CN107794469A - 一种高强度合金钢 - Google Patents

一种高强度合金钢 Download PDF

Info

Publication number
CN107794469A
CN107794469A CN201711128101.7A CN201711128101A CN107794469A CN 107794469 A CN107794469 A CN 107794469A CN 201711128101 A CN201711128101 A CN 201711128101A CN 107794469 A CN107794469 A CN 107794469A
Authority
CN
China
Prior art keywords
parts
gypsum
high strength
crystal whisker
alloy steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711128101.7A
Other languages
English (en)
Inventor
赵钧羡
胡新丽
吴敏
段隆臣
刘志强
胡郁乐
李波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU HEXIN PETROLEUM MACHINERY CO Ltd
Original Assignee
JIANGSU HEXIN PETROLEUM MACHINERY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU HEXIN PETROLEUM MACHINERY CO Ltd filed Critical JIANGSU HEXIN PETROLEUM MACHINERY CO Ltd
Priority to CN201711128101.7A priority Critical patent/CN107794469A/zh
Publication of CN107794469A publication Critical patent/CN107794469A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/08Iron group metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明公开了一种高强度合金钢,包括如下重量份的组分:C:1~3份、Si:2~4份、Mn:3~6份、Cr:0.8~1.2份、Ni:3~6份、Al2O3:4~6份、石膏晶须:30~60份、Ti:10~20份、La:3~5份、Nd:6~10份、Fe:100份;其中,所述的Al2O3为纳米级多孔Al2O3。本发明强度高,使用寿命长。

Description

一种高强度合金钢
技术领域
本发明涉及一种高强度合金钢,特别涉及一种钻机用的高强度合金钢。
背景技术
目前,钻机是一套复杂的机器,它由机器、机组和机构组成。钻机是在勘探或矿产资源,例如在含固体矿、液体矿、气体矿等开发中,带动钻具向地下钻进,获取实物地质资料的机械设备。又称钻探机。主要作用是带动钻具破碎孔底岩石,下入或提出在孔内的钻具。可用于钻取岩心 、矿心、岩屑、气态样、液态样等,以探明地下地质和矿产资源等情况。钻机中的钻具需要具备很高的强度要求,如果没有极高的强度,钻具的使用寿命会受到极大的削减。
发明内容
针对上述现有技术的不足之处,本发明解决的问题为:提供一种高强度的合金钢。
为解决上述问题,本发明采取的技术方案如下:
一种高强度合金钢,包括如下重量份的组分:C:1~3份、Si:2~4份、Mn:3~6份、Cr:0.8~1.2份、Ni:3~6份、Al2O3 :4~6份、石膏晶须:30~60份、Ti:10~20份、La:3~5份、Nd:6~10份、Fe:100份;其中,所述的Al2O3 为纳米级多孔Al2O3
进一步,包括如下重量份的组分:C:2~3份、Si:3~4份、Mn:3~5份、Cr:0.8~1份、Ni:3~5份、Al2O3 :5~6份、石膏晶须:30~50份、Ti:12~17份、La:4~5份、Nd:8~9份、Fe:100份。
进一步,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:3份、Nd:6份、Fe:100份;所述的La和Nd比例为1:2。
进一步,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:4份、Nd:8份、Fe:100份;所述的La和Nd比例为1:2。
进一步,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:5份、Nd:10份、Fe:100份;所述的La和Nd比例为1:2。
进一步,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:3份、Nd:7份、Fe:100份;所述的La和Nd比例为3:7。
进一步,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:4份、Nd:9份、Fe:100份;所述的La和Nd比例为4:9。
