CN107785665B - Mixed structure dual-frequency dual-beam three-column phased array antenna - Google Patents
Mixed structure dual-frequency dual-beam three-column phased array antenna Download PDFInfo
- Publication number
- CN107785665B CN107785665B CN201710725091.9A CN201710725091A CN107785665B CN 107785665 B CN107785665 B CN 107785665B CN 201710725091 A CN201710725091 A CN 201710725091A CN 107785665 B CN107785665 B CN 107785665B
- Authority
- CN
- China
- Prior art keywords
- frequency
- dual
- mixed signal
- antenna
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/30—Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/40—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0414—Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
本申请要求于2014年06月30日提交中国专利局、申请号为201480033255.6、发明名称为“一种混合结构双频双波束三列相控阵天线”的中国专利申请的分案申请,其全部内容通过引用结合在本申请中。This application requires the divisional application of the Chinese patent application with the application number of 201480033255.6 and the invention title of "a hybrid structure dual-frequency dual-beam three-column phased array antenna" to be submitted to the China Patent Office on June 30, 2014, all of which are The contents are incorporated herein by reference.
技术领域technical field
本发明涉及无线通信领域,尤其涉及一种混合结构双频双波束三列相控阵天线。The invention relates to the field of wireless communication, in particular to a hybrid structure dual-frequency dual-beam three-column phased array antenna.
背景技术Background technique
如今,无线蜂窝天线可以发射一个或多个波束信号。单波束天线指向天线的瞄准线方向发射单个波束信号,而双波束天线朝着天线的机械瞄准线的相对偏移角的两个方向发射两个非对称波束信号。在固定覆盖蜂窝网络中,双波束天线的方位角波束图样比单波束天线的更窄。例如,双波束天线可以在方位角方向发射半功率波宽(HPBW)接近33度的两道波束,而单波束天线可以在方位角方向发射半功率波宽(HPBW)接近65度的一道波束。双波束天线发射的两道窄波束通常指向偏移方位角方向,例如,增减20度使得两个波束之间的波束耦合因数达到最小,并在三扇区网络提供65度的HPBW覆盖。Today, wireless cellular antennas can transmit one or more beams of signals. A single-beam antenna transmits a single beam signal directed toward the boresight of the antenna, while a dual-beam antenna transmits two asymmetric beams of signals toward two directions relative to the offset angle of the antenna's mechanical boresight. In fixed coverage cellular networks, the azimuth beam pattern of a dual beam antenna is narrower than that of a single beam antenna. For example, a dual-beam antenna can transmit two beams with a half-power width (HPBW) close to 33 degrees in azimuth, while a single-beam antenna can transmit a beam with a half-power width (HPBW) close to 65 degrees in azimuth. The two narrow beams emitted by the dual-beam antenna are usually pointed in offset azimuth directions, for example, in increments of 20 degrees to minimize the beam coupling factor between the two beams and provide 65 degrees of HPBW coverage in a three-sector network.
发明内容SUMMARY OF THE INVENTION
本发明实施例描述的一种混合结构双频双波束三列相控阵天线可以实现技术上的优势。The hybrid structure dual-frequency dual-beam three-row phased array antenna described in the embodiment of the present invention can achieve technical advantages.
根据一实施例,提供了一种双频辐射单元。在该实例中,所述双频辐射单元,包括:天线反射器、安装在所述天线反射器上的低频辐射平板、以及处于所述低频辐射平板上的高频辐射平板。According to an embodiment, a dual frequency radiating unit is provided. In this example, the dual-frequency radiation unit includes: an antenna reflector, a low-frequency radiation plate mounted on the antenna reflector, and a high-frequency radiation plate on the low-frequency radiation plate.
根据一实施例,提供了一种双频天线。在该实例中,所述双频天线包括:多个单频天线振子,用于在第一频带上进行辐射;以及多个双频天线振子,用于在第一频带以及第二频带上进行辐射。其中,所述单频天线振子和所述双频天线振子排列在三列辐射单元阵列。According to an embodiment, a dual frequency antenna is provided. In this example, the dual-frequency antenna includes: a plurality of single-frequency antenna elements for radiating in the first frequency band; and a plurality of dual-frequency antenna elements for radiating in the first frequency band and the second frequency band . Wherein, the single-frequency antenna element and the dual-frequency antenna element are arranged in three rows of radiation element arrays.
根据另一实施例,提供了一种3×2(3×2)方位角波束形成网络(AFBN)操作方法。在该实例中,所述方法包括:接收左侧波束和右侧波束;应用第一移相到所述左侧波束的副本以获取移相左侧波束;应用第二移相到所述右侧波束的副本以获取移相右侧波束;将所述右侧波束与所述移相左侧波束混合以获取第一混合信号;将所述左侧波束与所述移相右侧波束混合以获取第二混合信号;将所述第一混合信号的副本与所述第二混合信号的副本混合以获取第三混合信号;通过天线阵列发送所述第一混合信号、所述第二混合信号和所述第三混合信号。According to another embodiment, a 3x2 (3x2) azimuth beamforming network (AFBN) method of operation is provided. In this example, the method includes: receiving a left beam and a right beam; applying a first phase shift to a replica of the left beam to obtain a phase shifted left beam; applying a second phase shift to the right side a copy of the beam to obtain a phase-shifted right beam; mixing the right beam with the phase-shifted left beam to obtain a first mixed signal; mixing the left beam with the phase-shifted right beam to obtain a second mixed signal; mixing a copy of the first mixed signal with a copy of the second mixed signal to obtain a third mixed signal; sending the first mixed signal, the second mixed signal, and the second mixed signal through an antenna array the third mixed signal.
