CN107777732A - 一种纳米晶体Fe3O4微粒的制备方法 - Google Patents

一种纳米晶体Fe3O4微粒的制备方法 Download PDF

Info

Publication number
CN107777732A
CN107777732A CN201610710643.4A CN201610710643A CN107777732A CN 107777732 A CN107777732 A CN 107777732A CN 201610710643 A CN201610710643 A CN 201610710643A CN 107777732 A CN107777732 A CN 107777732A
Authority
CN
China
Prior art keywords
nanocrystal
particulate
preparation
mixed solution
ammonia spirit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610710643.4A
Other languages
English (en)
Inventor
迟述义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610710643.4A priority Critical patent/CN107777732A/zh
Publication of CN107777732A publication Critical patent/CN107777732A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种纳米晶体Fe3O4微粒的制备方法,按以下步骤进行:(1)在容器中配制含Fe3+和Fe2+混合溶液;(2)加入氨水溶液,然后在氮气和搅拌条件下超声分散,再加热到68±1℃搅拌40~60min,静置后过滤;(3)将固体沉淀水洗至中性,离心分离后的固相真空干燥去除水分。本发明的方法制备的纳米晶体Fe3O4微粒尺寸分布范围较窄;对废水中的有毒重金属离子具有非常高的吸附容量。