进一步,所述的石膏晶须和Fe的比例为1:2。
本发明的有益效果
本发明的强度得到了极大的提升,在使用过程中使用寿命得到了极大延长,本发明中的La和Nd的分量和比例影响了本发明的强度。
具体实施方式
下面对本发明内容作进一步详细说明。
实施例1
一种高强度合金钢,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:3份、Nd:6份、Fe:100份;所述的La和Nd比例为1:2,其中,所述的Al2O3 为纳米级多孔Al2O3 。石膏晶须和Fe的比例为1:2。
实施例2
一种高强度合金钢,包括如下重量份的组分:C:1份、Si:2份、Mn:3份、Cr:0.8份、Ni:3份、Al2O3 :4份、石膏晶须:30份、Ti:10份、La:3份、Nd:6份、Fe:100份;其中,所述的Al2O3 为纳米级多孔Al2O3
实施例3
一种高强度合金钢,包括如下重量份的组分:C: 3份、Si: 4份、Mn:6份、Cr:1.2份、Ni:6份、Al2O3 :6份、石膏晶须:60份、Ti:20份、La:5份、Nd:10份、Fe:100份;其中,所述的Al2O3 为纳米级多孔Al2O3
实施例4
一种高强度合金钢,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:4份、Nd:8份、Fe:100份;所述的La和Nd比例为1:2;其中,所述的Al2O3 为纳米级多孔Al2O3 。石膏晶须和Fe的比例为1:2。
实施例5
一种高强度合金钢,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:5份、Nd:10份、Fe:100份;所述的La和Nd比例为1:2;其中,所述的Al2O3 为纳米级多孔Al2O3 。石膏晶须和Fe的比例为1:2。
实施例6
一种高强度合金钢,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:3份、Nd:7份、Fe:100份;所述的La和Nd比例为3:7。石膏晶须和Fe的比例为1:2。
实施例7
一种高强度合金钢,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:4份、Nd:9份、Fe:100份;所述的La和Nd比例为4:9。石膏晶须和Fe的比例为1:2。
各项测试性能如下:
表1
如上表1可知,La和Nd比例为1:2时合金钢的强度性能较好,当兼具石膏晶须和Fe的比例为1:2时,各项强度更是得到了全面的提升。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种高强度合金钢,其特征在于,包括如下重量份的组分:C:1~3份、Si:2~4份、Mn:3~6份、Cr:0.8~1.2份、Ni:3~6份、Al2O3 :4~6份、石膏晶须:30~60份、Ti:10~20份、La:3~5份、Nd:6~10份、Fe:100份;其中,所述的Al2O3 为纳米级多孔Al2O3
2.根据权利要求1所述的高强度合金钢,其特征在于,包括如下重量份的组分:C:2~3份、Si:3~4份、Mn:3~5份、Cr:0.8~1份、Ni:3~5份、Al2O3 :5~6份、石膏晶须:30~50份、Ti:12~17份、La:4~5份、Nd:8~9份、Fe:100份。
3.根据权利要求1所述的高强度合金钢,其特征在于,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:3份、Nd:6份、Fe:100份;所述的La和Nd比例为1:2。
4.根据权利要求1所述的高强度合金钢,其特征在于,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:4份、Nd:8份、Fe:100份;所述的La和Nd比例为1:2。
5.根据权利要求1所述的高强度合金钢,其特征在于,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:5份、Nd:10份、Fe:100份;所述的La和Nd比例为1:2。
6.根据权利要求1所述的高强度合金钢,其特征在于,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:3份、Nd:7份、Fe:100份;所述的La和Nd比例为3:7。
7.根据权利要求1所述的高强度合金钢,其特征在于,包括如下重量份的组分:C: 2份、Si: 3份、Mn:4份、Cr: 1份、Ni:4份、Al2O3 :5份、石膏晶须:50份、Ti:15份、La:4份、Nd:9份、Fe:100份;所述的La和Nd比例为4:9。
8.根据权利要求1所述的高强度合金钢,其特征在于,所述的石膏晶须和Fe的比例为1:2。
CN201711128101.7A 2017-11-15 2017-11-15 一种高强度合金钢 Pending CN107794469A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711128101.7A CN107794469A (zh) 2017-11-15 2017-11-15 一种高强度合金钢

