CN107777680A - 一种高导热多孔片状石墨烯/片材料及其制备方法 - Google Patents

一种高导热多孔片状石墨烯/片材料及其制备方法 Download PDF

Info

Publication number
CN107777680A
CN107777680A CN201610798907.6A CN201610798907A CN107777680A CN 107777680 A CN107777680 A CN 107777680A CN 201610798907 A CN201610798907 A CN 201610798907A CN 107777680 A CN107777680 A CN 107777680A
Authority
CN
China
Prior art keywords
sheet material
graphene
heat conduction
graphite
high heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610798907.6A
Other languages
English (en)
Other versions
CN107777680B (zh
Inventor
张立强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huizhou Liwang New Materials Research Institute
Original Assignee
Have New Materials (huizhou) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Have New Materials (huizhou) Co Ltd filed Critical Have New Materials (huizhou) Co Ltd
Priority to CN201610798907.6A priority Critical patent/CN107777680B/zh
Publication of CN107777680A publication Critical patent/CN107777680A/zh
Application granted granted Critical
Publication of CN107777680B publication Critical patent/CN107777680B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/24Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/30Purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种高导热多孔片状石墨烯/片材料及其制备方法,主要以石墨有机乳液或PI乳液或纯石墨为原料,浇筑于特制密闭超薄容器内,通过高温高压制备多层多孔石墨烯/片。本发明采用溶剂热法与高温还原法相结合,为石墨烯的制作及应用开辟新的途径,多孔特性可以提高比表面积,扩大扇热面积,提高散热效果。

