparatuses and methods for applying forces to a structure utilizing oscillatory wing motions in a fluid
US20050230522A1 (en) Wing-drive mechanism and vehicle employing same
CN209112442U (zh) 一种带有球副的顶杆凹槽仿生蜻蜓翅膀驱动机构
CN114537629B (zh) 基于复合连杆机构的尾鳍推进自主游动仿生机器鱼
KR102134402B1 (ko) 수중 이동체
CN112918644A (zh) 基于mpf多对并行胸鳍仿生鳐鱼机器人的仿生运动方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190419

Termination date: 20190926

CF01 Termination of patent right due to non-payment of annual fee