根据又一实施例,提供了一种装置,所述装置包括一种3×2(3×2)方位角波束形成网络(AFBN)结构。在该实例中,所述3×2AFBN结构用于:接收左侧波束和右侧波束;应用第一移相到所述左侧波束的副本以获取移相左侧波束;应用第二移相到所述右侧波束的副本以获取移相右侧波束。所述3×2AFBN结构还用于:将所述右侧波束与所述移相左侧波束混合以获取第一混合信号;将所述左侧波束与所述移相右侧波束混合以获取第二混合信号;将所述第一混合信号的副本与所述第二混合信号的副本混合以获取第三混合信号。所述3×2AFBN结构还用于:通过天线阵列发送所述第一混合信号、所述第二混合信号和所述第三混合信号。According to yet another embodiment, an apparatus is provided that includes a 3x2 (3x2) azimuth beamforming network (AFBN) structure. In this example, the 3x2 AFBN structure is used to: receive a left beam and a right beam; apply a first phase shift to a replica of the left beam to obtain a phase shifted left beam; apply a second phase shift to A copy of the right beam is obtained to obtain a phase shifted right beam. The 3×2 AFBN structure is also used for: mixing the right beam with the phase-shifted left beam to obtain a first mixed signal; mixing the left beam with the phase-shifted right beam to obtain the first mixed signal. Two mixed signals; mixing a copy of the first mixed signal with a copy of the second mixed signal to obtain a third mixed signal. The 3×2 AFBN structure is also used for: sending the first mixed signal, the second mixed signal and the third mixed signal through an antenna array.
附图说明Description of drawings
为了更完整地理解本发明及其优点,现在参考下文结合附图进行的描述,其中:For a more complete understanding of the present invention and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which:
图1示出了一种常规的双频天线阵列的示意图。FIG. 1 shows a schematic diagram of a conventional dual-frequency antenna array.
图2示出了一种常规的低频辐射单元的示意图。FIG. 2 shows a schematic diagram of a conventional low frequency radiation unit.
图3示出了一种常规的高频辐射单元的示意图。FIG. 3 shows a schematic diagram of a conventional high-frequency radiation unit.
图4示出了一种示例性双频辐射单元的示意图。Figure 4 shows a schematic diagram of an exemplary dual frequency radiating element.
图5示出了另一种示例性双频辐射单元的示意图。FIG. 5 shows a schematic diagram of another exemplary dual frequency radiating element.
图6A-6C示出了一种示例性双波束三列天线阵列的示意图。6A-6C illustrate schematic diagrams of an exemplary dual-beam three-column antenna array.
图7示出了另一种示例性双波束天线阵列的示意图。FIG. 7 shows a schematic diagram of another exemplary dual beam antenna array.
图8示出了一种示例性双波束三列天线阵列形成的方位角辐射图样的曲线图。FIG. 8 shows a graph of the azimuthal radiation pattern formed by an exemplary dual-beam three-column antenna array.
图9示出了一种示例性双频辐射单元的中心馈电装置的示意图。FIG. 9 shows a schematic diagram of the center feed of an exemplary dual frequency radiating element.
图10示出了另一种示例性双频辐射单元的中心馈电装置的示意图。FIG. 10 shows a schematic diagram of a center feed arrangement of another exemplary dual-frequency radiating element.
图11A-11B示出了另一种示例性双频辐射单元的中心馈电装置的示意图。11A-11B illustrate schematic diagrams of a center feed arrangement of another exemplary dual-frequency radiating element.
图12示出了一种示例性非一致方位角波束形成网络的示意图。12 shows a schematic diagram of an exemplary non-uniform azimuth beamforming network.
图13示出了一种示例性非平衡功率分配器电路的示意图。13 shows a schematic diagram of an exemplary unbalanced power divider circuit.
图14示出了一种非平衡功率分配器的示意图。Figure 14 shows a schematic diagram of an unbalanced power divider.
图15A-15E示出了一种示例性双极180度微带线功率分配器的示意图。15A-15E show schematic diagrams of an exemplary bipolar 180 degree microstrip line power divider.
图16A-16B示出了一种示例性双极180度微带线功率分配器组件的示意图。16A-16B show schematic diagrams of an exemplary bipolar 180 degree microstrip line power divider assembly.
图17示出了一种示例性制造设备的框图。Figure 17 shows a block diagram of an exemplary fabrication facility.
除非另有指示,否则不同图中的对应标号和符号通常指代对应部分。绘制各图是为了清楚地说明实施例的相关方面,因此未必是按比例绘制的。Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate relevant aspects of the embodiments and are therefore not necessarily drawn to scale.
具体实施方式Detailed ways
下文将详细论述本发明实施例的制作和使用。应了解,本文所揭示的概念可以在多种具体环境中实施,且所论述的具体实施例仅作为说明而不限制权利要求书的范围。进一步的,应理解,可在不脱离由所附权利要求书界定的本发明的精神和范围的情况下,对本文做出各种改变、替代和更改。The making and using of embodiments of the present invention are discussed in detail below. It should be understood that the concepts disclosed herein can be implemented in a wide variety of specific contexts and that the specific embodiments discussed are by way of illustration only and do not limit the scope of the claims. Further, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.