Description

一种高导热多孔片状石墨烯/片材料及其制备方法
技术领域
本发明涉及一种高导热多孔片状石墨烯/片材料及其制备方法。
背景技术
国内外研究者对有机硅为基材的导热材料进行了大量的研发和改性,逐渐形成一系列导热硅材料,如导热硅胶片、灌封胶、导热硅脂等。近年来采用无机填料(玻璃纤维、碳纤维、晶须等)制备超高导热复合材料的研究越来越受到关注,并将其广泛应用于电子行业。同时在电子封装和计算机芯片方面,设备的几何尺寸不断减小,能量输出却不断增加,使得导热材料的研究在这一领域变得越来越重要。传统导热材料易加工成型、价格低廉,但是热导率较低。
石墨烯出现在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨片,然后把薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。
石墨烯是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,导热系数高达5300W/m·K,高于碳纳米管和金刚石。石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域,比如超轻防弹衣,超薄超轻型飞机材料等。根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。另外石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由于其高传导性、高比表面积,可适用于作为电极材料助剂。
石墨烯的研究热潮也吸引了国内外材料制备研究的兴趣,石墨烯材料的制备方法已报道的有:机械剥离法、化学氧化法、晶体外延生长法、化学气相沉积法、有机合成法和碳纳米管剥离法、高温还原、光照还原、微波法、电弧法、电化学法等。本文在以上基础上提出一种制备高导热多孔层状石墨烯/片新方法,石墨烯导热系数超高,多孔状可以增加比表面积,扩大散热效果。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种高导热多孔片状石墨烯/片材料及其制备方法,该方法以石墨有机乳液或PI乳液或纯石墨为原料,浇筑于特制密闭超薄容器内,通过高温高压制备多层多孔石墨烯/片。
本发明解决上述技术问题采取的技术方案是:一种高导热多孔片状石墨烯/片材料,主要原料包括石墨有机乳液或PI乳液或纯石墨,所述石墨乳液的质量分数为2%~30%,所述PI乳液的质量分数为10%~60%。
一种高导热多孔片状石墨烯/片材料的制备方法,包括以下步骤:
步骤一:应用超声波手段制备石墨乳液;
步骤二:定制密闭的温度压力处理装置,将石墨乳液浇筑于温度压力处理装置中,进行加热、加压处理10min~120min;
步骤三:利用介质转移温度压力处理装置内的石墨产品;
步骤四:转移出的石墨产品漂浮于有机溶剂当中,然后进行烘干,多次重复进行转移、烘干,制备出石墨烯/片材料。
作为优选,所述温度压力处理装置的内腔中空,厚度为50μm~300μm。
作为优选,所述温度压力处理装置内的温度条件为2800℃~3500℃,压力条件为0.01MPA~1MPA。
作为优选,所述介质为丙酮或乙酸乙酯或甲苯。
作为优选,所述有机溶剂为丙酮或乙酸乙酯。
采用了上述技术方案后,本发明具有以下的有益效果:本发明采用溶剂热法与高温还原法相结合,为石墨烯的制作及应用开辟新的途径,制备的多孔石墨烯片层厚100nm左右,石墨烯纯度高,网状结构,而且制备过程操作简单,产品导热率高,多孔性,比表面积大,散热快。
具体实施方式
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明。
种高导热多孔片状石墨烯/片材料,主要原料包括石墨有机乳液或PI乳液或纯石墨,所述石墨乳液的质量分数为2%~30%,所述PI乳液的质量分数为10%~60%。
一种高导热多孔片状石墨烯/片材料的制备方法,包括以下步骤:
步骤一:应用超声波手段制备石墨乳液;
步骤二:定制密闭的温度压力处理装置,将石墨乳液浇筑于温度压力处理装置中,进行加热、加压处理10min~120min;
步骤三:利用介质转移温度压力处理装置内的石墨产品;
步骤四:转移出的石墨产品漂浮于有机溶剂当中,然后进行烘干,多次重复进行转移、烘干,制备出石墨烯/片材料。
所述温度压力处理装置的内腔中空,厚度为50μm~300μm。
所述温度压力处理装置内的温度条件为2800℃~3500℃,压力条件为0.01MPA~1MPA。
所述介质为丙酮或乙酸乙酯或甲苯。
所述有机溶剂为丙酮或乙酸乙酯。
实施例1:
步骤一:应用超声波手段制备质量分数为15%的石墨乳液;
步骤二:定制密闭的温度压力处理装置,将石墨乳液浇筑于温度压力处理装置中,进行加热、加压处理60min;
步骤三:利用丙酮转移温度压力处理装置内的石墨产品,其中温度为3100℃,压力为0.2MPA;
步骤四:转移出的石墨产品漂浮于丙酮当中,然后进行烘干,多次重复进行转移、烘干,制备出石墨烯/片材料。
制备的高导热多孔层状石墨烯/片测试性能如下:
性能参数类别 具体参数值
纯度 >99%
孔数(PPI) 10~200
厚度 >100nm~200μm
热导率 >1800w/(m*k)
比表面积 >50μ/g
本发明旨在提出一种高导热多孔层状石墨烯/片的新方法,采用溶剂热法与高温还原法相结合,为石墨烯的制作及应用开辟新的途径,多孔特性可以提高比表面积,扩大扇热面积,提高散热效率。
以上所述的具体实施例,对本发明解决的技术问题、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种高导热多孔片状石墨烯/片材料,其特征在于:主要原料包括石墨有机乳液或PI乳液或纯石墨,所述石墨乳液的质量分数为2%~30%,所述PI乳液的质量分数为10%~60%。
2.一种高导热多孔片状石墨烯/片材料的制备方法,其特征在于:包括以下步骤:
步骤一:应用超声波手段制备石墨乳液;
步骤二:定制密闭的温度压力处理装置,将石墨乳液浇筑于温度压力处理装置中,进行加热、加压处理10min~120min;
步骤三:利用介质转移温度压力处理装置内的石墨产品;
步骤四:转移出的石墨产品漂浮于有机溶剂当中,然后进行烘干,多次重复进行转移、烘干,制备出石墨烯/片材料。
3.根据权利要求2所述的一种高导热多孔片状石墨烯/片材料的制备方法,其特征在于:所述温度压力处理装置的内腔中空,厚度为50μm~300μm。
4.根据权利要求3所述的一种高导热多孔片状石墨烯/片材料的制备方法,其特征在于:所述温度压力处理装置内的温度条件为2800℃~3500℃,压力条件为0.01MPA~1MPA。
5.根据权利要求2所述的一种高导热多孔片状石墨烯/片材料的制备方法,其特征在于:所述介质为丙酮或乙酸乙酯或甲苯。
6.根据权利要求2所述的一种高导热多孔片状石墨烯/片材料的制备方法,其特征在于:所述有机溶剂为丙酮或乙酸乙酯。
CN201610798907.6A 2016-08-31 2016-08-31 一种高导热多孔片状石墨烯/片材料及其制备方法 Active CN107777680B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610798907.6A CN107777680B (zh) 2016-08-31 2016-08-31 一种高导热多孔片状石墨烯/片材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610798907.6A CN107777680B (zh) 2016-08-31 2016-08-31 一种高导热多孔片状石墨烯/片材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107777680A true CN107777680A (zh) 2018-03-09
CN107777680B CN107777680B (zh) 2020-11-03