Description

一种纳米晶体Fe3O4微粒的制备方法
技术领域
本发明属于材料科学领域,特别涉及一种纳米晶体Fe3O4微粒的制备方法。
背景技术
在冶金、制革、化工、矿冶、电池制造等行业的工业废水中均含有一种或几种上述的有毒金属,而且其浓度高于允许排放标准。废水中的有害金属通常经过沉淀、蒸发、溶剂萃取、离子交换 、反渗透、膜分离等方法脱除。其中,沉淀法需要消耗大量化学物品且产生废渣,对这些废渣的后续处理成本较高。
磁性纳米材料具有许多不同于常规材料的独特效应, 如量子尺寸效应、表面效应、小尺寸效应及宏观量子隧道效应等, 这些效应使磁性纳米粒子具有不同于常规材料的光、电、声、热、磁、敏感特性。因此使它们在诸如生物传感器、药物输送、润滑、太阳能电池等诸多领域得到应用,而这些用途与纳米粒子的微观结构密切相关。磁性纳米Fe3O4粒子由于其极小的颗粒尺寸、生物兼容性及铁磁特性在磁纪录、颜料、光催化、磁感应医学治疗(细胞分离、磁共振成像、视网膜切除、放射性治疗、药物定向输送)等领域得到广泛应用或引起关注。
发明内容
本发明的目的是提供一种纳米晶体Fe3O4微粒的制备方法,该微粒具有良好的吸附能力,能够用于废水。
本发明的方法按以下步骤进行:
1、在容器中配制含Fe3+和Fe2+混合溶液,Fe2+与Fe3+的摩尔比为Fe2+∶Fe3+=1∶1.8,全部铁离子的浓度为0.6~0.8mol/L;
2、向混合溶液中加入氨水溶液,加入量按加入氨水溶液后混合溶液的pH ≥9;然后在氮气和搅拌条件下超声分散至少1h,再加热到68±1℃,在氮气条件下搅拌40~60min,静置至少3h后过滤分离出固体沉淀;
3、将固体沉淀水洗至洗液为中性,在转数为7000~15000 rpm的条件下离心分离,将离心分离后的固相真空干燥去除水分,获得纳米晶体Fe3O4微粒。
上述的氨水浓度为0.5~2mol/ L。
上述的超声分散时的超声频率为20kHz。
上述的真空干燥条件为:温度60±5℃,真空度小于60 Pa,时间不少于24h。
上述的纳米晶体Fe3O4微粒的微观结构由等轴的纳米晶粒组成,纳米晶粒的粒径为40~90 nm;饱和磁化强度M S= 7~7.1×10-3 A/m。
上述方法的主要反应方程式为:
Fe2 + + 2Fe3 + + 8NH3 ·H2O = Fe3O4 ↓+ 8NH+ 4 + 4H2O。
采用本发明的纳米晶体Fe3O4微粒对废水中的重金属离子的饱和吸附容量最高为36 mg/g。
本发明利用化学反应共沉淀技术在超声波的搅拌作用下,制备的纳米晶体Fe3O4微粒尺寸分布范围较窄;对废水中的有毒重金属离子具有非常高的吸附容量,对高密度磁带、集成电路的电磁波吸收、动态轴承密封、靶向药物、废水净化等领域的技术革新具有良好的应用前景。
具体实施方式
本发明实施例中采用的设备包括85-2数显恒温搅拌器,600-B型电热恒温水浴箱,CPS-3型超声搅拌装置,GL-16A型高速冷冻离心分离设备。
本发明实施例中采用氯化亚铁( FeCl2 ·4H2O)、三价铁盐( FeCl3 ·6H2O)与去离子水或蒸馏水配制含三价铁离子和二价铁离子的溶液。
实施例1
在容器中配制含Fe3+和Fe2+混合溶液,Fe2+与Fe3+的摩尔比为Fe2+∶Fe3+=1∶1.8,全部铁离子的浓度为0.6mol/L;
向混合溶液中加入氨水溶液,加入量按加入氨水溶液后混合溶液的pH ≥9;然后在氮气和搅拌条件下超声分散1h,再加热到68±1℃,在氮气条件下搅拌40min,静置至少3h后过滤分离出固体沉淀;氨水浓度为0.5mol/ L,超声分散时的超声频率为20kHz;
将固体沉淀水洗至洗液为中性,在转数为15000 rpm的条件下离心分离,将离心分离后的固相真空干燥去除水分,获得纳米晶体Fe3O4微粒;真空干燥条件为:温度60±5℃,真空度小于60 Pa,时间不少于24h;
纳米晶体Fe3O4微粒的微观结构由等轴的纳米晶粒组成,纳米晶粒的粒径为40~90 nm;饱和磁化强度M S= 7×10-3 A/m。
实施例2
在容器中配制含Fe3+和Fe2+混合溶液,Fe2+与Fe3+的摩尔比为Fe2+∶Fe3+=1∶1.8,全部铁离子的浓度为0.7mol/L;
向混合溶液中加入氨水溶液,加入量按加入氨水溶液后混合溶液的pH ≥9;然后在氮气和搅拌条件下超声分散1h,再加热到68±1℃,在氮气条件下搅拌50min,静置至少3h后过滤分离出固体沉淀;氨水浓度为1mol/ L,超声分散时的超声频率为20kHz;
将固体沉淀水洗至洗液为中性,在转数为10000 rpm的条件下离心分离,将离心分离后的固相真空干燥去除水分,获得纳米晶体Fe3O4微粒;真空干燥条件为:温度60±5℃,真空度小于60 Pa,时间不少于24h;
纳米晶体Fe3O4微粒的微观结构由等轴的纳米晶粒组成,纳米晶粒的粒径为40~90 nm;饱和磁化强度M S= 7.1×10-3 A/m。
实施例3
在容器中配制含Fe3+和Fe2+混合溶液,Fe2+与Fe3+的摩尔比为Fe2+∶Fe3+=1∶1.8,全部铁离子的浓度为0.8mol/L;
向混合溶液中加入氨水溶液,加入量按加入氨水溶液后混合溶液的pH ≥9;然后在氮气和搅拌条件下超声分散1h,再加热到68±1℃,在氮气条件下搅拌60min,静置至少3h后过滤分离出固体沉淀;氨水浓度为2mol/ L,超声分散时的超声频率为20kHz;
将固体沉淀水洗至洗液为中性,在转数为7000rpm的条件下离心分离,将离心分离后的固相真空干燥去除水分,获得纳米晶体Fe3O4微粒;真空干燥条件为:温度60±5℃,真空度小于60 Pa,时间不少于24h;
纳米晶体Fe3O4微粒的微观结构由等轴的纳米晶粒组成,纳米晶粒的粒径为40~90 nm;饱和磁化强度M S= 7.1×10-3 A/m。

Claims (3)

1.一种纳米晶体Fe3O4微粒的制备方法,其特征在于按以下步骤进行:
(1)在容器中配制含Fe3+和Fe2+混合溶液,Fe2+与Fe3+的摩尔比为Fe2+∶Fe3+=1∶1.8,全部铁离子的浓度为0.6~0.8mol/L;
(2)向混合溶液中加入氨水溶液,加入量按加入氨水溶液后混合溶液的pH ≥9;然后在氮气和搅拌条件下超声分散至少1h,再加热到68±1℃,在氮气条件下搅拌40~60min,静置至少3h后过滤分离出固体沉淀;
(3)将固体沉淀水洗至洗液为中性,在转数为7000~15000 rpm的条件下离心分离,将离心分离后的固相真空干燥去除水分,获得纳米晶体Fe3O4微粒。
2.根据权利要求1所述的一种纳米晶体Fe3O4微粒的制备方法,其特征在于所述的氨水的浓度为0.5~2mol/ L。
3.根据权利要求1所述的一种纳米晶体Fe3O4微粒的制备方法,其特征在于所述的纳米晶体Fe3O4微粒的微观结构由等轴的纳米晶粒组成,纳米晶粒的粒径为40~90 nm;饱和磁化强度M S= 7~7.1×10-3 A/m。
CN201610710643.4A 2016-08-24 2016-08-24 一种纳米晶体Fe3O4微粒的制备方法 Pending CN107777732A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610710643.4A CN107777732A (zh) 2016-08-24 2016-08-24 一种纳米晶体Fe3O4微粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610710643.4A CN107777732A (zh) 2016-08-24 2016-08-24 一种纳米晶体Fe3O4微粒的制备方法