基站天线一般安装在交通繁忙的大都市区域,由于在外形上更讨人喜欢(例如,不太容易被察觉),且具有易于安装、方便服务的特点,小型模块尤其受欢迎。此外,基站天线通常使用天线振子阵列,从而增加空间选择性(例如,通过波束形成)以及提高频谱效率。单波束三列天线阵列的设计概念在美国专利申请12/175,425中有所论述,其全部内容通过引用结合在本申请中再现。然而,那些概念并不适合双波束的应用。相应地,需要提供具有双波束功能的三列天线阵列的机制和架构。Base station antennas are typically installed in high-traffic metropolitan areas, and small modules are especially popular due to their more pleasing form factor (eg, less noticeable), ease of installation, and ease of service. In addition, base station antennas typically use arrays of antenna elements, thereby increasing spatial selectivity (eg, through beamforming) and increasing spectral efficiency. The design concept of a single beam three-column antenna array is discussed in US patent application Ser. No. 12/175,425, the entire contents of which are reproduced in this application by reference. However, those concepts are not suitable for dual beam applications. Accordingly, there is a need for a mechanism and architecture to provide a three-column antenna array with dual beam capability.
本发明的各个方面提供了能够用来构建双波束三列天线阵列的双频天线振子。更具体地说,所述双频天线振子同时包括高频和低频辐射单元,使得其能够在两个频带上辐射信号。所述双频天线振子还包括谐振箱,用于将共置在一起的辐射单元相互隔离,减轻带间变形。本发明的附加方面提供了用来构建所述双频天线振子的附加特性,以及用来构建双波束三列天线阵列的特性。Various aspects of the present invention provide dual-frequency antenna elements that can be used to construct dual-beam three-column antenna arrays. More specifically, the dual-frequency antenna element includes both high-frequency and low-frequency radiating elements, so that it can radiate signals in two frequency bands. The dual-frequency antenna vibrator further includes a resonance box, which is used for isolating the co-located radiating elements from each other and reducing inter-band deformation. Additional aspects of the present invention provide additional characteristics for constructing the dual frequency antenna elements, as well as characteristics for constructing a dual beam three column antenna array.
图1示出了一种常规的双频天线阵列100,该双频天线阵列100包括:天线罩110、多个低频辐射单元120和多个高频辐射单元130。如图所示,低频辐射单元120和高频辐射单元放置在一个天线罩内。值得注意的是,与高频辐射单元130相比,低频辐射单元120的排列更为典型,用于在不同的频带上进行辐射。FIG. 1 shows a conventional dual-
图2示出了一种安装在天线反射器210上的常规的低频辐射单元200。该低频辐射单元200包括背腔222、印刷电路板(PCB)224和低频辐射单元226。所述背腔222用于容纳有源天线组件,所述PCB224包含使得有源天线组件可以驱动低频辐射单元226的内部连线。图3示出了一种常规的高频辐射单元300,该高频辐射单元300的结构与所述常规的低频辐射单元200类似。所述常规的高频辐射单元300安装在天线反射器310上,包含背腔332、PCB334和低频辐射单元336,其配置和低频辐射单元200的相似组件类似。值得注意的是,与低频辐射单元200相比,所述高频辐射单元300在不同的频带上运行。FIG. 2 shows a conventional low
本发明的各个方面提供了一种在两个不同的频带上运行的双频辐射单元。图4示出了一种安装在天线反射器410上的示例性双频辐射单元400。该双频辐射单元400包括低频背腔422、PCB424、低频辐射单元426、高频背腔432、辐射箱433、PCB434和高频辐射单元436。所述双频辐射单元400使用低频辐射单元426发射低频信号,使用高频辐射单元436发射高频信号。图5示出了一种示例性双频辐射单元500,该双频辐射单元500的结构与所述示例性双频辐射单元400相似。所述双频辐射单元500安装在天线反射器510上,包括低频背腔522、PCB524、低频辐射单元526、高频背腔532、辐射箱533、PCB534和高频辐射单元536。所述高频背腔532、所述辐射箱533、所述PCB534和所述高频辐射单元536可称为高频平板组件。在一些实施例中,所述低频辐射单元526可由从缝隙中延伸出的低频微带馈线驱动,所述高频辐射单元536可由通过所述低频辐射单元526的中心延伸出的缝隙(例如,十字交叉口等)馈电的同轴线进行馈电。因此,与所述高频辐射单元536相比,所述低频辐射单元526可由不同的馈电线驱动。