Family

ID=61451607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610798907.6A Active CN107777680B (zh) 2016-08-31 2016-08-31 一种高导热多孔片状石墨烯/片材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107777680B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108816157A (zh) * 2018-06-25 2018-11-16 江苏亮盈科技股份有限公司 一种用于石墨烯生产的压力容器工装
CN112897522A (zh) * 2021-03-26 2021-06-04 浙江华熔科技有限公司 一种超薄导热石墨膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244278A (zh) * 2011-05-31 2011-11-16 华东理工大学 一种膨胀石墨复合双极板材料及其制造方法
US20130102084A1 (en) * 2010-06-25 2013-04-25 Univeristy Methods of forming graphene by graphite exfoliation
CN104150469A (zh) * 2014-07-31 2014-11-19 山东玉皇新能源科技有限公司 一种可批量化制备少层石墨烯粉体的方法
US20150360197A1 (en) * 2010-10-29 2015-12-17 Industry-Academic Cooperation Foundation, Yonsei University Spinel-Type Lithium Titanium Oxide/Graphene Composite and Method of Preparing the Same
CN105439132A (zh) * 2015-12-17 2016-03-30 云南云天化股份有限公司 一种高导热石墨材料及其制备方法
CN105820569A (zh) * 2016-04-21 2016-08-03 常州达奥新材料科技有限公司 一种石墨烯/聚酰亚胺复合材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130102084A1 (en) * 2010-06-25 2013-04-25 Univeristy Methods of forming graphene by graphite exfoliation
US20150360197A1 (en) * 2010-10-29 2015-12-17 Industry-Academic Cooperation Foundation, Yonsei University Spinel-Type Lithium Titanium Oxide/Graphene Composite and Method of Preparing the Same
CN102244278A (zh) * 2011-05-31 2011-11-16 华东理工大学 一种膨胀石墨复合双极板材料及其制造方法
CN104150469A (zh) * 2014-07-31 2014-11-19 山东玉皇新能源科技有限公司 一种可批量化制备少层石墨烯粉体的方法
CN105439132A (zh) * 2015-12-17 2016-03-30 云南云天化股份有限公司 一种高导热石墨材料及其制备方法
CN105820569A (zh) * 2016-04-21 2016-08-03 常州达奥新材料科技有限公司 一种石墨烯/聚酰亚胺复合材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108816157A (zh) * 2018-06-25 2018-11-16 江苏亮盈科技股份有限公司 一种用于石墨烯生产的压力容器工装
CN112897522A (zh) * 2021-03-26 2021-06-04 浙江华熔科技有限公司 一种超薄导热石墨膜及其制备方法

Also Published As

Publication number Publication date
CN107777680B (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
Guo et al. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity
Sang et al. Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding
Feng et al. Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics
Wang et al. Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption
Zhou et al. Construction of self-assembly based tunable absorber: lightweight, hydrophobic and self-cleaning properties
Sun et al. Flexible conductive polyimide fiber/MXene composite film for electromagnetic interference shielding and joule heating with excellent harsh environment tolerance
Zhao et al. Pressure-induced self-interlocked structures for expanded graphite composite papers achieving prominent EMI shielding effectiveness and outstanding thermal conductivities
Zeng et al. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding
Peng et al. Ultrahigh thermal conductive yet superflexible graphene films
Qian et al. High electromagnetic wave absorption and thermal management performance in 3D CNF@ C-Ni/epoxy resin composites
Ning et al. Two-dimensional nanosheets of MoS 2: a promising material with high dielectric properties and microwave absorption performance
Chen et al. Polymer-derived lightweight SiBCN ceramic nanofibers with high microwave absorption performance
Kataria et al. Chemical vapor deposited graphene: From synthesis to applications
Sun et al. Flexible multi-walled carbon nanotubes/polyvinylidene fluoride membranous composites with weakly negative permittivity and low frequency dispersion
Zhou et al. Use of BN-coated copper nanowires in nanocomposites with enhanced thermal conductivity and electrical insulation
Zeng et al. Polymer-assisted fabrication of silver nanowire cellular monoliths: toward hydrophobic and ultraflexible high-performance electromagnetic interference shielding materials
CN107141007A (zh) 一种基于石墨烯的复合导热膜及其制备方法
CN102586951A (zh) 一种基于石墨烯/聚丙烯腈复合碳纤维的制备方法
CN102764724A (zh) 喷涂石墨烯涂层的方法及由此制得的石墨烯涂层
Lan et al. All-ceramic SiC aerogel for wide temperature range electromagnetic wave attenuation
Guo et al. Negative permittivity behavior in microwave frequency from cellulose-derived carbon nanofibers
Jiang et al. Flexible conductive polymer composite materials based on strutted graphene foam
Zhao et al. Heat conduction of electrons and phonons in thermal interface materials
Huang et al. Ambient-drying to construct unidirectional cellulose nanofibers/carbon nanotubes aerogel with ultra-lightweight, robust, and superior microwave absorption performance
Gao et al. Temperature dependent thermal transport in graphene paper above room temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 516000 jindingling, Tangquan forest farm, Luoyang Town, BOLUO County, Huizhou City, Guangdong Province

Patentee after: Guangdong Liwang New Material Co.,Ltd.

Address before: Kowloon Village Road Xiaojinkou town 516023 Guangdong province Huizhou city Huicheng District No. 1 Building 1

Patentee before: KINGBALI NEW MATERIAL (HUIZHOU) Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201110

Address after: 516000 jindingling, Tangquan forest farm, Luoyang Town, BOLUO County, Huizhou City, Guangdong Province

Patentee after: Huizhou Liwang New Materials Research Institute

Address before: 516000 jindingling, Tangquan forest farm, Luoyang Town, BOLUO County, Huizhou City, Guangdong Province

Patentee before: Guangdong Liwang New Material Co.,Ltd.