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711128101.7A CN107794469A (zh) 2017-11-15 2017-11-15 一种高强度合金钢

Publications (1)

Publication Number Publication Date
CN107794469A true CN107794469A (zh) 2018-03-13

Family

ID=61535087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711128101.7A Pending CN107794469A (zh) 2017-11-15 2017-11-15 一种高强度合金钢

Country Status (1)

Country Link
CN (1) CN107794469A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1782117A (zh) * 2004-11-24 2006-06-07 株式会社Cf 一种高弹性、高强度钢及其制造方法
EP1783238A2 (en) * 1999-02-12 2007-05-09 Hitachi Metals, Ltd. High strength steel for dies with excellent machinability
CN103484789A (zh) * 2013-09-16 2014-01-01 江苏天舜金属材料集团有限公司 一种高延性超高强度预应力混凝土用钢棒及其加工方法
CN103849817A (zh) * 2013-08-08 2014-06-11 浙江中益机械有限公司 一种用于制造链轮的特殊钢
CN104313499A (zh) * 2014-11-07 2015-01-28 江苏天舜金属材料集团有限公司 一种高强度桥梁用钢筋及其热处理工艺
CN104726793A (zh) * 2015-03-20 2015-06-24 苏州科胜仓储物流设备有限公司 一种用于流利式货架的高强度钢板及其热处理工艺
CN105937015A (zh) * 2016-06-07 2016-09-14 江苏百德特种合金有限公司 一种高强螺栓及其制备方法
CN107236901A (zh) * 2017-06-30 2017-10-10 合肥博创机械制造有限公司 一种工程机械用高强度钢材的生产工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1783238A2 (en) * 1999-02-12 2007-05-09 Hitachi Metals, Ltd. High strength steel for dies with excellent machinability
CN1782117A (zh) * 2004-11-24 2006-06-07 株式会社Cf 一种高弹性、高强度钢及其制造方法
CN103849817A (zh) * 2013-08-08 2014-06-11 浙江中益机械有限公司 一种用于制造链轮的特殊钢
CN103484789A (zh) * 2013-09-16 2014-01-01 江苏天舜金属材料集团有限公司 一种高延性超高强度预应力混凝土用钢棒及其加工方法
CN104313499A (zh) * 2014-11-07 2015-01-28 江苏天舜金属材料集团有限公司 一种高强度桥梁用钢筋及其热处理工艺
CN104726793A (zh) * 2015-03-20 2015-06-24 苏州科胜仓储物流设备有限公司 一种用于流利式货架的高强度钢板及其热处理工艺
CN105937015A (zh) * 2016-06-07 2016-09-14 江苏百德特种合金有限公司 一种高强螺栓及其制备方法
CN107236901A (zh) * 2017-06-30 2017-10-10 合肥博创机械制造有限公司 一种工程机械用高强度钢材的生产工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王国承: "《钢中夹杂物尺寸控制理论与技术》", 31 January 2015, 冶金工业出版社 *

Similar Documents

Publication Publication Date Title
Bastrakov et al. Fluid evolution and origins of iron oxide Cu-Au prospects in the Olympic Dam district, Gawler craton, South Australia
Fallick et al. Bacteria were responsible for the magnitude of the world-class hydrothermal base metal sulfide orebody at Navan, Ireland
Jin et al. A practical petrophysical approach for brittleness prediction from porosity and sonic logging in shale reservoirs
Moritz et al. Eocene gold ore formation at Muteh, Sanandaj-Sirjan tectonic zone, Western Iran: a result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros Orogen
Guo et al. Evaluation of fracability and screening of perforation interval for tight sandstone gas reservoir in western Sichuan Basin
Ping et al. Pore size and pore throat types in a heterogeneous dolostone reservoir, Devonian Grosmont Formation, Western Canada sedimentary basin
Rasmussen et al. Hematite replacement of iron-bearing precursor sediments in the 3.46-by-old Marble Bar Chert, Pilbara craton, Australia
Khan et al. Importance of shale anisotropy in estimating in-situ stresses and wellbore stability analysis in Horn River Basin
Walshe et al. The role of the mantle in the genesis of tin deposits and tin provinces of Eastern Australia
Gou et al. Evaluation of the exploration prospect and risk of marine gas shale, southern China: A case study of Wufeng-Longmaxi shales in the Jiaoshiba area and Niutitang shales in the Cen’gong area
Zengqian et al. Geology, fluid inclusions, and oxygen isotope geochemistry of the Baiyinchang pipe-style volcanic-hosted massive sulfide Cu deposit in Gansu Province, Northwestern China
He et al. The geoscience frontier of Gulong shale oil: revealing the role of continental shale from oil generation to production
Schuck et al. Microstructures imply cataclasis and authigenic mineral formation control geomechanical properties of New Zealand's Alpine Fault
Hayes et al. The Spar Lake strata-bound Cu-Ag deposit formed across a mixing zone between trapped natural gas and metals-bearing brine
Khan et al. Tracing forming mechanism of the sparry calcite growth in the lacustrine shale of east China: A glimpse into the role of organic matter in calcite transformation
Melchiorre et al. Stable isotope geochemistry of copper carbonates at the Northwest Extension Deposit, Morenci District, Arizona: implications for conditions of supergene oxidation and related mineralization
Grové et al. O-and H-isotope study of the Carbon Leader Reef at the Tau Tona and Savuka mines (Western Deep Levels), South Africa: implications for the origin and evolution of Witwatersrand basin fluids
CN107794469A (zh) 一种高强度合金钢
Lu et al. Hydraulic fracturing curve types of coal reservoirs in Zhengzhuang block, Q inshui Basin and their geological influence factors
Batkhishig et al. Magmatic-hydrothermal activity in the Shuteen area, South Mongolia
Cartagena et al. Diffuse soil degassing of carbon dioxide, radon, and mercury at San Miguel volcano, El Salvador
CN107842353A (zh) 一种优选页岩储层压裂预处理酸液的方法
CN107904598A (zh) 一种高强抗腐蚀涂层材料
Scherba et al. Geology and economics of the giant Molo graphite deposit, southern Madagascar
Hu et al. Cretaceous oceanic red beds: stratigraphy, composition, origins, and paleoceanographic and paleoclimatic significance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180313

RJ01 Rejection of invention patent application after publication