Various aspects of the present invention provide a dual frequency radiating element that operates on two different frequency bands. FIG. 4 shows an exemplary dual-frequency radiating element 400 mounted on an antenna reflector 410 . The dual-frequency radiation unit 400 includes a low frequency back cavity 422 , a PCB 424 , a low frequency radiation unit 426 , a high frequency back cavity 432 , a radiation box 433 , a PCB 434 and a high frequency radiation unit 436 . The dual-frequency radiation unit 400 uses the low-frequency radiation unit 426 to transmit low-frequency signals, and uses the high-frequency radiation unit 436 to transmit high-frequency signals. FIG. 5 shows an exemplary dual-
所述示例性双频辐射单元配置可帮助实现双波束三列天线阵列。图6A至6C示出了一种双波束三列天线阵列600,该双波束三列天线阵列600包括多个高频辐射单元621-622和多个双频辐射单元641-643,其中,所述双频辐射单元641-643沿天线反射器610分布于三个纵列601、602和603中。如图所示,所述纵列601上包括双频辐射单元641和高频辐射单元621的交替图样,所述纵列602上包括双频辐射单元642和高频辐射单元622的交替图样,所述纵列603上包括双频辐射单元643和高频辐射单元623的交替图样。图6B更清晰地显示出了处于最外侧的纵列601和603中的高频辐射单元621和623相对于处于最外侧的纵列601和603中的双频辐射单元641和643向内侧偏移(OF1)。这使得高频辐射单元621和623之间的间隔小于双频辐射单元641和643之间的间隔。进一步地,图6C更清晰地显示出了奇数个双频辐射单元641、642和643相对于偶数个双频辐射单元641’、642’和643’的偏移(OF2)。类似地,奇数个高频辐射单元621、622和623相对于偶数个高频辐射单元621’、622’和623’有偏移(OF3)。值得注意的是,将标签排除只是为了方便描述,所述中间纵列602中连续的双频辐射单元642和642’与连续的高频辐射单元622和622’之间也存在有所述偏移OF2和OF3。所述偏移OF2和OF3可能相互一致或等同。所述偏移OF2和OF3为方位角波束形成提供了额外的自由度,尤其有利于降低方位角旁瓣电平。The exemplary dual-frequency radiating element configuration can facilitate the realization of a dual-beam three-column antenna array. 6A to 6C show a dual-beam three-
图7示出了一种示例性双波束天线阵列700,该双波束天线阵列700包括固定在天线反射器710上的高频辐射单元720的阵列和双频辐射单元740的阵列。申请人发现单元间隔在方位角方向为大约半个波长且在垂直方向稍微超过半个波长时与其他单元间隔相比可以提供更好的性能。实际上,上述间隔适合比率为大约1.2到2.2的两个频带的频谱波长。低频辐射器可以相互交错地分布在三个纵列上来提高开口比,同时在两个波段间不出现严重图样干扰的情况下这样也容许使用较简单的高频辐射器群集。高频辐射器可以以不规则的间隔非交错地分布,从而提高旁瓣性能。这些低频辐射单元可以进一步朝方位角方向偏移,在行间交替,从而进一步提高两个波段的旁瓣性能。图6A-6C和图7对这些堆叠的矩形平板进行了描述,可能还会使用其它类型的辐射单元,如振子。在低频和高频阵列中,每个包含两个或者两个以上阵列行的阵列子群首先形成方位角波束,方位角波束使用特制的3×2方位角波束形成网络(ABFN)。可以用多端口相位偏移器来对这些ABFN进行馈电,从而形成二维阵列。FIG. 7 shows an exemplary dual
本发明的各个方面提供了一种方位角天线波束图样装置,通过改变方位角方向应用于各个辐射单元的RF信号的幅度和相位,能够对方位角天线波束图样做出有益的改进。不少现代的蜂窝基站天线设计有半功率波宽(HPBW)为65度或90度的单个主瓣。本发明的各个方面介绍了一种实现高容量蜂窝操作的三列双频双波束天线。所提议的双频双波束天线阵列通过公共天线孔径在两个或两个以上频带上制造两个高正交空间波束。因此,举例来说,单个双频双波束在每个信号极能够制造四个正交方位角波束,其中每个正交方位角波束的半功率波宽(HPBW)为33度,相比之下,标准的65度双频阵列只能制造两个波束。Various aspects of the present invention provide an azimuth antenna beam pattern device, which can make beneficial improvements to the azimuth antenna beam pattern by changing the amplitude and phase of the RF signal applied to each radiating element by the azimuth direction. Many modern cellular base station antennas are designed with a single main lobe with a half power bandwidth (HPBW) of 65 or 90 degrees. Various aspects of the present invention describe a three-column dual-frequency dual-beam antenna that enables high-capacity cellular operation. The proposed dual-band dual-beam antenna array creates two highly orthogonal spatial beams on two or more frequency bands through a common antenna aperture. Thus, for example, a single dual frequency dual beam can create four orthogonal azimuth beams at each signal pole, where each orthogonal azimuth beam has a half-power width (HPBW) of 33 degrees, compared to , the standard 65-degree dual-frequency array can only make two beams.