Publications (1)

Publication Number Publication Date
CN107777732A true CN107777732A (zh) 2018-03-09

Family

ID=61393398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610710643.4A Pending CN107777732A (zh) 2016-08-24 2016-08-24 一种纳米晶体Fe3O4微粒的制备方法

Country Status (1)

Country Link
CN (1) CN107777732A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655118A (zh) * 2019-10-31 2020-01-07 吉林大学 一种四氧化三铁纳米晶的制备方法
CN113117698A (zh) * 2021-04-21 2021-07-16 宁夏大学 一种磁性纳米铁钼复合催化剂的制备方法及该催化剂的应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655118A (zh) * 2019-10-31 2020-01-07 吉林大学 一种四氧化三铁纳米晶的制备方法
CN113117698A (zh) * 2021-04-21 2021-07-16 宁夏大学 一种磁性纳米铁钼复合催化剂的制备方法及该催化剂的应用

Similar Documents

Publication Publication Date Title
CN101445277B (zh) 具有高吸附能力的纳米晶体Fe3O4微粒及制备方法
Liu et al. Synthesis of polyethylenimine/graphene oxide for the adsorption of U (VI) from aqueous solution
Kouhbanani et al. Green synthesis of iron oxide nanoparticles using Artemisia vulgaris leaf extract and their application as a heterogeneous Fenton-like catalyst for the degradation of methyl orange
Yu et al. Key factors for optimum performance in phosphate removal from contaminated water by a Fe–Mg–La tri-metal composite sorbent
Shen et al. Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification
JP6494468B2 (ja) 磁性ナノ粒子を用いた水の浄化
Zhu et al. Efficient degradation of rhodamine B by magnetically separable ZnS–ZnFe2O4 composite with the synergistic effect from persulfate
Jia et al. Magnetically separable Au-TiO2/nanocube ZnFe2O4 composite for chlortetracycline removal in wastewater under visible light
Hu et al. Encapsulating nanoscale zero-valent iron with a soluble Mg (OH) 2 shell for improved mobility and controlled reactivity release
Zhang et al. Study on industrial wastewater treatment using superconducting magnetic separation
CN106512943A (zh) 一种纳米复合材料及其制备方法和在水处理中的应用
Pol et al. Solvent-free fabrication of ferromagnetic Fe3O4 octahedra
Pal et al. Facile functionalization of Fe2O3 nanoparticles to induce inherent photoluminescence and excellent photocatalytic activity
CN102616824A (zh) 一种超微细高白度活性重晶石粉体的制备方法
Liu et al. Motion mode-driven adsorption by magnetically propelled MOF-based nanomotor
CN107777732A (zh) 一种纳米晶体Fe3O4微粒的制备方法
Chen et al. Characterizations of TiO2@ Mn-Zn ferrite powders for magnetic photocatalyst prepared from used alkaline batteries and waste steel pickling liquor
CN105439272B (zh) 铁氧体MFe2O4磁性纳米颗粒用于去除含碲废水的方法及其用途
Lan Huong et al. Facile synthesis and excellent adsorption property of GO-Fe3O4 magnetic nanohybrids for removal of organic dyes
Qiu et al. Exposed facets mediated interaction of polystyrene nanoplastics (PSNPs) with iron oxides nanocrystal
Lin et al. Development of ionic liquid filled chitosan capsules to remove Cr (VI) from acidic solution: adsorption properties and mechanism
Usman et al. Plant extract mediated synthesis of Fe3O4-chitosan composite for the removal of lead ions from aqueous solution
CN109319891B (zh) 一种磁性纳米材料及其制备方法与在放射性元素处理中的应用
Di et al. Mechanism of arsenic removal from tannin‐‑germanium complex augmented by ultrasound
Ito et al. Removal and recycle of phosphate from treated water of sewage plants with zirconium ferrite adsorbent by high gradient magnetic separation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180309