本发明的各个方面提供了一种使用三列交错天线阵列结构且具有商业可行性的双频双波束阵列制造的方法。一些实施例利用三列线阵列的混合配置来形成双波束阵列,与其它阵列配置相比,有着更高的开口比和更低的带间干扰。示例性天线阵列沿着方位角方向在两个紧邻的频带上制造4个分离的非对称波束,例如,一个在通用移动通讯系统(UMTS)频带(1710MHz至2170MHz),另一个在稍高的长期演进(LTE)频带2.5GHz(2500MHz至2700MHz)。两个三列阵列上包括多个在两个单独的频带运行的辐射单元,这两个独立的频带交错分布,从而在两个频带上实现合理的信号辐射。低频三列阵列的辐射单元可以采用交错的阵列配置进行排列,而高频辐射单元则采用矩形三列阵列结构,以提高开口比,改善方位角波束图样,并降低带间干扰。特制的非巴特勒非一致3×2方位角波束形成网络(ABFN)是为了满足对这些多列阵列相对复杂的激发。可以形成ABFN电路,使得所有正交波束在波束耦合因数较低的情况下同时运行,从而有利于降低网络干扰。所述辐射单元的布置不仅可以准确地将幅度和相位传递给辐射器,还可以改善整体的波束图样。为了使双频阵列结构更加紧凑,两个频带的辐射单元有时占用同一空间。此时,高频平板必须放置在低频单元上面来形成新的双频单元,新的双频单元能够在两个频带上同时辐射信号。Various aspects of the present invention provide a method of manufacturing a commercially viable dual-frequency dual-beam array using a three-column staggered antenna array structure. Some embodiments utilize a hybrid configuration of three-column linear arrays to form a dual beam array with higher aperture ratios and lower inter-band interference than other array configurations. The exemplary antenna array creates 4 separate asymmetric beams in two closely adjacent frequency bands along the azimuth direction, for example, one in the Universal Mobile Telecommunications System (UMTS) band (1710MHz to 2170MHz) and the other in the slightly higher long-term Evolution (LTE) band 2.5GHz (2500MHz to 2700MHz). The two three-column arrays include a plurality of radiating elements operating in two separate frequency bands that are interleaved to achieve reasonable signal radiation on both frequency bands. The radiating elements of the low-frequency three-column array can be arranged in a staggered array configuration, while the high-frequency radiating elements use a rectangular three-column array structure to increase the aperture ratio, improve the azimuth beam pattern, and reduce inter-band interference. A purpose-built non-Butler non-uniform 3x2 azimuth beamforming network (ABFN) is designed to satisfy the relatively complex excitation of these multi-column arrays. ABFN circuits can be formed so that all orthogonal beams operate simultaneously with a low beam coupling factor, which is beneficial for reducing network interference. The arrangement of the radiating elements can not only accurately deliver the amplitude and phase to the radiators, but also improve the overall beam pattern. In order to make the structure of the dual-frequency array more compact, the radiating elements of the two frequency bands sometimes occupy the same space. At this point, the high-frequency plate must be placed on top of the low-frequency unit to form a new dual-frequency unit capable of radiating signals on both frequency bands simultaneously.
本发明一实施例提供了一种天线阵列,所述天线阵列包括多个辐射单元,这些辐射单元排列组成多个纵列,每个纵列包括至少一个辐射单元,每个辐射单元在多个非重叠频带中的至少一个频带上运行,其中,在所述至少一个运行的频带上,每个辐射单元用于制造多个辐射波束,其中至少一个辐射波束为非对称的。An embodiment of the present invention provides an antenna array, the antenna array includes a plurality of radiating elements, the radiating elements are arranged to form a plurality of columns, each column includes at least one radiating element, and each radiating element is in a plurality of non-radiating elements. operating in at least one of the overlapping frequency bands, wherein each radiating element is used to produce a plurality of radiation beams in the at least one operating frequency band, wherein at least one radiation beam is asymmetric.
本发明的各个方面介绍了一种混合结构三列天线阵列架构的概念,该架构包含多个交错分布在两个不同类型的辐射单元之间的从动辐射单元,所述两个不同类型的辐射单元在两个单独的频带上运行。针对每个运行的频带,方位面上产生两个波束耦合因数极低的轻度重叠的非对称波束,以提供最佳无线蜂窝性能。为了实现合理的双频操作,这里引入了新的双频平板以完成两个独立阵列同时操作。Aspects of the present invention introduce the concept of a hybrid three-column antenna array architecture comprising a plurality of driven radiating elements interleaved between two different types of radiating elements, the two different types of radiating elements The unit operates on two separate frequency bands. For each frequency band of operation, two lightly overlapping asymmetric beams with extremely low beam coupling factors are generated in the azimuth plane to provide optimal wireless cellular performance. In order to achieve reasonable dual frequency operation, a new dual frequency panel is introduced here to complete the simultaneous operation of two independent arrays.
图8示出了一种示例性混合结构三列双频双波束天线阵列的方位角辐射图样的曲线图。如图所示,针对每个直线极化信号,有四个独立的非对称波束:高频左(L)、右(R)波束和低频左(L)、右(R)波束。为了完成65度的小区覆盖,每个双波束阵列提供方位角HPBW为大约33度的方向角波束图样。这样,这两个波束的合并HPBW能够提供和标准65度波束近乎一样的覆盖面。辐射图样的波束形状会严重影响网络的操作/性能,因此最好让每个单元波束(左和右)与另一个相垂直,且两个波束之间的波束耦合因数较低。可以按照下面的公式选择波束参数:Min(βRL)=min(k*∫ER(θ,Φ)·EL(θ,Φ)dΩ),其中k为归一化常数,ER(θ,Φ)表示右波束的辐射图样,EL(θ,Φ)表述左波束的辐射图样。8 shows a graph of the azimuthal radiation pattern of an exemplary hybrid-structure three-column dual-frequency dual-beam antenna array. As shown, for each linearly polarized signal, there are four separate asymmetric beams: high-frequency left (L), right (R) beams and low-frequency left (L), right (R) beams. To achieve 65 degrees of cell coverage, each dual beam array provides a azimuth beam pattern with an azimuth HPBW of approximately 33 degrees. In this way, the combined HPBW of these two beams can provide nearly the same coverage as a standard 65-degree beam. The beam shape of the radiation pattern can seriously affect the operation/performance of the network, so it is best to have each element beam (left and right) perpendicular to the other with a low beam coupling factor between the two beams. Beam parameters can be selected according to the following formula: Min(βRL)=min(k*∫ER(θ,Φ) EL(θ,Φ)dΩ), where k is a normalization constant, and ER(θ,Φ) represents The radiation pattern of the right beam, EL(θ,Φ) represents the radiation pattern of the left beam.
本发明的各个方面实现的图样在两个单元波束的交点具有高滚降率,方位角旁瓣低,波束在图样之间从–5dB到–9dB交叉,在天线背面的主背瓣比超过30dB。由于BFN的正交性和带间频谱隔离,双频BSA制造的所述四个非对称波束本来就是分离的。因此,本发明的各个方面在不增加基站天线整体尺寸的情况下大大提升了网络性能。Aspects of the invention achieve patterns with high roll-off ratios at the intersection of two element beams, low azimuth side lobes, beams crossing from -5dB to -9dB between patterns, and a main backlobe ratio at the back of the antenna exceeding 30dB . The four asymmetric beams produced by the dual-band BSA are inherently separate due to the orthogonality of the BFN and the inter-band spectral isolation. Accordingly, various aspects of the present invention greatly improve network performance without increasing the overall size of the base station antenna.
本发明的各个方面提供了双频辐射单元。所述示例性辐射单元可以使用多频叠加平板辐射器,所述多频叠加平板辐射器可以提供相对良好的宽带特性并产生具有相对简单的馈电系统的高极化场。本发明的各个方面引进了一种新型的双频平板单元,该单元允许在两个频带以最小的带间干扰辐射信号。Various aspects of the present invention provide dual frequency radiating elements. The exemplary radiating element may use a multi-frequency stacked panel radiator, which may provide relatively good broadband characteristics and produce a highly polarized field with a relatively simple feed system. Aspects of the present invention introduce a novel dual-band flat panel unit that allows radiated signals in both frequency bands with minimal inter-band interference.
本发明实施例提供了一种双频微带馈线组件来实现对来自双频单元底部的双极高频RF信号进行合理的馈电。图9示出了一种双频辐射单元900的中心馈电装置940。如图所示,所述双频辐射单元900安装在天线反射器910上,包括低频背腔922、PCB924、低频辐射单元926、高频背腔932、辐射箱933、PCB934和高频辐射单元936。所述中心馈电装置940穿过洞孔和/或缝隙经过PCB924和低频辐射单元926给安置在高频背腔932中的共振器馈电。图10示出了一种双频辐射器1000的中心馈电装置1040。如图所示,所述双频辐射单元1000安装在天线反射器1010上,包括低频背腔1022、PCB1024、低频辐射单元1026、高频背腔1032、辐射箱1033、PCB1034和高频辐射单元1036。所述中心馈电装置1040穿过洞孔和/或缝隙经过PCB1024和低频辐射单元1026给安置在高频背腔1032中的有源天线组件馈电。The embodiment of the present invention provides a dual-frequency microstrip feeder assembly to implement reasonable feeding of bipolar high-frequency RF signals from the bottom of the dual-frequency unit. FIG. 9 shows a
图11A-11B示出了一种中心馈电装置1100的俯视图。如图所示,位于正负45度角的两个辐射缝隙1141和1142由四个微带馈线1146进行馈电,其中,所述四个微带馈线1146与中心馈电组件的顶端直接相连。所述两个辐射缝隙1141和1142提供两个正交直线极化场,每个辐射缝隙由两个微带馈线1146馈电,所述微带馈线1146携带有相同幅度相反相位(180度相位差)的信号。这种馈电理念可以利用微带功率分配器通过180度相位偏移将一个不平衡RF输入分成两个不平衡RF输出。11A-11B illustrate a top view of a
本发明的各个方面提供了一种3×2方位角波束形成网络。该网络可以包括非巴特勒非一致方位角波束形成网络(ABFN)。巴特勒矩阵可以用于形成2N多波束阵列,其中,N为整数。此时,所述阵列可能包括非二进制列数,例如,列数≠2N。非巴特勒ABFN是为了三列阵列制造出单元波束间具有较好正交性的双频图样而研发的。例如,3×2ABFN可用于形成3×10低频阵列和3×20高频阵列。图12示出了ABFN1200的示意图。如图所示,所述ABFN1200经左波束1201和右波束1202分配在三个单元天线1210、1220和1230对面。图13示出了一种无源混合电路1330,所述无源混合电路1330可以作为非平衡功率分配器来实现。满足如下标准的ABFN可以制造出正交波束(左和右):其中,Li表示左波束列i的阵列激发系数,Ri表示右波束列i的阵列激励系数,N为总列数。阵列的列数越少,可以展现的这种类型的正交BFN的自由度越受限制,从而导致辐射图样无法同时满足方位角方向上波束形状的所有需要的参数,如增益、旁瓣电平和滚降率。通常,实现这些特征要以波束正交性轻微损失为代价。通过将小损耗向量δ引入激发向量,示例性BFN可以在不损耗图样正交性的情况下改善辐射图样。与牺牲波束正交性相反,这种损耗向量可以通过整体RF的细微损失换来波束耦合因数的降低。因此,由于系统损耗的让步,所述示例性ABFN能够在保持单元波束之间的正交性的同时实现满意的双波束辐射图样。在下面的标准满足时,可以保持单位波束之间的正交性:其中,δ为波束形成的损耗因数。图14示出了一种非平衡功率分配器1400的示意图。如图所示,输出端口1和输出端口2相差180度。Various aspects of the present invention provide a 3x2 azimuth beamforming network. The network may include a non-Butler non-uniform azimuth beamforming network (ABFN). A Butler matrix can be used to form a 2N multibeam array, where N is an integer. At this time, the array may include a non-binary number of columns, eg, the number of columns≠2N. The non-Butler ABFN was developed for the three-column array to produce a dual-frequency pattern with good orthogonality between element beams. For example, 3×2ABFN can be used to form a 3×10 low frequency array and a 3×20 high frequency array. Figure 12 shows a schematic diagram of the ABFN1200. As shown, the
图15A-15C示出了一种示例性双极180度微带线功率分配器组件1500,所述组件包括第一功率分配器1501和第二功率分配器1502。所述第一功率分配器1501和第二功率分配器1502可以印制在单独的PCB上面,然后成90度角连锁,并在每个PCB中间留有合适的缝隙,从而形成双极180度馈电组件1500。通过PCB顶部的孔可实现输出接地层的电连接。图15D示出了第一功率分配器1501,图15E示出了第二功率分配器1502。图16A-16B示出了一种示例性双极180度微带线功率分配器组件1600。15A-15C illustrate an exemplary bipolar 180 degree microstrip line
图17示出了一种示例性制造设备1700的框图。所述制造设备1700可用于执行本发明的一个或者多个方面。所述制造设备1700包括处理器1704、存储器1706以及多个接口1710-1712,其排列如图17所示。所述处理器1704可以是任何能够执行与计算和/或其它处理相关的任务的器件,所述存储器1706可以是任何能够为所述处理器1704存储程序和/或指令的器件。所述接口1710-1712,如同出厂设定一样,可以是任何让设备1700向其它设备传达控制指令的器件或器件的集合。FIG. 17 shows a block diagram of an
尽管进行了详细的描述,但应理解,可在不脱离由所附权利要求书界定的本发明的精神和范围的情况下,对本文做出各种改变、替代和更改。此外,本发明的范围不希望限于本文中所描述的特定实施例,所属领域的一般技术人员将从本发明中容易了解到,过程、机器、制造工艺、物质成分、构件、方法或步骤(包括目前存在的或以后将开发的)可执行与本文所述对应实施例大致相同的功能或实现与本文所述对应实施例大致相同的效果。相应地,所附权利要求范围包括这些流程,机器,制造,物质组分,构件,方法,及步骤。Although described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Furthermore, the scope of the present invention is not intended to be limited to the specific embodiments described herein, as those of ordinary skill in the art will readily appreciate from this disclosure that processes, machines, manufacturing processes, compositions of matter, components, methods or steps (including (currently existing or later developed) may perform substantially the same function or achieve substantially the same effect as the corresponding embodiments described herein. Accordingly, such processes, machines, manufacture, compositions of matter, means, methods, and steps are included within the scope of the appended claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710725091.9A CN107785665B (en) | 2014-06-30 | 2014-06-30 | Mixed structure dual-frequency dual-beam three-column phased array antenna |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480033255.6A CN105474462B (en) | 2014-06-30 | 2014-06-30 | A hybrid structure dual-frequency dual-beam triple-column phased array antenna |
PCT/US2014/044943 WO2014210609A2 (en) | 2013-06-25 | 2014-06-30 | Mixed structure dual-band dual-beam three-column phased array antenna |
CN201710725091.9A CN107785665B (en) | 2014-06-30 | 2014-06-30 | Mixed structure dual-frequency dual-beam three-column phased array antenna |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480033255.6A Division CN105474462B (en) | 2014-06-30 | 2014-06-30 | A hybrid structure dual-frequency dual-beam triple-column phased array antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107785665A CN107785665A (en) | 2018-03-09 |
CN107785665B true CN107785665B (en) | 2020-02-14 |
Family
ID=55638456
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480033255.6A Active CN105474462B (en) | 2014-06-30 | 2014-06-30 | A hybrid structure dual-frequency dual-beam triple-column phased array antenna |
CN201710725091.9A Active CN107785665B (en) | 2014-06-30 | 2014-06-30 | Mixed structure dual-frequency dual-beam three-column phased array antenna |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480033255.6A Active CN105474462B (en) | 2014-06-30 | 2014-06-30 | A hybrid structure dual-frequency dual-beam triple-column phased array antenna |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN105474462B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106025511A (en) * | 2016-06-20 | 2016-10-12 | 中国电子科技集团公司第三十八研究所 | Low-profile conformal antenna |
US12034227B2 (en) * | 2016-09-07 | 2024-07-09 | Commscope Technologies Llc | Multi-band multi-beam lensed antennas suitable for use in cellular and other communications systems |
CN106410396A (en) * | 2016-10-26 | 2017-02-15 | 华南理工大学 | Compact multi-beam antenna array with high and low frequencies of filtering oscillators in interlacing arrangement |
CN108258436B (en) * | 2016-12-28 | 2022-02-18 | 中国移动通信集团公司 | Antenna and communication terminal |
CN106780532A (en) * | 2016-12-30 | 2017-05-31 | 陕西海泰电子有限责任公司 | A kind of intermodulation frequency equation method for quick towards DF figures |
CN113287267B (en) * | 2018-11-12 | 2024-06-18 | 诺基亚技术有限公司 | Beam steering resolution enhancement |
CN111385007A (en) * | 2018-12-27 | 2020-07-07 | 财团法人工业技术研究院 | Dual-frequency beam generator |
CN110048224B (en) | 2019-03-28 | 2021-05-11 | Oppo广东移动通信有限公司 | Antenna module and electronic equipment |
CN110085966B (en) * | 2019-04-29 | 2021-01-05 | 西安爱生无人机技术有限公司 | Ground telemetering and remote control integrated antenna and platform |
WO2022063415A1 (en) * | 2020-09-28 | 2022-03-31 | Huawei Technologies Co., Ltd. | Antenna device, array of antenna devices |
CN112202413B (en) * | 2020-10-10 | 2023-06-02 | 北京博瑞微电子科技有限公司 | Multi-beam phased array miniaturized asymmetric power synthesis network structure and calibration method |
CN113224531B (en) * | 2021-04-12 | 2023-05-23 | 华南理工大学 | Multiband antenna based on back cavity technology |
CN113471718A (en) * | 2021-05-17 | 2021-10-01 | 西安电子科技大学 | Different-frequency self-decoupling millimeter wave array antenna |
TWI790772B (en) * | 2021-10-08 | 2023-01-21 | 台灣禾邦電子有限公司 | Electronic device and dual-band patch array antenna module |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7551680B2 (en) * | 2004-10-28 | 2009-06-23 | Interdigital Technology Corporation | Wireless communication method and apparatus for forming, steering and selectively receiving a sufficient number of usable beam paths in both azimuth and elevation |
SE528084C2 (en) * | 2004-11-30 | 2006-08-29 | Powerwave Technologies Sweden | Double band antenna feed |
US7801521B2 (en) * | 2005-05-18 | 2010-09-21 | Telefonaktiebolaget L M Ericsson (Publ) | System and method for communicating with aircraft through cellular base station towers |
ATE544194T1 (en) * | 2005-10-14 | 2012-02-15 | Fractus Sa | SLIM TRIPLE BAND ANTENNA ARRAY FOR CELLULAR BASE STATIONS |
CA2568136C (en) * | 2006-11-30 | 2008-07-29 | Tenxc Wireless Inc. | Butler matrix implementation |
US8334810B2 (en) * | 2008-06-25 | 2012-12-18 | Powerwave Technologies, Inc. | Resonant cap loaded high gain patch antenna |
ES2747937T3 (en) * | 2008-11-20 | 2020-03-12 | Commscope Technologies Llc | Double beam sector antenna and set |
CN201584489U (en) * | 2009-12-21 | 2010-09-15 | 摩比天线技术(深圳)有限公司 | Double-frequency dual-polarization antenna oscillator |
CN102157780B (en) * | 2011-01-30 | 2015-03-11 | 广东通宇通讯股份有限公司 | Multi-standard antenna |
CN202585701U (en) * | 2011-12-29 | 2012-12-05 | 北京北斗星通导航技术股份有限公司 | Antenna device of Beidou terminal |
EP2629362B1 (en) * | 2012-02-20 | 2016-04-27 | CommScope Technologies LLC | Shared antenna arrays with multiple independent tilt |
-
2014
- 2014-06-30 CN CN201480033255.6A patent/CN105474462B/en active Active
- 2014-06-30 CN CN201710725091.9A patent/CN107785665B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN107785665A (en) | 2018-03-09 |
CN105474462A (en) | 2016-04-06 |
CN105474462B (en) | 2019-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107785665B (en) | Mixed structure dual-frequency dual-beam three-column phased array antenna | |
US9871296B2 (en) | Mixed structure dual-band dual-beam three-column phased array antenna | |
US10804606B2 (en) | Broadband low-beam-coupling dual-beam phased array | |
US20210249789A1 (en) | Dual-polarized antenna, antenna array, and communications device | |
CN113454922B (en) | Base station antenna with 4 ports having radiating element array without using duplexer | |
US11581660B2 (en) | High performance folded dipole for multiband antennas | |
US20180145400A1 (en) | Antenna | |
TW201713052A (en) | RF transceiver system | |
WO2022077185A1 (en) | Multi-frequency band common-aperture antenna and communication device | |
EP3758141B1 (en) | Base station antenna | |
TW202013809A (en) | Antenna system | |
Ye et al. | Wideband dual-polarized two-beam antenna array with low sidelobe and grating-lobe levels for base-station applications | |
CN110970740B (en) | Antenna system | |
CN116885459A (en) | Design method of embedded widening angle scanning phased array antenna | |
CN114552236A (en) | Beamforming antennas that share radio ports across multiple columns | |
WO2021226837A1 (en) | Antenna, antenna array and communication device | |
EP4243206A2 (en) | Metasurface antenna | |
US12327923B2 (en) | Mixed element beam forming antenna | |
US12261375B2 (en) | Beam based beamformers for providing high gain beams in 8T8R dual polarized beamformers | |
Nia et al. | Compact Dual-Band Dual-Polarized Stack Patch Antenna Array With Capacitive Feed for Fifth-Generation (5G) Applications | |
Movahedinia et al. | Large dielectric resonator antenna ESPAR for massive MIMO systems | |
Tan et al. | A Switched-beam Substrate-Integrated Dielectric Resonator Antenna without Beamforming Network | |
KR20020068487A (en) | A High Efficient Antenna For Circular Polarization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |